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ABSTRACT 

For many years intelligent transportation systems (ITS) have 

been collecting and processing huge amounts of data from 

numerous sensors to generate a ground truth of urban traffic. 

Such data has set the foundation of traffic theory, planning and 

simulation to create rule-based systems. It has also been used in 

many different studies in data-driven short-term traffic flow 

forecasting with promising results. 

Still, the acceptance for data-driven predictions is quiet low in 

productive systems of the public sector. Without enough probe 

data from floating cars (FCD) ITS owners feel unable to reach 

accuracy like private telecommunication or car manufacturing 

companies. On the other hand, investigating into FCD requires a 

thoughtful treatment of user privacy and a close look on data 

quality which can also be very time consuming. 

Recent progress in hardware and deep learning software has 

lowered the bar to handle machine learning algorithms what 

urges the field of traffic forecasting to continue exploring the 

predictive power of artificial intelligence. With this paper we 

present our first approach of feeding sensor data to an Artificial 

Neural Network (ANN). We train the ANN with different spatial 

and temporal lags to find an optimal setup for an entire city. 

Categories and Subject Descriptors 

• Information systems➝Information systems applications➝ 

Spatial-temporal systems➝Sensor networks • Computing 

methodologies➝Machine learning➝Machine learning 

approaches➝ Neural networks. 
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Traffic forecasting; spatio-temporal data mining; deep learning; 

neural networks; Tensor Flow 

1. INTRODUCTION 
Detecting macroscopic traffic parameters such as travel time 

(time needed per trajectory) or traffic density (number of cars 

per trajectory) is crucial for managing and monitoring an 

intelligent transportation system (ITS). Such a system must 

adapt to different traffic scenarios and provide guidance to 

drivers to reduce traffic congestion and road collisions. Plus, it 

produces input data for traffic simulation programs which are 

used for traffic planning. 

Apart from static sensor data, probe data from driving cars 

(Floating Car Data - FCD) is a very valuable resource as it can 

deliver trajectory-based data with a greater yet more realistic 

accuracy. Some cities have contracts with companies that own a 

great fleet of vehicles to deliver probe data, e.g. public transport 

or taxi cab companies. However, such datasets are mostly biased 

as the driving behavior can be bound to certain tasks e.g. busses 

have a fixed route and schedule what might cause waiting times 

or intentional delaying while driving.  

From the very precise traffic information of the routing engines 

from Google Maps1 or Here Maps2 we can see the benefit of 

private transport data which is produced from the GNSS units of 

cars or smartphones. Usually, such data is not available to an 

ITS of the public sector. A city might fear an investment in such 

a (potentially huge) data set because of the hardware and 

software requirements it takes to process and store it. Depending 

on the level of detail of the recorded tracks, guarantees would 

have to be made that user privacy is treated carefully. 

2. PROBLEM DEFINITION 
We want to engage cities to have more faith in the data, that they 

are already collecting. Many ITS only take the detected data to 

monitor the current state of the traffic to react to traffic 

congestion e.g. by switching signs or blocking roads. The time 

series analysis methods used on the historic data sets are mostly 

very simple, e.g. moving average or exponential smoothing. 

Traffic predictions for future temporal horizons longer than 15 

minutes are neither applied nor trusted although there is plenty 

of sample data available to run against modern algorithms. 

One of these algorithms could be artificial neural networks 

(ANN), which got a lot attention recently under the buzz word 

“Deep Learning”. The basic idea of ANNs is not new and many 

researchers have already adopted them for traffic flow 

forecasting [1]. But, with grown CPU and GPU power plus 

newly available deep learning frameworks like Google’s Tensor 

Flow, Facebook’s Torch or SkyMind’s DeepLearning4J we see 

a potential for powerful additions in terms of usability and 

scalability. It is easier than ever to train an ANN with numerous 

input and target data setups and optimize its hyperparameter 

settings. On the other hand, the possible number of different 

combinations can make it hard to find a solution that provides a 

solid prediction for most scenarios.   

This short paper will present our initial results with a Feed 

Forward Neural Network (FFNN) which we have trained with 

univariate inputs of different spatially correlated sets of double 

inductive loops and different time lags. We kept the setup very 

simple in order to see what the network can learn by itself and to 

make better statements about the prediction accuracy in future 

tests where we would change certain parameters. 

                                                                 

1 https://www.google.de/maps 

2 https://wego.here.com/ 

 

 
2017, Copyright is with the authors. Published in the Workshop 

proceedings of the EDBT/ICDT 2017 Joint Conference (March 21, 

2017, Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution 
of this paper is permitted under the terms of the Creative Commons 

license CC-by-nc-nd 4.0. 



