
Traffic prediction using a Deep Learning paradigm
Felix Kunde Alexander Hartenstein Stephan Pieper Petra Sauer

Beuth University of Applied Sciences
Luxemburger Strasse 10
13353 Berlin, Germany

{fkunde, s58380, spieper, sauer}@beuth-hochschule.de

ABSTRACT

For many years intelligent transportation systems (ITS) have

been collecting and processing huge amounts of data from

numerous sensors to generate a ground truth of urban traffic.

Such data has set the foundation of traffic theory, planning and

simulation to create rule-based systems. It has also been used in

many different studies in data-driven short-term traffic flow

forecasting with promising results.

Still, the acceptance for data-driven predictions is quiet low in

productive systems of the public sector. Without enough probe

data from floating cars (FCD) ITS owners feel unable to reach

accuracy like private telecommunication or car manufacturing

companies. On the other hand, investigating into FCD requires a

thoughtful treatment of user privacy and a close look on data

quality which can also be very time consuming.

Recent progress in hardware and deep learning software has

lowered the bar to handle machine learning algorithms what

urges the field of traffic forecasting to continue exploring the

predictive power of artificial intelligence. With this paper we

present our first approach of feeding sensor data to an Artificial

Neural Network (ANN). We train the ANN with different spatial

and temporal lags to find an optimal setup for an entire city.

Categories and Subject Descriptors

• Information systems➝Information systems applications➝

Spatial-temporal systems➝Sensor networks • Computing

methodologies➝Machine learning➝Machine learning

approaches➝ Neural networks.

Keywords

Traffic forecasting; spatio-temporal data mining; deep learning;

neural networks; Tensor Flow

1. INTRODUCTION
Detecting macroscopic traffic parameters such as travel time

(time needed per trajectory) or traffic density (number of cars

per trajectory) is crucial for managing and monitoring an

intelligent transportation system (ITS). Such a system must

adapt to different traffic scenarios and provide guidance to

drivers to reduce traffic congestion and road collisions. Plus, it

produces input data for traffic simulation programs which are

used for traffic planning.

Apart from static sensor data, probe data from driving cars

(Floating Car Data - FCD) is a very valuable resource as it can

deliver trajectory-based data with a greater yet more realistic

accuracy. Some cities have contracts with companies that own a

great fleet of vehicles to deliver probe data, e.g. public transport

or taxi cab companies. However, such datasets are mostly biased

as the driving behavior can be bound to certain tasks e.g. busses

have a fixed route and schedule what might cause waiting times

or intentional delaying while driving.

From the very precise traffic information of the routing engines

from Google Maps1 or Here Maps2 we can see the benefit of

private transport data which is produced from the GNSS units of

cars or smartphones. Usually, such data is not available to an

ITS of the public sector. A city might fear an investment in such

a (potentially huge) data set because of the hardware and

software requirements it takes to process and store it. Depending

on the level of detail of the recorded tracks, guarantees would

have to be made that user privacy is treated carefully.

2. PROBLEM DEFINITION
We want to engage cities to have more faith in the data, that they

are already collecting. Many ITS only take the detected data to

monitor the current state of the traffic to react to traffic

congestion e.g. by switching signs or blocking roads. The time

series analysis methods used on the historic data sets are mostly

very simple, e.g. moving average or exponential smoothing.

Traffic predictions for future temporal horizons longer than 15

minutes are neither applied nor trusted although there is plenty

of sample data available to run against modern algorithms.

One of these algorithms could be artificial neural networks

(ANN), which got a lot attention recently under the buzz word

“Deep Learning”. The basic idea of ANNs is not new and many

researchers have already adopted them for traffic flow

forecasting [1]. But, with grown CPU and GPU power plus

newly available deep learning frameworks like Google’s Tensor

Flow, Facebook’s Torch or SkyMind’s DeepLearning4J we see

a potential for powerful additions in terms of usability and

scalability. It is easier than ever to train an ANN with numerous

input and target data setups and optimize its hyperparameter

settings. On the other hand, the possible number of different

combinations can make it hard to find a solution that provides a

solid prediction for most scenarios.

This short paper will present our initial results with a Feed

Forward Neural Network (FFNN) which we have trained with

univariate inputs of different spatially correlated sets of double

inductive loops and different time lags. We kept the setup very

simple in order to see what the network can learn by itself and to

make better statements about the prediction accuracy in future

tests where we would change certain parameters.

