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Abstract. The increasing availability of Web services has made the ac-
curate and efficient discovery and selection of target services an impor-
tant issue. OWL-S is a language that semantically describes Web ser-
vices to facilitate automated service discovery and selection. This pa-
per proposes an OWL-S service matchmaking mechanism that utilizes
the emerging standard SPARQL. In this mechanism, a service requestor
queries service repositories via a matchmaker by using the SPARQL
query language. The matchmaker performs service matching and or-
dering with the help of a SPARQL query engine. Using SPARQL as
the query language offers several advantages that are not provided by
existing matchmaking systems, allowing complex service matching and
reducing the difficulty of query formulation. In addition, it makes the
architecture of the matchmaking system loosely-coupled and that of the
matchmaker lightweight.

1 Introduction

One of the primary goals of semantic Web services is to enable automatic discov-
ery and selection of the services. Automatic discovery is an automated process
for locating a Web service that provides a particular class of service capabilities
while adhering to client-specific constraints. To discover a service, a software
agent needs a computer-interpretable description of the service and a means
by which to access it. OWL-S [1], WSMO [2] and WSDL-S [3] are examples of
languages and models that semantically describe Web services.

In this paper, we focus on using OWL-S for describing Web services because
we adopt a matching method used by many service matchmakers that is based
on the OWL-S service description. OWL-S describes the Web services in terms
of the capabilities offered based on the Web Ontology Language (OWT) [4].

In a typical scenario, a service provider describes advertised services using
an OWL-S compliant ontology and submits the advertisements to a Web service
repository. A service requester queries the repository by creating a service request
using the ontology. The repository matches registered advertisements to the
request by performing inferences on the concept hierarchy and orders the results
based on the degree of match between the request and advertisements. Since
queries are formulated using an ontology rather than a high-level query language,
queries are quite difficult to compose and the repository usually only supports
simple queries. Furthermore, the system needs to implement a proprietary query
engine because each system uses a different matching method.



The recently approved standard WS-Resource Framework (WSRF) [5] defines
conventions related to managing Web services, which improves several aspects
of these services to make them more adequate for grid applications. It defines a
WS-Resource that describes the relationship between a service and a resource. In
this environment, resources are discovered by identifying the Web services that
interact with them. Resource discovery in the grid is currently based on text
matching [6]. Text matching-based resource discovery, however, is not a feasible
solution for grids having a large number of resources with different capabilities
distributed across different organizations.

This paper proposes a new OWL-S service matchmaking mechanism based
on the SPARQL query language [7] that is able to support semantic resource
matching within a grid. We envision service repositories with a SPARQL query
processing capability! and a matchmaker that serves requester queries. A service
provider uses the OWL-S ontology to describe a service, but a service requester
formulates a query using SPARQL sent to a matchmaker.

On receiving a requester query, the matchmaker forwards it to a repository
and receives query results. The matchmaker needs to order results because either
they are inherently unordered or they are ordered in a way that 1s not based on
class subsumption relationships. To this end, the matchmaker rewrites the re-
quester query before sending it to a repository so that query results will contain
all information necessary for result ordering. This paper proposes two mecha-
nisms: query rewriting and result ordering that enable the matchmaker to order
query results based on class subsumption relationships. The matchmaker also
allows a requester to set an ordering preference based on service characteristics.

Using SPARQL to formulate a service request provides the following advan-
tages.

— Imposing no restrictions on the repository system. Since SPARQL is a stan-
dard query language, the repository does not need to identify whether a
query comes from a matchmaker. Furthermore, the repository can use exist-
ing SPARQL query engines [8].

— Loosely-coupled architecture. A matchmaker can easily switch from one repos-
itory to another or send a simultaneous query to multiple repositories.

— Lightweight matchmaker. The matchmaker must only perform lightweight
tasks such as query rewriting and result ordering, while the heavyweight
task of service matching is provided by a ”"standard” SPARQL query engine
in a repository system.

— Complex service matching. A requester can use the rich SPARQL constructs
(e.g., optional, filtering, and union) during service requests. Furthermore,
SPARQL inherently supports some sorts of grid resource matching.

— Ability to use standard SPARQL query results in XML format [9] and pro-
tocols [10] in communications between a requester and the matchmaker and
between the matchmaker and the repository.

