CellStore - the Vision of Pure Object
Database

Jan Vrany

27.4.2006

e C(ellStore project
* Low-level storage model
e Cell model
e Mapping scheme
e CellStore/OODB
e Object Virtual Machine
e Current prototype

2/18

CellStore Project

Main goal of CellStore project is to implement an experi-
mental, hybrid (non-relational) database engine

The project consists of three main parts:

o Low-level storage
e CellStore/’XML
e CellStore/OODB

CellStore is developed within SWING reseach group at De-
partment of Computer Science, FEE, CTU

3/18

CellStore - architecture

CellStore/Q0ODB

Jitter

St. interpreter

Java interpreter

CellStore/XML

Low-level [INCEIENEAEE

storage

Cell space

Data space

4/18

CellStore - architecture (Continued)

Low-level storage I.

based on LISP idea of fixed-length cells, each cell con-
sists of several fields

divides the structure form raw data (strings, byte se-
quences)

data are stored in two separate spaces:
e Cell space which contain only structural information

 Data space which contain raw data as strings, texts,
images and so on

6/18

Low-level storage II.

Using this model, it is possible to store:

e XML data

e any object structure based on class-instance object
model (Smalltalk, Java)

e any object structure based on prototype object model
(Self, ECMAscript)

e any relational data

All mentioned types of data can be stored together in one
database instance.

7/18

Low-level storage lIl.

For each data model a different mapping schema must be

used. Mapping schema just gives a concrete meanings to
the cell fields.

Example of mapping schema for XML tree

e each DOM node is mapped to one cell

e first field contains pointer to parent cell (i.e. parent
node)

 second field contains pointer first child cell (i.e. first
child node)

e third field contains pointer to sibling cell (i.e. sIbling
node)

 subsequent field meannings differ with type of cell.

8/ 18

CellStore/OODB

One can thing about OODB as about

e aKkind of database engine
e transactions
* persistency
e access control

e aKkind of multi-user virtual machine with persistent ob-
ject memory

9/18

Problems of todays virtual machines

Todays virtual machines are unmodifiable, it is difficult to
debug them, to experiment with them, to port them to an-
other platform.

e How easy is to modity the garbage collector?
e How easy is to modify the jitter?
e How easy is to change the code sematics (interpeter) ?

One possible solution is to implement as much as possible
on the top of light-weight virtual machine.

10/ 18

Light-weight virtual machine

Requirements for the VM:

 simple object model capable to store any arbitrary ob-
ject model

* object memory with simple and clean interface

e support for n-code cache (jitter output) and n-code exe-
cution

e bootstrap interpreter (naive one will be sufficient)

Everything else (full-featured interpreter, GC, jitter etc.)
could be implemented on the top of VM

11/18

CellStore - architecture

CellStore/Q0ODB

Jitter

St. interpreter

Java interpreter

CellStore/XML

Low-level [INCEIENEAEE

storage

Cell space

Data space

12/ 18

CellStore - architecture (Continued)

Current prototype

We have prototype implementation (in Smallalk/X):

e Low level storage

configurable cell space manager
naive data space manager

prototype implementation of cache and recovery
manager

e (CellStore/ XML

XML:DB API Core level 0 (modified for Smalltalk
language)

naive XPath query service (no indexes, no types, no
functions)

prototype implementation of transaction manager

14/ 18

Current prototype (Continued)

e C(Cellstore/OODB - nothing done

e access control on object (graph-like) structure

 what about long-term transaction and nested transac-
tions

e database distribution, distributed GC

16/ 18

Ongoing development

 refactoring of low-level storage manager
e access control lists

e mapping models

e garbage collector interface

e intepreter interface

e XQuery module

17/ 18

Thank you for your attention

18/18