1 https://www.google.de/maps

2 https://wego.here.com/

2017, Copyright is with the authors. Published in the Workshop

proceedings of the EDBT/ICDT 2017 Joint Conference (March 21,

2017, Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution
of this paper is permitted under the terms of the Creative Commons

license CC-by-nc-nd 4.0.

The next chapter will introduce related work in the field of

short-term traffic forecasting. We will then describe the FFNN

model that we have used followed by the experimental setup for

analyzing the predictive power under different spatial and

temporal dimensions. In chapter 6 we will present our results

and conclude with a future outlook.

3. RELATED WORK
Short-term traffic forecasting based on sensor data has seen

many different approaches in the last decades, be it for freeways

or arterial road networks, with univariate or multivariate inputs

and for different temporal lags [1]. The applied methods are

ranging from classical parametric solutions like autoregressive

statistics for time series (ARIMA) [2], k-Nearest neighbors on

historic data sets [3], Bayesian networks [4] to non-parametric

predictions by support vector machines (SVM) [5] and ANNs

[6]. [5] have pointed out that it is often difficult to compare them

because of their heterogeneous setup. Usually, one method is

engineered exhaustively and compared to only simple variants

of other algorithms paradigms (base lines). For the future we

plan to provide a comprehensive comparison of different

forecasting methods incl. spatial-temporal ARIMA [7] and

SVMs.

Due to the hype on Deep Learning a growing number of papers

on traffic forecasting can be noted that use modern ANN

architectures such as convolutional networks (CNN) (good for

learning on fuzzy data such as images and audio streams) or

variants of recurrent networks (RNN) (good for learning on

sequence-based data). RNNs seem to be very suitable to mine on

time series of traffic sensors [6][8]. To learn on long sequences,

the Long Short Term Memory network (LSTM) can be used

[9][10]. Also, a combination seems reasonable when a recorded

traffic state is regarded as an image. The CNN would extract

patterns such as traffic congestion and the LSTM would learn

how the patterns evolve [11].

Generally, we are interested in the impact of location on the

prediction to find spatio-temporal correlations in traffic. Many

studies have also proven the relevance of a spatial dimension to

improve the accuracy of the predictions e.g. [7] or [8]. One

technique to filter the input data against spatial dependencies is

to apply a spatial weight matrix to strengthen the relations

between neighbors. This has mostly been done for parametric

approaches [12]. ANN-driven research for traffic prediction is

often lacking a complex spatial weighting model. Either the

number of sensors is very low [10] or a freeway setting is used

[8], where spatial relation between upstream and downstream is

already given by the road network itself. Therefore, we combine

our experiments on FFNNs with ideas from [12].

4. MODEL SETUP
For further description of the network architecture we are using

the same convention as in [13]. We have implemented a FFNN

using Google's Tensor Flow framework. The network consists of

an input layer, one hidden layer h and one output layer o. The

number of input nodes i and hidden nodes j is bound to the

number of sensors we consider as a valid source to go into our

model (98% availability of measurements in the training data

set). The number of output nodes k is limited to the number of

prediction horizons we choose for one sensor (see next chapter).

We have tested the network with higher numbers of neurons (up

to 150) which let the overall error increase. For each layer we

are using a sigmoid activation function l to produce the value v

of every neuron. The sigmoid function 𝜎(𝑧) is a classical

nonlinear function and a good choice if we want to detect

nonlinear patterns in our data.

𝜎(𝑧) =
1

1+𝑒−𝑧
 𝑣𝑗 = 𝑙𝑗(∑ 𝑤𝑗𝑗′ . 𝑣𝑗′𝑗′) (1)

Here j' stands for nodes that are connected with the hidden

neuron j and w is the weight of edges jj'. The root mean square

error (RMSE) is our loss function 𝐿(𝑦̂𝑘 , 𝑦𝑘) which modifies the

network at each iteration using backpropagation [14]. The

weights between the neurons are adjusted by stochastic gradient

descent (SGD) with a batch size of 20 iterations. The

backpropagation algorithm subsequently calculates the

derivatives of 𝐿 from output nodes k (2) to hidden nodes j with

respect to their corresponding activation function (3).