! The SPARQL query engine could be attached to the matchmaker or a stand-alone
module. However, we adopted this approach because we envision a future in which
many RDF repositories are located behind a SPARQL query engine.



The rest of the paper is organized as follows. Section 2 briefly describes the
semantic markup for Web services, OWL-S, and the SPARQL query language.
Section 3 reviews related work. Section 4 describes the proposed matchmaking
mechanism. Section 5 describes semantic resource matching in the Grid. The final
section discusses advanced use of SPARQL for service and resource matching,
and outlines future activities.

2 Background

2.1 OWL-S§

OWL-S [1] is an ontology of service concepts for describing the properties and
capabilities of web services in a machine interpretable form. It consists of three
main parts/classes: the ServiceProfile, ProcessModel, and ServiceGrounding.
The ServiceProfile is used for advertising and discovering services. It in-
cludes three basic types of information: what organization provides the ser-
vice (e.g., contact information), what function the service computes (e.g., inputs
and outputs) and what characteristics the service has (e.g., service category).
The ProcessModel gives a detailed description of a service’s operation and the
ServiceGrounding specifies the details of how to access the service.

A class Service simply binds the three parts together into a unit via three
object properties: presents (to the ServiceProfile), describedby (to the
ProcessModel) and supports (to the ServiceGrounding).

Since ServiceProfile is used for service discovery, this paper mainly deals
with the class or classes that extend the ServiceProfile.

2.2 SPARQL Query Language

SPARQL consists of a query language [7], a means of conveying a query to a
query processor [10], and the XML format in which query results will be returned
[9]. The specification is currently under discussion as a W3C Working Draft but
the availability of several SPARQL query engines [8] means that the specification
is getting stable for the practical use.

The SPARQL query language is based on matching graph patterns. The
simplest pattern is the ¢riple pattern consisting of subject, predicate, and object.
Any or all of subject, predicate, and object values may be replaced by a variable
prefixed with either ”7“ or ”$“. Combining triple gives a basic graph pattern,
where an exact match to a graph is needed to fulfill a pattern.

The query below finds a service (bound to variable 7s) that has a serviceProfile
(bound to 7o) whose types/classes of its two pr:hasInput values (bound to ?ing
and 7ing) are :Inputil and :Input2, respectively.

PREFIX sr: <http://www.daml.org/services/owl-s/1.1/Service.owl#>
PREFIX pr: <http://www.daml.org/services/owl-s/1.1/Profile.owl#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

BASE <http://wuw.owl-ontologies.com/unnamed.owl#>



SELECT 7s WHERE 7s sr:presents 7o.
70 pr:hasInput 7in;. 7in; rdf:type :Inputl.
70 pr:hasInput 7ins. 7in, rdf:type :Input2.

The PREFIX keyword associates a prefix label with a URI and BASE keyword
defines the based URI to resolve relative URIs. The SELECT clause indentifies
the variables to appear in the query results and the WHERE clause contains a
graph pattern.

SPARQL provides other graph patterns for complex matching such as op-
tional graph pattern for matching semi-structured RDF graphs, alternative graph
pattern for combining graph patterns so that one of several alternative graph
patterns may match, and patterns on named graphs where patterns are matched
against named graphs. It also provides value constraints which restrict RDF
terms in a solution. SPARQL includes a number of syntax shortcuts that simplify
the writing of patterns. For example, triple patterns sharing the same subject
and predicate can be written using the ”,“ notation (e.g., triples with predi-
cate pr:hasInput in the query above can be written as 7o pr:hasInput 7ing,
?iny.) and rdf:type can be replaced with keyword ”a“.

3 Related Work

3.1 OWL-S Semantic Matchmaking

Over the last few years, researchers have proposed several semantic matching
methods. [11] is the first method that provides an algorithm for matching service
advertisements and requests based on service inputs and outputs. An advertise-
ment matches a request when all request outputs are matched by advertisement
outputs, and all advertisement inputs are matched by request inputs. This char-
acteristic guarantees that the matched service provides all outputs requested
by the requester, and that the requester provides all input required for correct
operation to the matched service.

More specifically, an advertisement output outA exactly matches a request
output outR when it is identical with outR or when outR is an immediate sub-
class of outA. If outA subsumes outR then this is considered a Plug-in match;
conversely, if outR subsumes outA, then this is considered a Subsume match. If
no subsumption relationship appears between outA and outR, then this is con-
sidered a Fail match. Matching of inputs involves a similar computation method
but reverses the order of request and advertisement.