The next chapter will introduce related work in the field of 

short-term traffic forecasting. We will then describe the FFNN 

model that we have used followed by the experimental setup for 

analyzing the predictive power under different spatial and 

temporal dimensions. In chapter 6 we will present our results 

and conclude with a future outlook. 

3. RELATED WORK 
Short-term traffic forecasting based on sensor data has seen 

many different approaches in the last decades, be it for freeways 

or arterial road networks, with univariate or multivariate inputs 

and for different temporal lags [1]. The applied methods are 

ranging from classical parametric solutions like autoregressive 

statistics for time series (ARIMA) [2], k-Nearest neighbors on 

historic data sets [3], Bayesian networks [4] to non-parametric 

predictions by support vector machines (SVM) [5] and ANNs 

[6]. [5] have pointed out that it is often difficult to compare them 

because of their heterogeneous setup. Usually, one method is 

engineered exhaustively and compared to only simple variants 

of other algorithms paradigms (base lines). For the future we 

plan to provide a comprehensive comparison of different 

forecasting methods incl. spatial-temporal ARIMA [7] and 

SVMs.  

Due to the hype on Deep Learning a growing number of papers 

on traffic forecasting can be noted that use modern ANN 

architectures such as convolutional networks (CNN) (good for 

learning on fuzzy data such as images and audio streams) or 

variants of recurrent networks (RNN) (good for learning on 

sequence-based data). RNNs seem to be very suitable to mine on 

time series of traffic sensors [6][8]. To learn on long sequences, 

the Long Short Term Memory network (LSTM) can be used 

[9][10]. Also, a combination seems reasonable when a recorded 

traffic state is regarded as an image. The CNN would extract 

patterns such as traffic congestion and the LSTM would learn 

how the patterns evolve [11]. 

Generally, we are interested in the impact of location on the 

prediction to find spatio-temporal correlations in traffic. Many 

studies have also proven the relevance of a spatial dimension to 

improve the accuracy of the predictions e.g. [7] or [8]. One 

technique to filter the input data against spatial dependencies is 

to apply a spatial weight matrix to strengthen the relations 

between neighbors. This has mostly been done for parametric 

approaches [12]. ANN-driven research for traffic prediction is 

often lacking a complex spatial weighting model. Either the 

number of sensors is very low [10] or a freeway setting is used 

[8], where spatial relation between upstream and downstream is 

already given by the road network itself. Therefore, we combine 

our experiments on FFNNs with ideas from [12]. 

4. MODEL SETUP 
For further description of the network architecture we are using 

the same convention as in [13]. We have implemented a FFNN 

using Google's Tensor Flow framework. The network consists of 

an input layer, one hidden layer h and one output layer o. The 

number of input nodes i and hidden nodes j is bound to the 

number of sensors we consider as a valid source to go into our 

model (98% availability of measurements in the training data 

set). The number of output nodes k is limited to the number of 

prediction horizons we choose for one sensor (see next chapter). 

We have tested the network with higher numbers of neurons (up 

to 150) which let the overall error increase. For each layer we 

are using a sigmoid activation function l to produce the value v 

of every neuron. The sigmoid function 𝜎(𝑧) is a classical 

nonlinear function and a good choice if we want to detect 

nonlinear patterns in our data. 

𝜎(𝑧) =
1

1+𝑒−𝑧
    𝑣𝑗 = 𝑙𝑗(∑ 𝑤𝑗𝑗′ . 𝑣𝑗′𝑗′ )   (1) 

Here j' stands for nodes that are connected with the hidden 

neuron j and w is the weight of edges jj'. The root mean square 

error (RMSE) is our loss function 𝐿(�̂�𝑘 , 𝑦𝑘) which modifies the 

network at each iteration using backpropagation [14]. The 

weights between the neurons are adjusted by stochastic gradient 

descent (SGD) with a batch size of 20 iterations. The 

backpropagation algorithm subsequently calculates the 

derivatives of 𝐿 from output nodes k (2) to hidden nodes j with 

respect to their corresponding activation function (3). 