𝛿𝑘 =
𝜕 𝐿(𝑦̂𝑘,𝑦𝑘)

𝜕 𝑦̂𝑘
 . 𝑙𝑘(∑ 𝑤𝑘𝑗 . 𝑣𝑗𝑗) (2)

𝛿𝑗 = 𝑙′(∑ 𝑤𝑗𝑗′ . 𝑣𝑗′𝑗′) ∑ 𝛿𝑘 . 𝑤𝑘𝑗𝑘 (3)

5. EXPERIMENTAL SETUP
We train our FFNN using 1 month of data from July 2015

produced by 59 double induction loops which are spread across

the city of Dresden. The data is coming from the Dresden ITS

called VAMOS3 and aggregated to minutely values. We choose

double inductive loops as they are capable in capturing the speed

of cars accurately. This group of loop detectors is usually

installed on main roads and with enough distance to

intersections. Therefore, the measurements do not get affected

by waiting queues. Nevertheless, the time series are still quiet

noisy because of traffic lights intervals. Even during rush hours

there can be minutes with no detected cars (see Figure 1).

Figure 1 Occupancy at one loop detector for one day in

contrast to moving averages of 25 and 50 minutes

Figure 2 Locations of double inductive loops

3 https://tu-dresden.de/bu/verkehr/vis/vlp/forschung/forschungs-

projekte/verkehrsmanagementsystem-vamos-dresden

Unfortunately, we had to exclude many sensors because of

missing data, but we are currently working on repair

mechanisms to include more detectors. However, we still got a

good spatial distribution across the city (see figure 2).

As for the input of the neural network we are generating a

matrix which consists of data from all valid sensors S and

measurements T of variable x (occupancy in our tests). The input

values are smoothened by a rolling mean of 50 minutes to ease

the prediction and normalized to a range between 0 and 1 to

fasten the computation. Our target is following the same

structure but with shifted values of a given temporal offset for 5,

10, 15, 30 and 45 minutes. Every line of the input matrix

represents an input vector, see (4). As for now, pairs of input

and target vectors containing NULL elements are removed

before the training.

[

𝑥𝑠1,𝑡0
⋯ 𝑥𝑠𝑛,𝑡0

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛

⋯ 𝑥𝑠𝑛,𝑡𝑛

] (4)

To define the neighbors of each sensor we are following the idea

from [12]. Only sensors from where traffic can get to the target

within a given time lag are considered. We are using the

Isochrone API of the Open Source routing engine GraphHopper4

which produces a reverse flow isochrone polygon for a given

time lag for each sensor. The intersecting sensors are the

neighbors. We do not apply any further weighting yet as our

ANN should be able to learn by itself which neighbors are

having a higher impact for a future measurement at the target

sensor. The resulting adjacency matrix has to be applied against

every input matrix in individual trainings for each target sensor.

We are using one neighbor setting where the target sensor is

included and one where it is excluded.

We made an exception and took only isochrones for 5 minutes

even for bigger prediction horizons because 10 minutes

isochrones can already cover great areas of Dresden and, thus,

include many sensors. Moreover, our isochrones are fixed and

not dynamic as in [12]. The resulting adjacency matrix has to be

applied against the input matrix. In the end, we came up with

four different input settings to analyze the effect of including

other sensors into our prediction:

FFNNsimple: Only historic values of the target sensor to predict a

future value

FFNNNN: Only historic values from nearest neighbors excluding

the target sensor

FFNNNN+: Only historic values from nearest neighbors

including the target sensor

FFNNall: Historic values from all sensors

[15] have shown that sequential information can also be passed

to a FFNN by appending the temporal lags to the matrix to

mimic a RNN. We are also applying this strategy in our tests

using a sequence of 5 time steps (mFFNN) as illustrated in (5).

[

𝑥𝑠1,𝑡0
⋯ 𝑥𝑠𝑛,𝑡0

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛

⋯ 𝑥𝑠𝑛,𝑡𝑛

𝑥𝑠1,𝑡1
⋯ 𝑥𝑠𝑛,𝑡1

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛+1

⋯ 𝑥𝑠𝑛,𝑡𝑛+1

⋯ 𝑥𝑠𝑛,𝑡𝑚

⋱ ⋮
⋯ 𝑥𝑠𝑛,𝑡𝑛+𝑚

] (5)

We run the network with 20000 iterations and tested it with data

from the two following months – August and September 2015.