The following matching methods are based on [11]. [12] adds a new similarity
metrics intersection to detect when an advertisement satisfies only some features
of a request, whereas [13] further examines relationships among classes and their
property classes. [14] and [15] add syntactic similarity and [16] adds service cat-
egory matching and user-defined matching to semantic matching. [17] proposes
a rather different matching approach. It computes the best combinations of Web
services to provide the most satisfactory request outputs while requiring the least
possible inputs that are not provided in the request.



All matchmaking systems, however, use ontology or description logic in ser-
vice requests instead of a high-level query language such as SPARQL. Further-
more, because the systems have different matching methods, they use proprietary
matching engines.

3.2 Resource Discovery in the Grid

The grid middleware, Globus Toolkit (GT) 4.0 [18], provides a service, called
the Tndex Service [6], that facilitates grid resource monitoring and discovery.
This service collects data from various sources and publishes them as XML
documents. This service provides structured (XML) data but without semantic
constraints. S-MDS [19] is a framework to support automatic service discovery
and monitoring in the grid. It describes the metadata of WS-Resources using
OWL-S ontology and provides an efficient mechanism to aggregate and maintain
the ontology instances. S-MDS, however, is a kind of an index service rather
than a matchmaking system. Our matchmaking system can work with S-MDS
to provide semantic resource discovery and selection in the grid.

Classad [20] is a matchmaking framework to resource management in dis-
tributed environment with decentralized ownership of resources. In this frame-
work, a service advertisement and request are formulated using a semi-structured
data model called classified advertisements (classad) which consists of attribute-
value pairs. A matchmaker matches the advertisement and the request based
on constraints specified by attributes in the classads. This framework, however,
only allows a bilateral match, that is, matching a single request with a single
resource. [21] extends the work so that a single request can be matched with
multiple (types of) resources (gang match).

Redline [22] is a grid matchmaking system that reinterprets matching as a
constraint problem and exploits constraint-solving technologies to implement
matching operations. It provides two new matching methods which are not sup-
ported by classad: set match and congruous match. The former matches between
a request and a resource set with particular aggregated properties whereas the
latter matches between multiple requests and a resource.

Ontology-based Matchmaker (OMM) [23] is an ontology-based resource se-
lector for solving resource matching in the grid. Resources and requests are
described by (different) ontologies and they are matched using matching rules.
The matchmaker can be easily extended by adding vocabularies and inference
rules to include new concepts about resources. Like classadd, OMM supports
bilateral match and gang match.

Classad and Redline, however, are based on text matching rather than seman-
tic matching. Furthermore, they do not use ontology for service advertisement
and request. On the other hand, OMM supports semantic matching for resource
discovery. It, however, uses proprietary ontology to describe resources. Similar
to the OWL-S matchmakers, a resource request 1s formulated using ontology and
a special matching engine is needed to process the request.
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Fig. 1. System architecture

4 SPARQL-based OWL-S Service Matchmaking

Fig. 1 presents the basic architecture of the proposed matchmaking system. A
requester sends a SPARQL query as a service request to a matchmaker through
a client interface. The matchmaker rewrites the query and sends the rewritten
query to a repository system. The query is rewritten such that matching re-
sults returned by the repository will contain the information necessary for result
ordering. Matching results are ordered based on the degree of match between
the query and its resulting services and the ordered results are returned to the
requester.

A SPARQL query treats an RDF graph purely as data, 1.e. it does not inter-
pret RDF schema information or entailments. The query, however, can be issued
to an inferred graph, thus allowing query over the entailments. In this paper, we
assume that in addition to storing OWL-S service instances with their schema,
an RDF repository provides an inferred graph of the instances. The former is
called uninferred Graph (uGraph), whereas the latter is called inferred Graph
(iGraph)?. iGraph is a query’s default graph, and uGraph is accessed through
the SPARQL named graph mechanism.

The rest of this paper will apply the following definitions. A graph pattern
in the definitions is matched against iGraph. For simplicity, SPARQL prefix
keywords and labels are always omitted from a query and graph pattern and
syntax shortcuts are always used.

