
Ensuring Consistency in Graph Cache for Graph-Pattern
Queries

Jing Wang
School of Computing Science

University of Glasgow, UK
j.wang.3@research.gla.ac.uk

Nikos Ntarmos
School of Computing Science

University of Glasgow, UK
nikos.ntarmos@glasgow.ac.uk

Peter Triantafillou
School of Computing Science

University of Glasgow, UK
peter.triantafillou@glasgow.ac.uk

ABSTRACT
Graph queries are costly, as they entail the NP-Complete
subgraph isomorphism problem. Graph caching had been re-
cently suggested, showing the potential to significantly accel-
erate subgraph/supergraph queries. Subsequently, Graph-
Cache, the first full-fledged graph caching system was put
forth. However, when the underlying dataset changes con-
currently with the query workload proceeding, how to ensure
the graph cache consistency becomes an issue. The current
work provides a systematic solution to address this prob-
lem, by presenting an upgraded GraphCache system coined
GraphCache+ (abbreviated as GC+). We develop two GC+
exclusive models that employ different approaches to deal
with the consistency issue. Moreover, we present the logic
of GC+ in expediting queries, bundled with the formally
proved correctness. We evaluate the performance of GC+ by
a real-world graph dataset and a number of query workloads
with different characteristics, highlighting the considerable
speedup in term of quantified benefit and overhead.

CCS Concepts
•Information systems→ Database query processing;

Keywords
Graph queries; Caching system; Cache consistency

1. INTRODUCTION
Graph structured data is increasingly prevalent in modern

big data applications. Central to high performance graph
analytics is to locate patterns in dataset graphs. Informally,
given a query graph g, the system is called to return the
set of dataset graphs that contain g (subgraph query) or are
contained in g (resp. supergraph query), named the answer
set of g. These operations can be time consuming for the
NP-Complete problem of subgraph isomorphism [4]. Hence,
the community has contributed a number of innovative solu-
tions in recent years. One research thread follows the “filter-

©2017, Copyright is with the authors. Published in the Workshop Pro-
ceedings of the EDBT/ICDT 2017 Joint Conference (March 21, 2017,
Venice, Italy) on CEUR-WS.org (ISSN 1613-0073). Distribution of this
paper is permitted under the terms of the Creative Commons license CC-
by-nc-nd 4.0

then-verify” (FTV) paradigm: first, dataset graphs are de-
composed to substructures and indexed; then, substructures
of coming query graph g are looked up in the dataset index,
producing the set of dataset graphs that contain all substruc-
tures of g (resp. dataset graphs whose substructures are all
contained in g), coined the candidate set of g; finally, graphs
in the candidate set are verified for subgraph isomorphism
(abbreviated as sub-iso or SI), returning the answer set of
g. Similarly, [23] provides a solution for subgraph queries
against historical (i.e., snapshotted) graphs – a variation of
typical graph queries where snapshots can be viewed as dif-
ferent graphs. However, extensive evaluations of FTV meth-
ods [7, 8] show significant performance limitations. Another
research thread is concerned with heuristic SI algorithms,
which can operate either against a single very large graph
or a dataset containing a large number of graphs. These
algorithms are capable of pruning away (parts of) dataset
graphs that cannot contain the query, expediting sub-iso
testing without specialized graph indexes. [14, 9] provide
insightful evaluations for such SI algorithms.

Unfortunately, both FTV and SI methods suffer from ex-
ecuting unnecessary sub-iso tests. For example, if a previ-
ously issued query is submitted again to the system, it still
has to undergo sub-iso tests, as all laboriously derived knowl-
edge (i.e., answer set of previous queries) has been thrown
away. Moreover, in many applications, it is natural that sub-
mitted graph queries share subgraph or supergraph relations
with future queries – in protein datasets, there is a hierarchy
of queries for aminoacids, proteins, protein mixtures, uni-
cell bacteria, all the way to multi-cell organisms; in social
network exploratory, queries could start off broad (e.g., all
people in a geographic location) and become gradually nar-
rower (e.g., by homing in on specific demographics). Based
on these observations, we proposed in [25] a fresh graph
query processing method, where queries (and their answers)
are indexed to expedite future query processing with FTV
methods. Subsequently, we presented GraphCache [26], the
first full-fledged caching system for general subgraph/super-
graph query processing, applicable for all current FTV and
SI methods. Following established research, GraphCache
handles graph queries against a static dataset throughout
the continuous query streaming.

In real-world applications, however, the graph dataset nat-
urally evolves/changes over time. For example, in social net-
working, newly added groups (graph modeled relations/in-
teractions among people), break-up of existed groups, and
the changed relations/interactions among group members
are frequently happening. Also, biochemical datasets keep

refreshing by newly-translated, disregarded or transformed
proteins, for application/research reason. Such changes could
be modeled as graph addition (ADD), graph deletion (DEL),
graph update by edge addition (UA) and graph update by
edge removal (UR) in graph dataset analytics.

SI algorithms could accommodate these changes on the fly
as each dataset graph shall undergo subgraph isomorphism
test eventually, whereas FTV methods additionally require
an updatable indexing mechanism to evict proper candidate
set. To the best of our knowledge, none of the proposed
FTV algorithms so far has updatable index or similar solu-
tions to tackle dataset changes. As a result, the way turns
to SI methods, where each dataset graph is painstakingly
verified. On the other hand, caching is proved efficient in
accelerating graph queries [26]. To this end, it naturally fol-
lows an approach using graph cache to alleviate the costly
SI methods in processing subgraph/supergraph queries with
dataset changes – a topic that has not been discussed yet.
Therefore, underpinned by our previous work in [25, 26], we
contribute in this paper:
• A systematic solution to expedite subgraph/supergraph

queries with dataset changing throughout the query
streaming, by presenting an upgraded graph caching
system GC+ featured by newly plugged-in subsystems
to deal with the evoked cache consistency issue.
• Two cache models named EVI and CON that are pro-

posed exclusively for GC+, representing different de-
signs of ensuring graph cache consistency.
• The logic of GC+ in pruning candidate set for general

subgraph/supergraph query processing, together with
the formally proved correctness.
• Performance evaluations using well-established SI meth-

ods, a real-world dataset and a number of workloads,
emphasizing the significant speedup of CON cache.