4 https://graphhopper.com/api/1/docs/isochrone/

6. RESULTS AND DISCUSSION
For evaluating of our results we are using the mean absolute

error (MAE) as defined in (6) which is a common measure in

research:

𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦̂𝑘 − 𝑦𝑘|𝑁

𝑘=1 (6)

𝑦̂
𝑘
 stands for the predicted value. Table 1 shows an exemplary

result for one sensor. In our case the numbers represent how far

we are from the real detected occupancy. Many aspects seen

here also apply to other sensors, e.g. lowest MAE when

including all sensor and sequence information and highest MAE

when filtering the input by the target’s nearest neighbors incl.

historic values of the target itself. Adding sequence information

to the input matrix does not have a great beneficial impact on the

predictions. But generally, we are getting very close to the actual

values.

Table 1 Results for different neural network configurations

and prediction time horizons.

In contrast to the results of many other papers in the field of

spatio-temporal traffic forecasting, adding neighborhood

information decreases the accuracy in many cases. It is obvious

that an ANN works best when it is fed with input values of the

whole ground truth, but we did not expect it to be worse than

taking only values of the target. It would be interesting to see if

an additional weighting on the spatial weight matrix could

enhance the forecasting. When we will work with LSTMs a

reduction of features could be necessary because of the

exponential complexity of RNNs.

Figure 3 shows a comparison between predicted and detected

values for three different FFNN test setups trained with a 5

minutes temporal offset.

Figure 3 Difference between prediction (dotted lines) and

reality (dark solid line) for one week of august

The predictions come very close during the increase and

decrease periods in the mornings and evenings. The network can

also figure out that traffic is different on a Sunday without

having any information about the day. One can argue that our

task is relatively easy to solve, as we have smoothed the input

and target values. Within a short prediction horizon, the moving

 t5 t10 t15 t30 t45

FFNNsingle 0,5042 0,5743 0,6679 0,9698 1,2970

FFNNNN 0,6255 0,6660 0,7248 0,9831 1,0299

FFNNNN+ 1,7177 1,7157 1,7236 1,7813 1,8928

FFNNall 0,4975 0,4933 0,5262 0,7474 1,0299

mFFNNsingle 0,4324 0,5213 0,6137 0,9360 1,2771

mFFNNNN 0,5616 0,6080 0,6667 0,9231 1,2519

mFFNNNN+ 1,6420 1,6543 1,6862 1,8126 1,9612

mFFNNall 0,3998 0,4086 0,4521 0,6405 0,8684

average of detected occupancies is not going to change a lot.

Thus, we would always receive a low error. As a solution to this

issue we should further aggregate more measurements and

reduce the rolling mean. When looking at the spatial distribution

of the prediction accuracy (see figure 4) we found that it

decreases especially on main roads near the highways. This

could probably be improved if the network would have

information about the time of day to distinguish between the two

rush hour periods.

Figure 4 MAE at different sensors for the FFNNall setup

trained on 5 minutes and 45 minutes offsets

We have also noticed differences in accuracy for different lanes

on the road. Generally, the error has been higher for the inner

lane of a road, probably because the occupancy tends to be more

nonlinear than on the outer lane.

7. CONCLUSION
In this paper we have presented the potential of deep learning on

traffic sensor data. While the usage of neural networks for short-

term traffic forecasting had been used in many different studies

most often the spatial dimension is not included or neglected

because of a simplistic training scenario with a low number of

sensors. We have worked on a sensor network that is distributed

across an entire city and got the best results when we included

measurements from all sensors. Including a sequence

information enhanced the prediction only slightly. Thus, we

have to work with RNNs, which should be superior for time

series analysis because they enable to learn short and long

sequences. We will also do further investigation in how to repair

missing or corrupt data values.

We have started with FFNNs for comparison reasons with other

ANNs, parametric and non-parametric approaches. But even the

rather simple FFNN could provide very good forecasting results

with low computational costs. This also raises the question if a

proper traffic and travel time prediction really requires more

FCD from individuals rather than extending the network of

static sensors. For data privacy reasons it is important to

improve algorithms for analyzing time series data of anonymous

sensor networks. We will also develop strategies for

implementing a continuous learning algorithm for an

autonomous ITS that is able to apply navigation assistance based

on the spatio-temporal findings.