Definition 1. Type-matching query graph pattern (type-matching pattern) pt=

{?0 p Tvary, ..., Tvarg. Tvary a c1. ... Tvarg a ck .} is defined as a graph
pattern that matches k values of predicate p while restricting values to those from
types/classes c1, ..., ck. p is called the target property/predicate and cq, ..., cg

is called the target property value (tpv) classes®.

Definition 2. Relative classes of class ¢ include all its superclasses and sub-
classes (including c).

2 When a resource is defined as an instance from class ¢ in uGraph, it is inferred as
instances from ¢’s subclasses in 1Graph.
# Henceforth, we will use type and class and property and predicate interchangeably.



Definition 3. Given type-matching pattern pt: Instance s is said to be a sub-
class instance of target property p if s matches pt. In this case, values of p (of
s)waly, ..., valy (which are bound to vary, ..., vary of pt) are from a subclass
of (tpv classes) cq, ..., ci, respectively.

Definition 4. Given type-matching pattern pt: Instance s is said to be a super-
class instance of target property p if s does not match pt and values of p (of s)
valy, ..., valy are from a relative class of (tpv classes) 1, ..., cx, respectively.
In this case, one (or more) of the relative classes is a superclass of a tpv class
(excluding the tpv class itself).

Definition 5. Given type-matching pattern pt: Property p of instance s is said
to be an inclusive property (with respect to pt) if s is a subclass or superclass
instance of target property p and p has (exacly) k values. Otherwise p is said to
be a non-inclusive property.
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Fig. 2. A fragment of ontologies and service instances

Example 1 Fig. 2 presents a fragment of some domain-specific ontologies and
service instances. The figure also presents properties and their value types of
the instances. For example, "hasInput=Two-doors, Solara“ of s; denotes that
s1 has a property hasInput with two values whose types are Two-doors and
Solara, respectively.

g1 = SELECT 7s WHERE 7s presents 7o.
70 hasInput 7iny, 7ing. Tiny a Familycar. 7ins a Toyota.

Query ¢ above contains type-matching pattern {70 hasInput 7ini, 7ins.
?iny a Familycar. 7in, a Toyota.}. s; is a subclass instance of hasInput
because it matches the query. Since it has two hasInput values, the hasInput



is an inclusive property. Similarly, s3 is a subclass instance of hasInput because
it matches the query. Its hasInput property, however, is a non-inclusive one
because the property has three values of which one type is Year. However, s5 is
a superclass instance of hasInput because it does not match ¢; and its hasInput
value types are Car and Toyota, which are from the relative classes of Familycar
and Toyota, respectively. The hasInput property is an inclusive one.

4.1 Query Rewriting

Upon receiving query results from a repository, the matchmaker orders them
based on the degree of match between concepts included in the query and in
matched services. This paper uses the degree of match defined in [11] (see Sec-
tion 3.1). The results, however, do not contain the data or information necessary
for the ordering task. For example, applying ¢1 to iGraph (of ontologies shown
in Fig 2) returns s; and sz, but the results lack the following information:

— Superclass wnstances of property hasInput. q; leaves s as an unmatched
service because ss 1s a superclass instance of hasInput. Lack of this data
will prevent application of the Subsume match calculation.

— Immediate subclass/superclass information. For example, Two-doors (which
is the hasInput value type of s1) is not an immediate subclass of Familycar,
unlike Sedan (which is the hasInput value type of s3). Lack of this informa-
tion will prevent application of Exact and Plug-in match calculations.

— Property inclusiweness information. For example, hasInput of s; is an in-
clusive property, whereas that of s3 is a non-inclusive one. Lack of this in-
formation will prevent application of the Fail match calculation.

This paper examines the following requester query®.

SELECT ?s

WHERE otherGP. 7s presents 7o.

70 p1 Tvari, ..., Tvarig,. Tvariy a cii. ... Tvarig, a ci g, -

70 pm Tvarma, ..., TVarmE, . TVATR1 A Cmi. ... TVATm k. A Cmk,, -

The query contains a set of type-matching patterns and other graph patterns
(otherGP). otherGP can be optional, alternative, and/or value constraint graph
patterns [7].

The query rewriting procedure involves rewriting each type-matching pattern
such that pattern solutions will contain superclass and subclass instances of the
target property, class subsumption information, and target property inclusive-
ness information. More formally, given the following query, where 1 <7 < m,

SELECT ?s
WHERE otherGP. 7s presents 7o.
0 p; Tvar;a, ..., Tvarygp,. Tvar;n oa ¢a. ... Tvars g, a Cig,.