2. RELATED WORK
Subgraph isomorphism problem has two versions: (i) the

decision problem answers Y/N to whether the query is con-
tained in each graph in the dataset; (ii) the matching prob-
lem locates all occurrences of the query graph within a large
graph (or a dataset of graphs). To address the decision and
matching problems, the brute-force approach is to execute
sub-iso test of query against each dataset graph (SI method).
SI algorithms deteriorate when the dataset contains a large
number of graphs, which prompted the prevalence of FTV
methods. GC+ could benefit both SI and FTV solutions for
general subgraph/supergraph queries.

The community has also looked into subgraph queries
against a single massive graph via scale-out architectures
[12] or large memory clusters with massive parallelism [24].
For the time being, GC+ does not target such use cases,
which are left for future work.

Using cache to expedite queries is prevalent in relational
databases, whereas little work had been done for graph-
structured query processing. XML datasets have used views
to expedite path/tree queries [15]; [13] first proposed the
MCR (maximally contained rewriting) approach for tree-
pattern queries, but introduced false negatives. GC+ does
not produce false negatives or false positives (see §6). Also,
GC+ deals with much more complex graph queries, which
entail the NP-Complete subgraph isomorphism problem.

Caching has also been leveraged to expedite SPARQL
query processing in RDF graphs. [18] proposed the first

cache for SPARQL queries. [22] contributed a cache for
SPARQL queries with a novel canonical labelling scheme
to identify cache hits and a popular dynamic programming
planner. Similar to GC+, query processing optimization in
[22] does not require any a priori knowledge on datasets/
workloads and is workload adaptive. However, like XML
queries, SPARQL queries are less expressive than general
graph queries and thus less challenging [10, 24]: SPARQL
query processing consists of solving the subgraph homomor-
phism problem, which is different from the subgraph isomor-
phism problem, as the former drops the injective property
of the latter. Furthermore, GC+ discovers subgraph, su-
pergraph, and exact-match relationships between the com-
ing query and cached queries, which the canonical labelling
scheme in [22] fails to achieve. SPARQL query processing
also targets at optimizing join execution plans [5] (based
on join selectivity estimator statistics and related cost func-
tions), and the cache in [22] is focusing on this goal, whereas
GC+ aims to avoid/reduce costs of executing SI heuristics
whose execution time can be highly unpredictable and much
higher. Therefore, the overall rationale of GC+ and its way
to utilize cache contents differ from that in [22] and in re-
lated caching solutions for SPARQL queries.

Pertaining to cache consistency, [6] first explicitly speci-
fied the consistency constraint in a query-centric approach
and presented how it could be expressed succinctly in SQL.
Also, there are studies of cache consistency regarding XML
datasets [2] and SPARQL query processing [16]. However,
the topic of ensuring graph cache consistency for general
subgraph/supergraph queries has not been discussed yet.

3. DEFINITIONS
GC+ is implemented for undirected labelled graphs, fol-

lowing established studies in literature [1, 11]. We assume
that only vertices have labels; all our results straightfor-
wardly generalize to directed graphs and/or graphs with
edge labels.

A labeled graph G = (V,E, l) consists of a set of ver-
tices V (G) and edges E(G) = {(u, v), u ∈ V, v ∈ V }, and
a function l : V → U , where U is the label set, defining
the domain of labels of vertices. A graph Gi = (Vi, Ei, li) is
subgraph-isomorphic to a graph Gj = (Vj , Ej , lj), (by abuse
of notation) denoted by Gi ⊆ Gj , when there exists an in-
jection φ : Vi → Vj , such that ∀(u, v) ∈ Ei, u, v ∈ Vi,⇒
(φ(u), φ(v)) ∈ Ej and ∀u ∈ Vi, li(u) = lj(φ(u)).

As is common in literature, we focus on non-induced sub-
graph isomorphism. Informally, there is a subgraph isomor-
phism Gi ⊆ Gj if Gj contains a subgraph that is isomor-
phic to Gi. In this case, we say that Gi is a subgraph of
(or contained in) Gj , or inversely that Gj is a supergraph of
(contains)Gi (denoted byGj ⊇ Gi). The subgraph querying
problem entails a setD = {G1, . . . , Gn} containing n graphs,
and a query graph g, and determines all graphs Gi ∈ D such
that g ⊆ Gi. The supergraph querying problem entails a set
D = {G1, . . . , Gn} containing n graphs, and a query graph
g, and determines all graphs Gi ∈ D such that g ⊇ Gi.

4. SYSTEM ARCHITECTURE
GC+ is a scalable semantic cache for subgraph/super-

graph queries, consisting of four subsystems Data Manager,
Cache Manager, Query Processing Runtime and Method M,
as shown by Figure 1. The first three are GC+ internal and

Dataset Manager

Cache Manager

Window

Manager
Statistics

Manager

Cache

Replacement

Query Processing Runtime

GC+sub
Processor

GC+super

Processor

Candidate Set Pruner

Statistics

Monitor

Resource

Manager /

Query

Dispatcher

Cache

Validator

Log Analyzer

Method M

MverifierDataset Graphs

Figure 1: GC+ System Architecture

Method M is the external SI method that GC+ is called to
expedite. Method M subsystem includes an SI implementa-
tion, denoted Mverifier, sub-iso testing candidate set MCS

(the whole dataset when GC+ is not used).
Dataset Manager subsystem is GC+ specific, containing

a component Log Analyzer to handle dataset logs. Cache
Manager is responsible for the management of data and
metadata stored in the cache. Besides the cache replace-
ment mechanisms, a Window Manager for cache admission
control and a Statistics Manager for metadata that work
as usual as in GC, Cache Manager of GC+ boasts an ad-
ditional component Cache Validator, which cooperates with
Log Analyzer to ensure the cache consistency. Both Log An-
alyzer and Cache Validator launch cache model dependent
mechanisms to cope with cache consistency (see §5).