𝛿𝑘 =
𝜕 𝐿(�̂�𝑘,𝑦𝑘)

𝜕 �̂�𝑘
 . 𝑙𝑘(∑ 𝑤𝑘𝑗 . 𝑣𝑗𝑗 )   (2) 

𝛿𝑗 = 𝑙′(∑ 𝑤𝑗𝑗′ . 𝑣𝑗′𝑗′ ) ∑ 𝛿𝑘  . 𝑤𝑘𝑗𝑘    (3) 

 

5. EXPERIMENTAL SETUP 
We train our FFNN using 1 month of data from July 2015 

produced by 59 double induction loops which are spread across 

the city of Dresden. The data is coming from the Dresden ITS 

called VAMOS3 and aggregated to minutely values. We choose 

double inductive loops as they are capable in capturing the speed 

of cars accurately. This group of loop detectors is usually 

installed on main roads and with enough distance to 

intersections. Therefore, the measurements do not get affected 

by waiting queues. Nevertheless, the time series are still quiet 

noisy because of traffic lights intervals. Even during rush hours 

there can be minutes with no detected cars (see Figure 1). 

 

Figure 1 Occupancy at one loop detector for one day in 

contrast to moving averages of 25 and 50 minutes 

 

Figure 2 Locations of double inductive loops 

                                                                 

3 https://tu-dresden.de/bu/verkehr/vis/vlp/forschung/forschungs-

projekte/verkehrsmanagementsystem-vamos-dresden 



Unfortunately, we had to exclude many sensors because of 

missing data, but we are currently working on repair 

mechanisms to include more detectors. However, we still got a 

good spatial distribution across the city (see figure 2).  

As for the input of the neural network we are generating a 

matrix which consists of data from all valid sensors S and 

measurements T of variable x (occupancy in our tests). The input 

values are smoothened by a rolling mean of 50 minutes to ease 

the prediction and normalized to a range between 0 and 1 to 

fasten the computation. Our target is following the same 

structure but with shifted values of a given temporal offset for 5, 

10, 15, 30 and 45 minutes. Every line of the input matrix 

represents an input vector, see (4). As for now, pairs of input 

and target vectors containing NULL elements are removed 

before the training. 

[

𝑥𝑠1,𝑡0
⋯ 𝑥𝑠𝑛,𝑡0

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛

⋯ 𝑥𝑠𝑛,𝑡𝑛

]   (4) 

To define the neighbors of each sensor we are following the idea 

from [12]. Only sensors from where traffic can get to the target 

within a given time lag are considered. We are using the 

Isochrone API of the Open Source routing engine GraphHopper4 

which produces a reverse flow isochrone polygon for a given 

time lag for each sensor. The intersecting sensors are the 

neighbors. We do not apply any further weighting yet as our 

ANN should be able to learn by itself which neighbors are 

having a higher impact for a future measurement at the target 

sensor. The resulting adjacency matrix has to be applied against 

every input matrix in individual trainings for each target sensor. 

We are using one neighbor setting where the target sensor is 

included and one where it is excluded. 

We made an exception and took only isochrones for 5 minutes 

even for bigger prediction horizons because 10 minutes 

isochrones can already cover great areas of Dresden and, thus, 

include many sensors. Moreover, our isochrones are fixed and 

not dynamic as in [12]. The resulting adjacency matrix has to be 

applied against the input matrix. In the end, we came up with 

four different input settings to analyze the effect of including 

other sensors into our prediction: 

FFNNsimple: Only historic values of the target sensor to predict a 

future value 

FFNNNN: Only historic values from nearest neighbors excluding 

the target sensor 

FFNNNN+: Only historic values from nearest neighbors 

including the target sensor 

FFNNall: Historic values from all sensors 

[15] have shown that sequential information can also be passed 

to a FFNN by appending the temporal lags to the matrix to 

mimic a RNN. We are also applying this strategy in our tests 

using a sequence of 5 time steps (mFFNN) as illustrated in (5). 

[

𝑥𝑠1,𝑡0
⋯ 𝑥𝑠𝑛,𝑡0

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛

⋯ 𝑥𝑠𝑛,𝑡𝑛

𝑥𝑠1,𝑡1
⋯ 𝑥𝑠𝑛,𝑡1

⋮ ⋱ ⋮
𝑥𝑠1,𝑡𝑛+1

⋯ 𝑥𝑠𝑛,𝑡𝑛+1

⋯ 𝑥𝑠𝑛,𝑡𝑚

⋱ ⋮
⋯ 𝑥𝑠𝑛,𝑡𝑛+𝑚

] (5) 

We run the network with 20000 iterations and tested it with data 

from the two following months – August and September 2015. 