1: SELECT distinct 7s Totype; Tsup;i ... Tsupik, Tsubii ...
Tsub;k, Tisupiq ... Tisupik, Tisub;q ... Tisub; g,

WHERE otherGP. 7s presents 7o.

{ci1 rs Tsupii. FILTER(?supi1 # ci,1) JUNION{?sub;1 rs cii1} ...
{ci,k; rs Tsup;k, . FILTER(?supir;, # cik,) JUNION{?sub; x; Ts ci;}

2:
3
4
5 GRAPH uGraph {

6: %0 p; Tvar;y. Tvar;) a Ttype;:.
7.

8

9

FILTER (Ttype; 1 =Tsup;1]||Ttype;1 =Tsubi1) ...
%0 p; Tvariy, . Tvarix, a Ttype;r, .

FILTER (Ttype; r, =7supi, ||?typeir;, =7sub;x,)
10: OPTIONAL{?0 p; Tovar;. Tovar; a Totype;.
11: FILTER (Totype; #7typei && ... && Totype; #Ttype; ,)}
12: OPTIONAL{?isub;; rs c;1. FILTER(?isub;1 =Ttype; 1)}
13: OPTIONAL{c;: rs Tisup;1. FILTER(?isup;1 =Ttype; 1)}
14:
15: OPTIONAL{?isub;x, rs c;k,. FILTER(?isub; x, =7typer,)}
16: OPTIONAL{c;x; rs Tisup; ;. FILTER(?isup; r, =7typeir;)}
17: }

Fig. 3. Query rewriting procedure

The query is rewritten as shown in Fig 3.

The upper part (lines 2-4) is matched against the default iGraph while the
lower part (lines 6-16) is matched against uGraph. Lines 3 and 4 of the up-
per part extract the relative classes of tpv classes ¢;1,...,¢ 5, by using the
rdfs:subClassOf property (abbreviated as rs). Value constraints (FILTER) are
used to reduce the result size because a class is a subclass and superclass of itself.
The lower part can be further divided into three subparts:

1. The first part (lines 6-9) matches instances in which target property value
types are (relative) classes matched by the upper part. Tvar; ; is bound to
a target property value and Ttype; ; is bound to an uninferred class (i.e., a
class defined in uGraph) of the value (1 < j < k). This part corresponds to
the type-matching patterns in the original query.

2. The second part (lines 10 and 11) retrieves property inclusiveness informa-
tion. The optional graph pattern verifies the existence of other p; values of
types other than relative classes. This is done by defining a new variable
Tovar; for the value and excluding relative classes during type matching for
the value. Information about p; property inclusiveness can easily be obtained
from the pattern solution by examining the binding value of Totype;. If this
is bound to some value, then p; is a non-inclusive property; otherwise it is
an inclusive one (see Example 2 below).

* For simplicity, the path length from {?s presents 70} to type-matching patterns is
set here at zero, but the path could be set at any arbitrary length.



3. The third part (lines 12-16) retrieves immediate subclass and superclass
information. This part uses the rdfs:subClassOf property combined with
an optional graph pattern to bind the immediate subclass and superclass of
tpv class ¢; ; to variable 7isub; ; and Tisup; ;, respectively (1 < j < k;).

Let s, and s, be a set of services contained in the solutions to a requester
query and the corresponding rewritten query, respectively. Then, s, C s, and
Sy — 8, = Sgup, Where sy, is a set of superclass instances of the target proper-
ties. The proof i1s that the lower part of the rewritten query does not add any
restrictions to the services bound to variable 7s, except that the type of p; value
(which is bound to ?wvar; ;) must be ¢; ; (or its subclass) or a superclass of ¢; ;.
The former restriction is identical to that in the original query while the latter
relazes the query to include superclass instances. Note that the optional graph
patterns in the lower part do not give any matching restrictions while otherGP
is matched against the default graph as in the original query.

Example 2 ¢; shown above is rewritten as follow and the binding solutions are
shown in Table 1.