Query Processing Runtime subsystem takes charge of query
execution and metrics monitoring. Like in GC, it comprises
a resource/thread manager, the GC+ internal subgraph/su-
pergraph query processors, the logic for candidate set prun-
ing, and a statistics monitor – these components of Query
Processing Runtime communicate with Method M and the
Cache Manager via well-defined APIs. Please note that
GC+’s logic of Candidate Set Pruner is different and more
complicated than that in GC, though the former could be
viewed as adapting from the latter. The logic of GC+ shall
be presented and proved in §6.

When a query g arrives, Dataset Manager subsystem first
identifies whether the dataset has been changed recently. If
so, Cache Validator is triggered to reflect these changes to
previous queries residing in cache and window (where queries
are batched to enter cache; in this work, cached graphs/-
queries by default cover those previous queries in both cache
and window). Then, g is sent to Query Processing Run-
time subsystem for query execution. Specifically, GC+ calls
processors (GC+sub and GC+super) to discover whether g
shares subgraph/supergraph relations with cached graphs –
each hit graph in cache then contribute its valid part of an-
swer set to prune g’s candidate set. Finally, the issued query
g, together with its answer set and statistics pertaining to
the contribution of cached graphs, is fed to the Cache Man-
ager subsystem, where admission control and cache replace-
ment are performed, concurrently with the Query Processing
Runtime subsystem executing subsequent queries.

5. CACHE CONSISTENCY
5.1 EVI Cache Model

To address the said challenge arising from dynamic graph
dataset, a straightforward solution is to abandon the vague

Time

T0

T1

T2

T3

T4

T5

query g' execution g' entering cache

[0] [1] [2] [3]
1 1 1 1
0 0 1 1

g'
ADD G4
UR G3

[0] [1] [2] [3] [4]
1 1 1 0 0
0 0 1 x x

g'

[0] [1] [2] [3] [4]
1 1 1 1 1
0 0 1 1 0

g''

DEL G0
UA G1

Answer

Dataset
CGvalid

Answer

Dataset
CGvalid

Answer

Dataset
CGvalid

[1] [2] [3] [4]
0 1 0 0
x 1 x x

g'

[1] [2] [3] [4]
0 1 1 1
x 1 1 0

g''

Answer

Dataset
CGvalid

Answer

Dataset
CGvalid

CON Cache

{G0, G1, G2, G3, G4}

{G0, G1, G2, G3}

query g'' execution g'' entering cache

{G1, G2, G3, G4}

query g execution

Figure 2: A CON Cache Running Example with Timeline

cache, i.e., evicting (EVI) graph cache whenever dataset
changes. Therefore, Log Analyzer has to do nothing but
raising a flag indicating the dataset is changed, and Cache
Validator then clears cached contents indiscriminately. In
this way, the caching system in [26] could be easily adapted
to tackle graph queries with dataset changes, as the cleared
cache will never produce error for future query processing.
But the limitation is obvious – EVI cache has to warm from
scratch upon each dataset change.

The problem of EVI cache lies in that it fails to differ-
entiate the validity of cached results. For example, when
a dataset graph undergoes some change, its relations with
all previous queries in cache (reflected by the cached query
results) are affected – some still hold, while others fail. Of
course, invalid contents cannot be leveraged to accelerate fu-
ture queries and should be abandoned. However, the purge
in EVI throws away those valid contents as well, making the
cache efficiency truncated.

5.2 CON Cache Model
To solve the aforementioned problem of EVI, we develop

another cache model named CON, which beavers away to
identify valid contents in cache. We shall use an example to
illustrate how the CON model works for subgraph queries.
Mechanism for supergraph queries is similar and is omitted
for space reason.

Figure 2 depicts an example, where GC+ starts off with
a dataset containing four graphs {G0, G1, G2, G3} and an
empty CON cache. At time T1, query g′ arrived and was
executed. Assuming that g′ passed the admission control
and entered the cache later. CON cache thus recorded that
g′ holds validity towards its relation with all graphs in cur-
rent dataset (i.e., GCvalid covers dataset graphs with id 0,
1, 2, 3), among which g′ * G0, g′ * G1, g′ ⊆ G2 and
g′ ⊆ G3. Then, at time T2, dataset was changed by adding
a new graph G4, and an update on G3 of edge removals.
Obviously, there is no clue of G4 containing g′ or not, i.e., g′

does not hold validity regarding its relation with the newly
coming G4. As to G3, there was g′ ⊆ G3, which becomes
unknown as removing edge may result g′ * G3. Hence, the
validity of g′ pertaining to G3 is turned off. Subsequently,
at time T3, another query g′′ was executed and later entered
cache, holding the validity towards each graph in state-of-
the-art dataset containing five graphs. Again, the dataset

Algorithm 1 Analyzing Log for the CON Cache

1: Input: Dataset update log L
2: Output: A container C with counters to categorize op-

erations performed on dataset graphs
3:
4: Initialize C with an empty HashMap per counter (CT ,
CA and CR)

5: Extract the incremental records R from L
6: for all r ∈ R do
7: i = id of the dataset graph G in r
8: t = operation type in r
9: switch t do

10: case UA
11: CA.get(i) += 1
12: break
13: case UR
14: CR.get(i) += 1
15: break
16: CT .get(i) += 1
17: end for
18: return C

changed at time T4 – graph G0 was deleted and G1 was
updated by edge additions. Regarding the current dataset
{G1, G2, G3, G4}, g′ * G1 is not guaranteed, since adding
edges may introduce g′ ⊆ G1. g′, as well as g′′, thus loses the
validity on G1. Therefore, when the new query g comes, it
would be facilitated by cached graphs g′ and g′′, each with
the up-to-date valid info pertaining to all current dataset
graphs, ensuring the cache consistency of CON model.