                                                                 

4 https://graphhopper.com/api/1/docs/isochrone/ 

6. RESULTS AND DISCUSSION 
For evaluating of our results we are using the mean absolute 

error (MAE) as defined in (6) which is a common measure in 

research: 

𝑀𝐴𝐸 =
1

𝑁
∑ |�̂�𝑘 − 𝑦𝑘|𝑁

𝑘=1     (6) 

�̂�
𝑘
 stands for the predicted value. Table 1 shows an exemplary 

result for one sensor. In our case the numbers represent how far 

we are from the real detected occupancy. Many aspects seen 

here also apply to other sensors, e.g. lowest MAE when 

including all sensor and sequence information and highest MAE 

when filtering the input by the target’s nearest neighbors incl. 

historic values of the target itself. Adding sequence information 

to the input matrix does not have a great beneficial impact on the 

predictions. But generally, we are getting very close to the actual 

values. 

Table 1 Results for different neural network configurations 

and prediction time horizons. 

 

In contrast to the results of many other papers in the field of 

spatio-temporal traffic forecasting, adding neighborhood 

information decreases the accuracy in many cases. It is obvious 

that an ANN works best when it is fed with input values of the 

whole ground truth, but we did not expect it to be worse than 

taking only values of the target. It would be interesting to see if 

an additional weighting on the spatial weight matrix could 

enhance the forecasting. When we will work with LSTMs a 

reduction of features could be necessary because of the 

exponential complexity of RNNs. 

Figure 3 shows a comparison between predicted and detected 

values for three different FFNN test setups trained with a 5 

minutes temporal offset. 

 

Figure 3 Difference between prediction (dotted lines) and 

reality (dark solid line) for one week of august 

The predictions come very close during the increase and 

decrease periods in the mornings and evenings. The network can 

also figure out that traffic is different on a Sunday without 

having any information about the day. One can argue that our 

task is relatively easy to solve, as we have smoothed the input 

and target values. Within a short prediction horizon, the moving 

  t5 t10 t15 t30 t45 

FFNNsingle 0,5042 0,5743 0,6679 0,9698 1,2970 

FFNNNN 0,6255 0,6660 0,7248 0,9831 1,0299 

FFNNNN+ 1,7177 1,7157 1,7236 1,7813 1,8928 

FFNNall 0,4975 0,4933 0,5262 0,7474 1,0299 

mFFNNsingle 0,4324 0,5213 0,6137 0,9360 1,2771 

mFFNNNN 0,5616 0,6080 0,6667 0,9231 1,2519 

mFFNNNN+ 1,6420 1,6543 1,6862 1,8126 1,9612 

mFFNNall 0,3998 0,4086 0,4521 0,6405 0,8684 



average of detected occupancies is not going to change a lot. 

Thus, we would always receive a low error. As a solution to this 

issue we should further aggregate more measurements and 

reduce the rolling mean. When looking at the spatial distribution 

of the prediction accuracy (see figure 4) we found that it 

decreases especially on main roads near the highways. This 

could probably be improved if the network would have 

information about the time of day to distinguish between the two 

rush hour periods. 

 

Figure 4 MAE at different sensors for the FFNNall setup 

trained on 5 minutes and 45 minutes offsets 

We have also noticed differences in accuracy for different lanes 

on the road. Generally, the error has been higher for the inner 

lane of a road, probably because the occupancy tends to be more 

nonlinear than on the outer lane. 

7. CONCLUSION 
In this paper we have presented the potential of deep learning on 

traffic sensor data. While the usage of neural networks for short-

term traffic forecasting had been used in many different studies 

most often the spatial dimension is not included or neglected 

because of a simplistic training scenario with a low number of 

sensors. We have worked on a sensor network that is distributed 

across an entire city and got the best results when we included 

measurements from all sensors. Including a sequence 

information enhanced the prediction only slightly. Thus, we 

have to work with RNNs, which should be superior for time 

series analysis because they enable to learn short and long 

sequences. We will also do further investigation in how to repair 

missing or corrupt data values.  

We have started with FFNNs for comparison reasons with other 

ANNs, parametric and non-parametric approaches. But even the 

rather simple FFNN could provide very good forecasting results 

with low computational costs. This also raises the question if a 

proper traffic and travel time prediction really requires more 

FCD from individuals rather than extending the network of 

static sensors. For data privacy reasons it is important to 

improve algorithms for analyzing time series data of anonymous 

sensor networks. We will also develop strategies for 

implementing a continuous learning algorithm for an 

autonomous ITS that is able to apply navigation assistance based 

on the spatio-temporal findings. 
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