SELECT distinct 7s Totype; Tsupy Tsups Tsuby Tsuby Tisup; Tisups
Pisuby Tisubs
WHERE 7s presents 7o.
{Familycar rs 7sup;. FILTER(7sup; # Familycar)}
UNION{?sub; rs Familycar}
{Toyota rs 7sups. FILTER(?supy, # Toyota)}
UNION{?subs rs Toyota}
GRAPH uGraph {
70 hasInput Tvari;. Tvar; a Ttype;.
FILTER(7type; =7sups||Ttyper =7suby) .
70 hasInput Tvars. vary a Ttypes.
FILTER(7types =7sups||Ttypes =7suby) .
OPTIONAL{?0 hasInput Tovar;. Tovar; a Totype;.
FILTER(?otypes #7type; && Totypey #Ttypes)}
OPTIONAL{?isuby rs Familycar. FILTER(7isub; =7type;)}
OPTIONAL{Familycar rs 7isup;. FILTER(?7isup; =Ttype;)}
OPTIONAL{?isubs rs Toyota. FILTER(7isubs =7types)}
OPTIONAL{Toyota rs 7isupy. FILTER(?isupy =Ttypes)}

Table 1. Binding solutions

?s|otyper|?supr|?sups |?suby Tsuby |Tisupy |Tisupz|Tisuby ?isub2|
bi: |s1 Two-doors|Solara Solara
bt |82 Car Toyota|Car
bs: |sa|Year Sedan Toyota Sedan




There are three binding solutions by, by, and bz which bind values in instances
s1, 89, and sz, respectively, to some variables. From by, the hasInput of sy is an
inclusive property because 7otype; is unbound. 7sub; binding value indicates that
the first hasInput value type of s; (i.e., Two-doors) is a subclass of Familycar
while ?subs and 7isuby values indicate that the second value type of s (i.e.,
Solara) is an immediate subclass of Toyota. Similarly, from by, the hasInput
of s5 is an inclusive property, and the first hasInput value type (i.e., Car) is
an immediate superclass of Familycar while the second value type is equal to
Toyota. The last solution bg indicates that the hasInput of s3 is a non-inclusive
property because 7otype; is bound to some value (i.e., Year). The first hasInput
value type of s3 is an immediate subclass of Familycar while the second value
type is equal to Toyota.

It is important to note that subclass and superclass variables are only bound
to classes that are ”actually used“ in service instances. For example, Tsups is
unbound because no hasInput value types of matched services are superclasses
of Toyota. This will greatly reduce the size of return results °

4.2 Service Ordering

Generally, a requester query consists of one service function matching (based on
service inputs and outputs) and optionally one or more service characteristics
matching (based on service characterization according to some domain-specific
ontologies). The next sections describe the scoring mechanisms used in matching.

Service Function Scoring Given requester query ¢ containing a service func-
tion type-matching pattern

{?0 hasInput 7iny,...,7ing, . 7ing a cing. ... Ting,, a cing,, .
70 hasOutput Touty, ..., Touly Tout; a couty. ... Touty a couty,,, -}

out"® out

and binding solution b from matching results of ¢’s rewritten query: The degree
of match between ¢ and b with respect to target property hasInput is given by
Eq. 1.

din(q,b) = DIN(cing, b.c1) + ...+ DIN(cing,, , b.ck,,) (1)

DIN(cing, b.¢;) is the degree of match between class cin; and the correspond-
ing class ¢; which is bound to subclass/superclass variables in b. The degree of
match could be Exact, Plug-in, or Subsume, where Exact>Plug-in>Subsume.
The scoring formula indicates that the larger d;n (¢, b) the more similar inputs of
the matched service (which is bound to variable 7s in b) to inputs specified in g¢.

Fig. 4 shows computation of DIN which is similar to [11], but without the
Fail match. b is considered to be a Fail match when the hasInput (of a service
bound to variable 7s in b) is a non-inclusive property. This results from the fact

® This is one reason we use the uGraph. Another reason is to obtain the uninferred class
and immediate subclass information of target property values, which is impossible
to do when matching the pattern against iGraph.



that the requester is not able to provide the bound service in b all the input
required for correct operation.