5.2.1 Analyzing Dataset Log
GC+ is designed to warrant CON cache possessing the

potential to benefit queries at full steam. To this end, both
Dataset Manager subsystem and Cache Manager subsystem
develop CON specific mechanisms.

First, Dataset Manager subsystem employs the compo-
nent Log Analyzer to categorize dataset changes, acting
as a preprocessing step for validating CON cache. Algo-
rithm 1 illustrates how the corresponding analysis is per-
formed. Briefly, the incremental records that have not been
reflected in cache are first extracted from dataset log. Log
Analyzer then launches a container with three counters, im-
plemented by HashMap with key of dataset graph id and
value of count for the operations on this graph. The said
three counters (CT , CA and CR) (line 4) are responsible
for counting the total, UA and UR operations, respectively.
Each aforementioned record identifies the related dataset
graph and its operation type (lines 7–8). Exhausting these
records (lines 9–16) hence results the total-counter CT , UA-
exclusive-counter CA and UR-exclusive-counter CR.

5.2.2 Validating CON Cache
Then, the counter container returned by Dataset Man-

ager subsystem is forwarded to Cache Manager subsystem,
where Cache Validator refreshes the dataset-graph-validity-
indicator for cached graphs. CON cache targets at the biggest
possible benefit for query processing. The Cache Valida-
tor hence strives to exploit useful previous query result for
CON. In GC+, once a query is executed, its answer set
is finalized, which snapshots the query’s relation against
dataset at the execution time – even the dataset would un-
dergo changes later, GC+ will not repeat processing previ-

Algorithm 2 Refreshing a cached graph’s validity indicator

1: Input: Counter container C (containing CT , CA and
CR), currently maximum graph id m in dataset, stored
info of a cached graph (with its dataset-graph-validity-
indicator CGvalid and query result Answer, both struc-
tured by BitSet)

2: Function: Updating CGvalid
3:
4: if (m+ 1) > CGvalid.size then
5: Extend CGvalid to length (m+ 1) by assigning false

to extended bits
6: end if
7: for all i ∈ CT .keySet() do
8: tc = CT .get(i)
9: uac = !CA.containsKey(i)? 0 : CA.get(i)

10: urc = !CR.containsKey(i)? 0 : CR.get(i)
11:
12: if tc == uac ∧ CGvalid.get(i) ∧ Answer.get(i)

then
13: continue
14: else if tc == urc ∧ CGvalid.get(i) ∧ !Answer.get(i)

then
15: continue
16: else
17: CGvalid.set(i, false)
18: end if
19: end for

ous queries. Therefore, to deal with dataset changes, GC+
employs a BitSet indicator CGvalid per cached query, with
each bit identifying the up-to-date validity of the query’s
relation towards a dataset graph.

Algorithm 2 depicts how the CGvalid of a cached graph
g is refreshed by Cache Validator. To start with, CGvalid
is checked whether it contains all the bits required (line 4
where dataset graph id starts from 0). If not, it implies
that there are newly-added dataset graphs. Obviously, the
relation between g and those new dataset graphs is unknown
and those extended bits are thus assigned false (line 5). The
idea is to make recent dataset changes take effect on relevant
bits of CGvalid (lines 7–19).

Specifically, for each concerned dataset graph Gi (iden-
tified by i in line 7), its numbers of total operations (tc),
UA (uac) and UR (urc) are retrieved from the input coun-
ters (lines 8–10). If operations on dataset graph Gi are ex-
clusively of UA category (tc == uac in line 12), together
with valid (CGvalid.get(i) in line 12) query result g ⊆ Gi
(Answer.get(i) in line 12), such validity still holds (g ⊆ Gi
is not bothered by adding edges to Gi). Similarly, if oper-
ations on dataset graph Gi are exclusively of UR category,
the query result g * Gi (!Answer.get(i) in line 14) keeps
valid. Whereas other operations fade g’s validity on Gi if
applicable (line 17). By harnessing the validity per cached
query and dataset graph, as well as the optimizations in UA-
exclusive and UR-exclusive cases, CON model manages to
enhance the cache efficiency in expediting graph queries.

6. QUERY PROCESSING
This section shall illustrate the specific logic of Candidate

Set Pruner in GC+. For space reason, we only present for
subgraph queries (supergraph queries follow the exact in-
verse logic). As shown in Figure 2, when a query g arrives,

Subgraph
Query g

{G1, G3, G4}
Answer

CSM (g) = {G1, G2, G3, G4}

CSM (g) � Answersub(g) =

g ✓ g0

Answersub(g) = {G2}
Answer(g) = Answer [{G2}

Mverifier

GC+sub

Processor

, g0 ✓ {G2, G3}
CGvalid(g

0) = {G2}

(a) Subgraph Case

{G1, G2, G3}

Subgraph
Query g

CSM (g) = {G1, G2, G3, G4}

Answersuper(g) = {G1, G2, G3}

Answer(g)

GC+super

, g00 ✓ {G2, G3}

Mverifier
CSM (g) \ Answersuper(g) =

Processor CGvalid(g
00) = {G2, G3, G4}

g ◆ g00

(b) Supergraph Case

Figure 3: GC+ Processing of a Subgraph Query g

GC+ discovers whether g is a subgraph or supergraph of
cached queries concurrently by processors GC+sub/GC+super,
referred as subgraph/supergraph case.

6.1 Subgraph Case
For example, in Figure 3(a), the new query g comes with

candidate set CSM (g)(the current dataset) containing four
graphs {G1, G2, G3, G4}. GC+sub Processor finds that there
exists a previous query g′, such that g ⊆ g′. Then g′’s
cached answer set {G2, G3}, as well as its up-to-time validity
indicator CGvalid = {G2}, is retrieved. (As mentioned in
Algorithm 2, both Answer(g′) and CGvalid(g

′) are BitSet
structures; here, we employ a set containing dataset-graph-
id to help illustrate.)