8. ACKNOWLEDGMENTS
The work was supported by the Federal Ministry for Economic

Affairs and Energy (BMWi) under grant agreement

01MD15001B (Project: ExCELL).

9. REFERENCES
[1] Vlahogianni, E. I., Karlaftis, M. G., & Golias, J. C. (2014).

Short-term traffic forecasting: Where we are and where

we’re going. Transportation Research Part C: Emerging

Technologies, 43, 3-19.

[2] Williams, B. M., & Hoel, L. A. (2003). Modeling and

forecasting vehicular traffic flow as a seasonal ARIMA

process: Theoretical basis and empirical results. Journal of

transportation engineering, 129(6), 664-672.

[3] Leonhardt, A.; Steiner, A. (2012): Instance Based Learning

for Estimating and Predicting Traffic State Variables using

Spatio-Temporal Traffic Patterns. TRB 91th Annual

Meeting, Washington D.C..

[4] Sun, S., Zhang, C., & Yu, G. (2006). A Bayesian network

approach to traffic flow forecasting. IEEE Transactions on

Intelligent Transportation Systems, 7(1), 124-132.

[5] Lippi, M., Bertini, M., & Frasconi, P. (2013). Short-term

traffic flow forecasting: An experimental comparison of

time-series analysis and supervised learning. IEEE

Transactions on Intelligent Transportation Systems, 14(2),

871-882.

[6] Liu, H., van Zuylen, H., van Lint, H., & Salomons, M.

(2006). Predicting urban arterial travel time with state-

space neural networks and Kalman filters. Transportation

Research Record: Journal of the Transportation Research

Board 1968, 99-108.

[7] Kamarianakis, Y., & Prastacos, P. (2005). Space–time

modeling of traffic flow. Computers & Geosciences, 31(2),

119-133.

[8] Zeng, X., & Zhang, Y. (2013). Development of Recurrent

Neural Network Considering Temporal‐Spatial Input

Dynamics for Freeway Travel Time Modeling. Computer‐
Aided Civil and Infrastructure Engineering, 28(5), 359-371.

[9] Sepp Hochreiter und Jürgen Schmidhuber: Long short-term

memory. In: Neural Computation. 9, Nr. 8, 1997, 1735–

1780.

[10] Ma, X., Tao, Z., Wang, Y., Yu, H., & Wang, Y. (2015).

Long short-term memory neural network for traffic speed

prediction using remote microwave sensor data. In:

Transportation Research Part C: Emerging Technologies

54, 187–197.

[11] Zhang, J., Zheng, Y., Qi, D. (2017). Deep spatio-temporal

residual networks for citywide crowd flows prediction. In:

Thirty-First AAAI Conference on Artificial Intelligence.

[12] Cheng, T., Wang, J., Haworth, J., Heydecker, B., & Chow,

A. (2014). A dynamic spatial weight matrix and localized

space–time autoregressive integrated moving average for

network modeling. Geographical Analysis, 46(1), 75-97.

[13] Lipton, Z.C., Berkowitz, J., & Elkan, C. (2015). A critical

review of recurrent neural networks for sequence learning.

arXiv preprint arXiv:1506.00019.

[14] Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985).

Learning internal representations by error propagation

(No. ICS-8506). California University San Diego La Jolla.

Institute for cognitive science.

[15] Polson, N., & Sokolov, V. (2016). Deep Learning

Predictors for Traffic Flows. arXiv preprint arXiv:160.

https://de.wikipedia.org/w/index.php?title=Sepp_Hochreiter&action=edit&redlink=1
https://de.wikipedia.org/wiki/J%C3%BCrgen_Schmidhuber
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
http://deeplearning.cs.cmu.edu/pdfs/Hochreiter97_lstm.pdf
https://de.wikipedia.org/w/index.php?title=Neural_Computation_%28journal%29&action=edit&redlink=1

	1. INTRODUCTION
	2. PROBLEM DEFINITION
	3. RELATED WORK
	4. MODEL SETUP
	5. EXPERIMENTAL SETUP
	6. RESULTS AND DISCUSSION
	7. CONCLUSION
	8. ACKNOWLEDGMENTS
	9. REFERENCES