The degree of match for b with respect to target property hasOutput is given
by Eq. 2. Tt uses DOUT function shown in Fig. 5. Different from DIN, DOUT uses
subclass relationships to determine Exact and Plug-in matches.

dout(q,b) = DOUT(couty, b.c1) + ...+ DOUT(couty,,,, b.ck,,,) (2)
DIN(inR, inA) pouT (outR, outA)
if inR=inA return Exact if outR=outA return Exact
if inR immediateSuperclassO0f inA if outR immediateSubclassO0f outA
return Exact return Exact
if inR superclass0f inA if outR subclass0f outA
return Plug-in return Plug-in
otherwise return Subsume otherwise return Subsume
Fig. 4. DIN calculation Fig. 5. DoUT calculation

Finally, summing up the degree of match of inputs and outputs and normal-
izing the value between 0 and 1 gives the degree of match with respect to the
service function (Eq. 3).

kout X dzn(Qa b) + kln X dout(Qa b)
2 x Fract X kipn X kout

ds(q,b) = (3)

Note that when d;,,(¢,b) fails, d¢ (g, b) also fails.

Example 3 Let Exact=3, Plug-in=2, and Subsume=1. The rewritten query
of g2 below has three binding solutions by, bs, and b3 that bind s, s2, and s3,
respectively. Matchmaker assigns dy (g2, b1) > df(g2,b2) and df (g2, bs) =Fail.

g2 = SELECT 7s WHERE 7s presents 7o,
70 hasInput 7iny, ins, 7iny; a Familycar. in, a Toyota,
70 hasOutput Tout. Toul a Price.

din(qz2,b1) = DIN(Familycar, Two-doors) + DIN(Toyota, Solara) = 5,
din(qz2, b2) = DIN(Familycar, Car) + DIN(Toyota, Toyota) = 4,
dout(q2,b1) = dout (g2, b2) = DOUT(Price, Price) = 3,

df((]z, bl) = 092, and df((]z, bz) = 0.83.

Service Characteristics Scoring Service characteristics describe the cate-
gories, classifications, and other features owned by a service. A domain-specific
ontology may be used to describe these characteristics. For example, the OWL



ontologies of NATCS [24] and UNSPSC [25] can be used to describe service clas-
sification and products, respectively. In many cases, it is desirable to let a service
requester specify a service-ordering preference based on domain-specific ontology
matching. For example, during the car selling service discovery, a requester may
give a higher ordering preference to services that sell only new cars or that sell
only Toyota cars. In a grid environment, a requester may give a higher ordering
preference to grid resources that are managed only by a specific organization.

Given requester query ¢ containing a service characteristic type-matching
pattern, where target property p; specifies service characteristics,

{?0 p; Tvary, ..., Tvarg. Tvary a csy. ... Tvarg a csg.}

and binding solution b from matching results of ¢’s rewritten query: The degree
of match between ¢ and b with respect to p; is given by Eq. 4.

14 DOUT(csl’b'cgzdng%OUT(csk’b'ck) b is given a higher preference

dpz (qa b) =
DOUT (esy,b.c1)+...4DOUT (esg,b.ck)
Fractxk

otherwise
(4)

The value of the dividend that sums up the degree of match of the service
characteristic is normalized between 0 and 1 by dividing it with Fzaet X k. DOUT
is used for degree of match calculation because service characteristics are a kind
of requested output. By default, b is given a higher ordering preference if the
pi (of the bound service) is an inclusive property®. To specify a higher ordering
preference to the non-inclusive property, p} ORDER BY (!p}) is used’.

Finally, the total degree of match between ¢ and b with respect to service
characteristics specified by target properties p1, ..., py is given by Eq. 5. The
divisor 2 X m normalizes the match degree between 0 and 1.

Z?;l dpz(q’ b)

de(q,b) = 2xm

(5)

Example 4 The rewritten query of g3 below has two binding solutions b;and
bs that bind s; and sy, respectively. The matchmaker gives a higher ordering
preference to by because s; sells only new vehicles (i.e., the serviceProduct
property of s1 is inclusive). Putting ORDER BY (!serviceProduct) in the query
will reverse the ordering preference.

g3 = SELECT 7s WHERE 7s presents 7o,

70 hasInput 7iny, ins, 7iny; a Familycar. in, a Toyota,
70 hasOutput Tout. Toul a Price.

70 serviceProduct 7d. 7d a New-vehicle.

5 ORDER BY (p;) can be used to explicitly specify the ordering preference.
7 Since this construct is only used for the purposes of result ordering, the matchmaker
removes it before sending the rewritten query to a repository system.