For graph G2 ∈ CSM (g), considering g ⊆ g′ and g′ ⊆ G2

(still holds for current dataset, as G2 exists in CGvalid(g
′)),

it must follow that g ⊆ G2. Hence, G2 can be safely removed
from CSM (g) and added directly to the final answer set of
g. Whereas G3 is not sub-iso exempted though it appears
in g′’s cached answer set, as g′ ⊆ G3 fails to hold with
state-of-the-art dataset (G3 does not appear in CGvalid(g

′))
– g′ ⊆ G3 was found when executing previous query g′ but
has been faded by subsequent dataset changes (e.g., G3 was
updated by removing some edges).

Therefore, the logic of GC+ for subgraph case is that only
dataset graphs in CGvalid(g

′) ∩Answer(g′) are sub-iso test-
free, which can be safely removed from CSM (g) and directly
added to the final answer set of query g. In the general case,
g may be a subgraph of multiple previous query graphs g′i.
Then, the said sub-iso test-free graphs Answersub(g) is:

Answersub(g) =
⋃

g′i∈Resultsub(g)

CGvalid(g
′
i) ∩Answer(g′i)

(1)
where Resultsub(g) contains all the currently cached queries
of which g is a subgraph.

Hence, the set of dataset graphs for sub-iso testing is:

CSGC+sub(g) = CSM (g) \Answersub(g) (2)

Finally, if AnswerGC+sub(g) is the set of graphs verified to
be containing g through sub-iso tests on CSGC+sub(g), the
final answer set for query g will be:

Answer(g) = AnswerGC+sub(g) ∪Answersub(g) (3)

Lemma 1. The final answer of GC+ in the subgraph case
does not contain false positives.

Proof. Assume false positives are possible and consider
the first ever false positive produced by GC+; i.e., for some
query g, ∃GFP such that g * GFP and GFP ∈ Answer(g).
Note that GFP cannot be in AnswerGC+sub(g) where each
graph has passed the sub-iso test, which follows that GFP ∈

Answersub(g) by formula (3). Furthermore, formula (1) im-
plies ∃g′ such that g ⊆ g′, GFP ∈ CGvalid(g′) and GFP ∈
Answer(g′). Hence, GFP ∈ Answer(g′) is valid for up-to-
date dataset, i.e., g′ ⊆ GFP . But g′ ⊆ GFP and g ⊆ g′ ⇒
g ⊆ GFP (a contradiction).

Lemma 2. The final answer of GC+ in the subgraph case
does not introduce false negatives.

Proof. Assume false negatives are possible and consider
the first ever false negative produced by GC+ particularly;
i.e., for some query g, ∃GFN such that g ⊆ GFN and GFN /∈
Answer(g). As GFN ∈ CSM (g) in GC+ by default and
sub-iso testing does not introduce any false negative, the
only possibility for error is that GFN was removed using
formula (2); i.e., GFN /∈ CSGC+sub(g). That implies that
∃g′ such that g ⊆ g′ and GFN ∈ Answer(g′). But then, by
formula (3), GFN will be added to Answersub(g) and thus
GFN ∈ Answer(g) (a contradiction).

Theorem 3. The final answer of GC+ in the subgraph
case is correct.

Proof. There are only two possibilities for error; GC+
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 1 and 2.

6.2 Supergraph Case
Figure 3(b) depicts an example of supergraph case in GC+,

where GC+super Processor identifies there exists a previ-
ous query g′′ satisfying g′′ ⊆ g. For g′′, the cached an-
swer set {G2, G3} and the dataset-graph-validity indicator
CGvalid(g

′′) ({G2, G3, G4}) are retrieved. Again, the new
query g comes with candidate set CSM (g) ({G1, G2, G3, G4}).

Compared with subgraph case, reasoning the logic of GC+
in supergraph case is more interesting. (i) Consider graph
G1 ∈ CSM (g): G1 does not hold validity regarding its re-
lation with g′′, hence no previous query result about G1

could be utilized. g has to rest on the sub-iso test to iden-
tify whether G1 is in the final answer set. (ii) For graph
G2 ∈ CSM (g): g′′ ⊆ G2 holds, which does not make G2

sub-iso test free though providing g′′ ⊆ g, as the relation
between g and G2 is still obscure and has to be verified by
sub-iso test. Similarly, G3 is not free of sub-iso test either.
(iii) For graph G4 ∈ CSM (g), G4 holds validity for its rela-
tion with g′′ as g′′ * G4. Since g′′ ⊆ g, if g ⊆ G4 were to be
true, then it should follow g′′ ⊆ G4, which is a contradiction.
So it is safe to conclude that g * G4 and thus G4 can be re-
moved from CSM (g). In overall, among graphs in CSM (g),

those failing to appear in (CGvalid(g′′) ∪ Answer(g′′) can
never exist in the final answer set of g and thus become
sub-iso test free, where CGvalid(g′) is the complementary
set of CGvalid(g

′′) against state-of-the-art dataset. In other

words, the set (CGvalid(g′′) ∪Answer(g′′) covers all graphs
that could possibly exist in the final answer set of g, denoted
as g′′.Answersuper(g), i.e.,

g′′.Answersuper(g) = (CGvalid(g′′) ∪Answer(g′′) (4)

Performing sub-iso tests on CSM (g) ∩ g′′.Answersuper(g)
therefore results the verified query answer Answer(g).

In the general case, g may be a supergraph of multiple
previous query graphs g′′j . Then, the set of graphs tested for
sub-iso by GC+ is:

CSGC+super (g) = CSM (g) ∩
⋂

g′′j ∈Resultsuper(g)

g′′j .Answersuper(g)

(5)
where Resultsuper(g) contains all the currently cached queries
of which g is a supergraph.

The final answer for query g, Answer(g), will be the set
of graphs in CSGC+super (g) that pass the sub-iso test.