Overall Scoring and Service Ordering Given requester query ¢ with target
properties py, ..., px specifying service characteristics and a set of binding solu-
tions bs from matching results of ¢’s rewritten query. For each binding solution
b € bs, the matchmaker calculates the overall degree of match between ¢ and
b, d(g,b) (0 <d(q,b) < 1) using Eq. 6 shown below and orders the solutions in
descending order of their degrees of match.

d(g,b) = a x ds(q,0) + (1 — &) x dc(g,b), where 0 < a < 1 (6)

« is a weight that specifies the portion of dy(¢,b) and d.(g, b) that includes in
the total scoring. By appropriately setting the weight value, the ordering scheme
not only can meet a user specific ordering requirement, but also can be used for
other ordering purposes. For example, by setting o = 0 the ordering scheme can
be used to order general SPARQL query results. It is important to note that
d(g, b) fails when d;(q,b) fails.

5 Semantic Resource Matching in the Grid

As described earlier, resources in the Grid are accessed via Web services and
resource discovery 1s done by identifying Web services that provide access to
the resources. In this sense, if the Web services are described using the OWL-S
language, such as proposed in [19], our scheme can be applied for basic resource
matching in the Grid, 1.e., bilateral match.

In addition, use of SPARQL as the request language enables congruous
and gang matches, which are important during grid resource discovery. These
matches are made possible because SPARQL allows several graph patterns to
be used in a query and allows them to refer to the same common variables.
The following example from [21] demonstrates a gang match using SPARQL.
The purpose is to match a job (resource request) with two types of resources:
workstations and software package licenses. A job that uses the packages needs
to allocate both a machine and a license before it can run. Licensing terms may
entail that some licenses are valid only on some machines, while others may be
valid in certain subnets. Assuming the two resources are described by different
RDF graphs and the workstation RDF graph is the default graph, the following
query performs a gang match against the two resources. Note that the two graph
patterns refer to the same variable Taddress.

SELECT 7machine ?license
WHERE 7"machine hasArchitecture 7arch. Tarch a Pentium.
?machine hasMemory 7mem. FILTER(?mem > 1000).
?machine hasAddress Taddress. FILTER(7address ="foo.go.jp"“).
GRAPH PackagelLicense{
?license hasValidHost Taddress.
?license hasApplication Tapp. FILTER(Tapp ="sim_app“).

1



It is important to note that bilateral, congruous, and gang matches using
our matchmaking scheme are done based on the OWL-S service description that
allows semantic matching. This is different from the conventional grid resource
discovery systems [20,21,6,22] that use text matching to perform the matching
tasks.

6 Discussion and Future Work

The optional graph pattern is one of the interesting features provided by the
SPARQL query language. It defines additional graph patterns that do not cause
solutions to be rejected if the solutions cannot be matched, but do bind the
solutions when they can be matched. This feature is not supported by existing
matchmaker systems, but can be used by a service requester for complex in-
put/output and service characteristics matching. For example, it can match a
service that provides additional outputs or characteristics to the required ones.

The other interesting feature provided by the SPARQL query language is its
value constraints. It restricts solutions by imposing constraints on values that
can be bound to variables. This feature is useful, for example, to filter services
based on the serviceName and textDescription of the serviceProfile using
regular expressions. The language also allows application-specific constraints on
values in a solution.

The other feature, alternative graph patterns, can be useful when matching
several graph patterns. A pattern can be nested and used together with other
graph patterns such as optional ones. In this paper, we do not allow these pat-
terns to be used with type-matching patterns (e.g., to connect two type-matching
patterns). A requester should be able to send multiple queries and obtain the
same results.

The above graph patterns and value constraints do not affect service ordering.
Optional graph patterns may contain type-matching patterns but an ordering
preference cannot be assigned to the patterns®.

We have implemented the matchmaker using Java and use Jena SPARQL
query parser [26] for query rewriting and result ordering. The matchmaker also
incorporates Jena SPARQL query and inference engines so that it can process
RDF data stored in a file system or in a repository that does not have SPARQL
query and inference engines.

We are currently expanding work in certain directions. The first 1s finding
ways to support the use of alternative graph patterns for type-matching patterns.
To enable this, we must extend the query rewriting and scoring mechanisms. The
second is finding ways to support the set match for grid resource discovery. Since
SPARQL does not currently provide aggregate functions, the matchmaker is not
able to use a SPARQL query engine to perform the set match. A matchmaker
can, however, realize a set match by processing query results from a repository.

8 These patterns are ignored by the query rewriting module.
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