Lemma 4. The final answer of GC+ in the supergraph
case does not contain false positives.

Proof. This trivially follows by construction as all graphs
in Answer(g) have passed through subgraph isomorphism
testing at the final stage of query processing.

Lemma 5. The final answer of GC+ in the supergraph
case does not introduce false negatives.

Proof. Assume false negatives are possible and consider
the first ever false negative produced by GC+; i.e., for some
query g, ∃GFN such that g ⊆ GFN and GFN /∈ Answer(g).
Since GFN ∈ CSM (g), the only possibility for error is that
GFN is removed from CSGC+super (g) by formula (5). This
implies that ∃g′′ such that GFN /∈ g′′.Answersuper(g) and

g′′ ⊆ g. By formula (4), it turns to GFN /∈ (CGvalid(g′′) and

GFN /∈ Answer(g′′), with GFN /∈ (CGvalid(g′′) ⇒ GFN ∈
CGvalid(g

′′). Hence, for state-of-the-art dataset, GFN /∈
Answer(g′′) is valid, i.e., GFN * g′′. But g ⊆ GFN and
g′′ ⊆ g ⇒ g′′ ⊆ GFN (a contradiction).

Theorem 6. The final answer of GC+ in the supergraph
case is correct.

Proof. There are only two possibilities for error; GC+
can produce false negatives or false positives. The theorem
then follows straightforwardly from Lemmas 4 and 5.

6.3 Putting It All Together and Optimal Cases
The Query Processing Runtime subsystem first applies

equation (2) on CSM and then applies (5) on the result of the
previous operation. The end result is a reduced candidate
set, which is then sub-iso tested.

Additionally, there are two optimal cases that warrant
further performance gains. First, note that GC+ can easily
recognize the case where a new query, g, is isomorphic to a
previous cached query g′. For connected query graphs, this
holds providing that (i) g ⊆ g′ or g ⊇ g′; and (ii) g and
g′ have the same number of nodes and edges; and (iii) g′

holds validity on all the up-to-date dataset graphs. Hence,
GC+ can return the cached result of g′ directly, rendering
sub-iso test free. Second, consider the case: for a new query
g, a cached query g′′ is discovered by GC+ that g′′ ⊆ g,
Answer(g′′) = ∅ and g′′ holds validity on all graphs cur-
rently in dataset. Thus, GC+ can directly return an empty

result set for g. The idea is that if there were a dataset
graph G such that g ⊆ G, since g′′ ⊆ g we would conclude
that g′′ ⊆ G ⇒ G ∈ Answer(g′′), contradicting the fact
that Answer(g′′) = ∅; thus, no such graph G can exist and
the final result set of g is necessarily empty.

7. PERFORMANCE EVALUATION

7.1 Experimental Setup
GC+ is implemented in Java, by extending the graph

caching system GC [26]. Experiments were performed on a
Dell R920 host (4 Intel Xeon E7-4870 CPUs (15 cores each),
with 320GB of RAM and 4×1TB disks, running Ubuntu
Linux 14.04.4LTS. Following GC, the default value in GC+
for the upper limit on the sizes of Cache and the Window
stores were 100 and 20 respectively.

Method M We used three well-established SI meth-
ods, including GraphQL (GQL) provided by [14], a modified
VF2[3] (denoted VF2+) provided by [11], for being well-
established and good performers [14, 8]; we also used vanilla
VF2[3] as it is extensively used in FTV methods.

Dataset We employ a real-world dataset AIDS [19] (the
Antiviral Screen Dataset of the National Cancer Institute)
that is prevalently used in literature [14, 7, 1, 11]. AIDS
contains 40,000 graphs, each with on average ≈45 vertices
(std.dev.: 22, max: 245) and ≈47 edges (std.dev.: 23, max:
250), whereby the few largest graphs have an order of mag-
nitude more vertices and edges.

Dataset Change Plan Dataset change operations are
performed in batches, with occurrence time indicated by the
id of queries in workload (recall Figure 2). The plan we
used for AIDS consists of 2,000 operations (in 100 batches,
20 operations per batch), during the processing of 10,000
queries. A batch of operations are generated as following:
first, an occurrence time for the batch is selected uniformly
at randomly from the id of queries; then, a type uniformly
selected from {ADD, DEL, UA, UR}, a graph uniformly
selected from dataset (ADD using the initial dataset instead
of synthesizing additional graphs so as to maximumly keep
the original dataset characteristics; DEL, UA and UR using
the up-to-date dataset at running time) and a uniformly
selected edge within the graph providing UA or UR being
the selected type (UA would add an edge that has not been
in graph yet; UR would remove an existed edge of graph)
codetermine a specific operation – such process is repeated
until the batch contain the required number of operations.

We follow the established principle for the generation of
our workloads, using two different algorithms to synthesize
queries from the initial dataset graphs. Each workload con-
sists of 10,000 queries with typical sizes in literature [11, 27]
– 4, 8, 12, 16 and 20 edges.

Type A Workloads Queries of these workloads are gen-
erated in the following manner: first, a source graph is
randomly selected from dataset graphs; then, a node is se-
lected randomly in the said graph; finally, a query size is
selected uniformly at randomly from given sizes and a BFS
is performed starting from the selected node. For each new
node, all its edges connecting it to already visited nodes are
added to the generated query, until the desired query size is
reached. For the first two random selections above, we have
used two different distributions; namely, Uniform (U) and
Zipf (Z), with the probability density function of the latter
given by p(x) = x−α/ζ(α), where ζ is the Riemann Zeta

function[21]. Ultimately, we had three categories of Type
A workloads: “UU”, “ZU” and “ZZ”, where the first letter
in each pair denotes the distribution used for selecting the
starting graph, and the second for the starting node.

Type B Workloads (with no-answer queries) These
workloads are generated as follows. For each of the query
sizes, we first create two query pools: a 10,000-query pool
with queries with non-empty answer sets against the initial
dataset, and a second 3,000-query pool with no match in any
untreated dataset graph (i.e., empty result set). Queries for
the first pool are extracted from dataset graphs by uniformly
selecting a start node across all nodes in all dataset graphs,
and then performing a random walk till the required query
graph size is reached. Generation of no-answer queries has
one extra step: we continuously relabel the nodes in the
query with randomly selected labels from the dataset, un-
til the resulting query has a non-empty candidate set but
an empty answer set against the dataset graphs. Once the
query pools are filled up, we generate workloads by first flip-
ping a biased coin to choose between the two pools (with the
“no-answer”pool selected with probability 0%, 20% or 50%),
then randomly (Zipf) selecting a query from the chosen pool.
We thus have three categories of Type B workloads: “0%”,
“20%” and “50%”, denoting the above probability used.

We use Zipf α = 1.4 by default; as a reference point, web
page popularities follow a Zipf distribution with α = 2.4 [21].
We only allow one for one Window (i.e., 20 queries) before
starting measuring GC+’s performance. We report on both
the benefits and the overheads of GC+. Reported metrics
include query time and number of sub-iso tests per query,
along with the speedups introduced by GC+. Speedup is
defined as the ratio of the average performance (query time
or number of sub-iso tests) of the base Method M over the
average performance of GC+ when deployed over Method M
(i.e., speedups >1 indicate improvements). As a yardstick,
[17] (also a cache but for XML databases) report a query
time speedup of 2.6× with 10,000-query workloads generated
using Zipf α = 1.5, and a 1,500-query warm-up.

Cache Replacement Policy GC+ incorporates all the
replacement policies developed in GC. Here, we use the
coined hybrid (HD) policy for experiments, as its perfor-
mance is always better or on par with the best alternative
[26]. Specifically, HD coalesces another two GC/GC+ ex-
clusive policies PIN and PINC. PIN scores each graph in
cache by considering the total number of subgraph isomor-
phism tests alleviated by the said graph (coined R). PINC
extends the mentioned ranking by taking into account the
possibly vast differences in query execution time (denoted
C), where cost is estimated by a heuristic [25]. As C is
estimated, using it in PINC does not always lead to im-
provements in query time. And through a large number of
experiments, we have observed that when the values of the
R exhibit a high variability, they are discriminative enough
on their own, where considering C can actually lead to lower
time gains (i.e., PIN performs better than PINC). However,
when the values of R exhibit a low variability, adding in
the C component leads to considerable query time improve-
ments. When the HD policy is invoked, it first retrieves the
R from Statistics Manager and computes its variability [20]
by using the (squared) coefficient of variation (CoV). CoV
is defined as the ratio of the (square of the) standard devia-
tion over the (square of the) mean of the distribution. When
CoV > 1, the associated distribution is deemed of high vari-

1.74 1.43 1.28 1.79 1.78 1.52 1.31 1.27 1.23

7.85

4.77 5.13

7.31
5.79 6.21 5.78

4.57 3.90

ZZ ZU UU ZZ ZU UU ZZ ZU UU

VF2 VF2+ GQL

EVI CON

1.90 1.76 1.57 2.17 1.95 1.84 1.34 1.25 1.18

6.52
5.20 4.57

9.50

5.35 6.14
7.31 6.68 6.67

0% 20% 50% 0% 20% 50% 0% 20% 50%

VF2 VF2+ GQL

Figure 4: GC+ Speedup in Query Time

1.94 1.81 1.53 2.21 1.96 1.83

8.71
6.53 7.30

9.84

5.42 6.23

ZZ ZU UU 0% 20% 50%

EVI CON

Figure 5: GC+ Speedup in Number of Sub-iso Tests

ability, as exponential distributions have CoV = 1 and typ-
ically hyper-exponential distributions (which capture many
high-variance, heavy tailed distributions) have CoV > 1. In
this case, HD performs cache eviction using PIN’s scoring
scheme; otherwise, it turns to PINC’s scoring scheme.

7.2 Results and Insights
Figure 4 depicts the query time speedups of GC+ across

all method M and workloads. We can see that CON achieves
considerable speedup with the meagre 100-query cache
configuration whereas gains of EVI are limited. Note the
interesting finding that speedups for UU workload are close
to those of ZU (e.g., 4.77 vs 5.13 against VF2 base method),
whereas one might have expected a different outcome. Intu-
itively, the ZU workload bears more exact-match hits than
UU, due to the skewness of selecting source graphs during
query generation. And it does: we measured 2.5X the num-
ber of exact-match cache hits in ZU vs UU. However, in
GC+, exact-match cache hit does not necessarily introduce
sub-iso test free (see §6.3) – those resulting zero sub-iso test
merely account 4% among exact-match cache hits of the said
ZU workload (vs 11% in UU). Moreover, recall that GC+
exploits also subgraph/supergraph hits. Indeed, we mea-
sured circa 2X such matches for the UU workload vs ZU.
Of course, the overall performance result is a very complex
picture and depends on how big benefit is each saved exact-
match vs each saved subgraph/supergraph match. But the
key insight here is that by utilizing exact-matches and
subgraph/supergraph matches, GC+ can benefit both
skewed and non-skewed workloads.

Figure 5 shows the speedups in the number of sub-iso tests
performed. Please note that under a given configuration
(specified by dataset, dataset change plan, workload,
replacement policy, cache model EVI/CON, the upper
limit on the sizes of Cache and the Window stores),
whatever SI method being the Method M, GC+ re-
sults exactly the same pruned candidate set for each
query. Therefore, Figure 5 is independent of the three meth-
ods considered in this work. Juxtaposing Figures 4 and 5

1,217
698

155

1,130
789

237

1,385
1,085

270

4

11

3

9

3

7

VF2 EVI CON VF2 EVI CON VF2 EVI CON

ZZ ZU UU

Average Query Time (milliseconds) Overhead (milliseconds)

1,627

856
250

1,383
785

266
990

631
217

3

11

3

10
3

8

VF2 EVI CON VF2 EVI CON VF2 EVI CON

0% 20% 50%

Figure 6: Average Execution Time and Overhead per Query

leads to the interesting insight: Reductions in the number
of sub-iso tests do not translate directly into reduc-
tions in query time, echoing the claim that graph cache
hits render different benefits [26]. In all cases, though, GC+
achieves significant improvements in both query pro-
cessing time and number of sub-iso tests performed.

Figure 6 depicts a break-down of query processing time for
method M, EVI and CON. EVI pays overhead on updating
the Window and Cache data stores, including executing the
cache replacement algorithms and re-indexing the cached
graphs. Whereas the overhead of CON also covers the time
of analyzing dataset log and validating cache (see Algorithm
1 and 2) – such CON specific cost is trial, taking less than
1% in CON overhead, across all the aforementioned work-
loads and methods M. This confirms a significant conclusion
– the CON exclusive algorithms 1 and 2 are efficient.
The dominant part of CON overhead (for updating the Win-
dow and Cache data stores) is higher than that of EVI, as
the latter is frequently purged hence bearing less to be up-
dated. Putting the Figure 4 aside Figure 5, it is obvious that
CON sweeps EVI in query processing speedup with a
negligible additional overhead.

8. CONCLUSIONS
We presented a systematic solution to handle graph cache

consistency, by providing an upgraded system GC+, which is
capable of expediting general subgraph/supergraph queries
with dataset changes. We developed two GC+ exclusive
cache models EVI and CON with different mechanisms on
ensuring cache consistency. We illustrated the specific logic
of GC+ in reducing candidate set for query execution and
formally proved its correctness. Our performance evalua-
tion has demonstrated the considerable speedup achieved by
CON. Future works include further optimizing CON cache
with retrospective validating mechanisms, developing a dis-
tributed/decentralized version of GC+ and extending GC+
to benefit subgraph queries when finding all occurrences of
a query graph against a single massive graph.

9. REFERENCES
[1] V. Bonnici et al. Enhancing graph database indexing

by suffix tree structure. In Proc. IAPR PRIB, 2010.

[2] S. Bottcher. Cache consistency in mobile XML
databases. In Proc. WAIM, pages 300–312, 2006.

[3] L. P. Cordella, P. Foggia, C. Sansone, and M. Vento.
A (sub) graph isomorphism algorithm for matching
large graphs. IEEE TPAMI, 26(10):1367–1372, 2004.

[4] M. Garey and D. Johnson. Computers and
Intractability: A Guide to the Theory of
NP-Completeness. W.H. Freeman, 1979.

[5] A. Gubichev and T. Neumann. Exploiting the query
structure for efficient join ordering in SPARQL
queries. In Proc. EDBT, 2014.

[6] H. Guo et al. Relaxed currency and consistency: How
to say “good enough” in SQL. In Proc. SIGMOD, 2004.

[7] W.-S. Han, J. Lee, M.-D. Pham, and J. X. Yu. iGraph:
A framework for comparisons of disk-based graph
indexing techniques. PVLDB, 3(1-2):449–459, 2010.

[8] F. Katsarou, N. Ntarmos, and P. Triantafillou.
Performance and scalability of indexed subgraph query
processing methods. PVLDB, 8(12):1566–1577, 2015.

[9] F. Katsarou, N. Ntarmos, and P. Triantafillou.
Subgraph querying with parallel use of query
rewritings and alternative algorithms. In Proc. EDBT,
2017.

[10] J. Kim, H. Shin, and W.-S. Han. Taming subgraph
isomorphism for RDF query processing. PVLDB,
8(11):1238–1249, 2015.

[11] K. Klein, N. Kriege, and P. Mutzel. CT-index:
Fingerprint-based graph indexing combining cycles
and trees. In Proc. ICDE, 2011.

[12] L. Lai et al. Scalable subgraph enumeration in
MapReduce. PVLDB, 8(10):974–985, 2015.

[13] L. V. S. Lakshmanan et al. Answering tree pattern
queries using views. In Proc. VLDB, 2006.

[14] J. Lee et al. An in-depth comparison of subgraph
isomorphism algorithms in graph databases. PVLDB,
6(2):133–144, 2012.

[15] K. Lillis and E. Pitoura. Cooperative XPath caching.
In Proc. SIGMOD, 2008.

[16] J. Lorey et al. Caching and prefetching strategies for
SPARQL queries. In Proc. USEWOD, 2013.

[17] B. Mandhani and D. Suciu. Query caching and view
selection for XML databases. In Proc. VLDB, 2005.

[18] M. Martin, J. Unbehauen, and S. Auer. Improving the
performance of semantic web applications with
SPARQL query caching. In Proc. ESWC, 2010.

[19] NCI - DTP AIDS antiviral screen dataset.
http://dtp.nci.nih.gov/docs/aids/aids data.html.

[20] R. Nelson. Probability, Stochastic Processes, and
Queueing Theory. Springer Verlag, 1995.

[21] M. Newman. Power laws, Pareto distributions and
Zipf’s law. Contemporary Physics, 46:323–351, 2005.

[22] N. Papailiou, D. Tsoumakos, P. Karras, and
N. Koziris. Graph-aware , workload-adaptive SPARQL
query caching. In Proc. SIGMOD, 2015.

[23] K. Semertzidis and E. Pitoura. Durable graph pattern
queries on historical graphs. In Proc. ICDE, 2016.

[24] Z. Sun et al. Efficient subgraph matching on billion
node graphs. PVLDB, 5(9):788–799, 2012.

[25] J. Wang, N. Ntarmos, and P. Triantafillou. Indexing
query graphs to speedup graph query processing. In
Proc. EDBT, 2016.

[26] J. Wang, N. Ntarmos, and P. Triantafillou.
GraphCache: a caching system for graph queries. In
Proc. EDBT, 2017.

[27] X. Yan et al. Graph indexing: a frequent
structure-based approach. In Proc. SIGMOD, 2004.

