Challenges for industrial-strength
Information Retrieval on Databases

Roberto Cornacchia
Spinque

Arjen P. de Vries
Radboud University

ABSTRACT

Implementing keyword search and other IR tasks on top of
relational engines has become viable in practice, especially
thanks to high-performance column-store technology. Sup-
porting complex combinations of structured and unstruc-
tured search in real-world heterogeneous data spaces how-
ever requires more than “just” IR-on-DB. In this work, we
walk the reader through our industrial-strength solution to
this challenge and its application to a real-world scenario.
By treating structured and unstructured search as first-class
citizens of the same computational platform, much of the in-
tegration effort is pushed from the application level down to
the data-management level. Combined with a visual design
environment, this allows to model complex search engines
without a need for programming.

1. INTRODUCTION

There is a growing demand for solving complex search
tasks in heterogeneous data spaces, such as enterprise
search [9], expert finding [7, 2], recommendation [3].

These types of tasks require unstructured as well as struc-
tured search. We argue that by implementing information
retrieval on a database it becomes easier to support complex
search tasks. Already in 1981, Crawford suggested in [6]
that using standard query languages and proven relational
calculus: eases engineering; ensures repeatability of results
across systems; enables data-independence in text search
algorithms; allows search applications to benefit “for free”
from any advances in the database engine. In more recent
years, [5] and [10] emphasized these benefits and showed that
relational technology can compete, performance-wise, with
specialized data structures, especially when implemented in
modern column-store engines optimized for online analytical
processing (OLAP) work-loads.

In this paper we describe the challenges identified by
Spinque, a spin-off company from CWI Amsterdam, as

2017, Copyright is with the authors. Published in the Workshop
Proceedings of the EDBT/ICDT 2017 Joint Conference (March
21,2017, Venice, Italy) on CEUR-WS.org (ISSN 1613-0073).
Distribution of this paper is permitted under the terms of the
Creative Commons license CC-by-nc-nd 4.0

Michiel Hildebrand
Spinque

Frank Dorssers
Spinque

it converted exciting results from research into industrial-
strength complex search solutions. We illustrate our ap-
proach on a simplified as well as a real-world use case.

2. REAL-WORLD IR-on-DB

This section describes the challenges for a unified ap-
proach to structured and unstructured search and Spinque’s
solution to these challenges:

1. efficient database implementation of IR tasks to search
unstructured data;

2. a flexible data model to accommodate queries over any
type of structured data;

3. a mechanism to compute and propagate partial scores
consistently over unstructured and structured data;

4. an abstraction layer to model complex tasks easily.

The “toy” scenario. In the reminder of this section, let
us use the following running example: to perform keyword
search on a product database, but only consider the descrip-
tion section of products in the category “toy”.

2.1 Keyword search in MonetDB/SQL

The core of keyword search implementations is fast lookup
of query term occurrences within text documents. Inverted
index structures [14, 4] are used to map each term to its
“posting list” — the positions at which it appears in a col-
lection of text “documents”. Terms occurrences are then
used to build the statistical data employed by the ranking
algorithm of choice.

An inverted index can be easily implemented with any re-
lational DBMS. As shown in Figure 1, term lookup requires
an inner join on terms between a table containing query
terms and a table containing term occurrences.

The ability to create such index structures on-demand is
crucial to support scenarios where keyword search is part of
more complex tasks, because their parameters (e.g. stem-
ming language) are often hard to decide upfront. Data fed
to our system undergoes almost no pre-processing, so that
the original text can be ranked at any time by e.g. cus-
tom distance functions, tokenization strategies, stemming
choices. The only additions needed to MonetDB to support
on-demand indexing were two user-defined functions to im-
plement a text tokenizer and Snowball stemmers for several
languages.

term posting-list

book —» (3,23),(10,55)
cake — (10,51)
history — (3,19)

(a) Inverted index

term doc pos term
book 3 23 book
book 10 55 N about
cake 10 51 term history
history 3 19

term-doc query

(b) Inverted index as a relational join on term

Figure 1: Term look-up

Let us assume that the toy scenario introduced in Sec-
tion 2 has already been partially solved, so that a table
(productID int, description string) provides us with
pairs of “toy” products and their description, and products
have to be ranked according to the relevance of their descrip-
tion to the query keywords. We show how Okapi BM25 rank-
ing function can be implemented in MonetDB/SQL. The
following query turns a generic (docID int, data string)
table into the equivalent of a term-doc matrix:

CREATE VIEW term_doc AS
SELECT stem(lcase(token),’sb-english’) as term, docID
FROM tokenize((SELECT docID, data FROM docs));

From this doc-term matrix we can produce some simple
counts and a term dictionary:

CREATE VIEW doc_len AS
SELECT docID, count(*) as len
FROM term_doc GROUP BY docID;

CREATE VIEW termdict AS
SELECT row_number() over() as termID, terms.term
FROM (SELECT DISTINCT term FROM term_doc) AS terms;

From a string-based doc-term matrix of boolean values, we
generate an integer-based doc-term matrix of frequencies:

CREATE VIEW tf AS

SELECT termdict.termID, term_doc.docID, count(*) as tf
FROM term_doc, termdict

WHERE term_doc.term = termdict.term

GROUP BY termdict.termID, term_doc.docID;

Inverse document-frequency (IDF) of terms can be formu-
lated as follows:

CREATE VIEW idf AS

SELECT termID, log(
((SELECT count (*) FROM doc_len) - count(*) + 0.5)
/ (count(*) + 0.5)) as idf

FROM tf GROUP BY termID;

BM25’s term frequency is controlled by two free parame-
ters, k1 (saturation) and b (doc-length normalization):

CREATE VIEW tf_bm25 AS
SELECT tf.docID, tf.termID, tf.tf / (
tf.tf + (k1 * (1 - b + b * doc_len.len /
(SELECT avg(len) FROM doc_len)))) as tf
FROM tf, doc_len
WHERE tf.docID = doc_len.doclID;

We apply the normalization steps and dictionary mapping
seen above to the “query document” (a string singleton):

CREATE VIEW qterms AS
SELECT termdict.termID
FROM tokenize((SELECT data from query)) AS qt, termdict
WHERE stem(lcase(qt.token),’sb-english’) = termdict.term;

Finally, the tf-idf contributions of all query terms are
summed up to define the relevance score of each document:

SELECT tf_bm25.docID, sum(tf_bm25.tf) as score
FROM tf_bm25, idf, gterms

WHERE tf_bm25.termID = gterms.termID

AND idf.termID = qterms.termID

GROUP BY tf_bm25.docID;

Most alternative ranking functions would easily adapt or
reuse large parts of this implementation. Also, most of the
SQL queries above are independent of query-terms, which al-
lows to materialize intermediate results for reuse in different
search scenarios on the same data. While beating special-
ized text retrieval systems on raw speed is not the focus of
this study, reaching reasonable performance is a requirement
for the development of real search solutions. In accordance
with [5, 10], we can report runtime performance in the range
of 20ms (hot data) for 3-term queries against a 2.3GB col-
lection of raw text (1.1M documents), on a standard Linux
desktop machine (8-core, Intel 17-3770S, 3.10GHz, 16GB
RAM, 256GB SSD), using MonetDB v11.23.14.

2.2 Flexible data model

Relational tables can store and query structured data ef-
ficiently, but they are not particularly application-friendly:
the schema of each table must be known by applications us-
ing them, but the optimal schema depends on the data at
hand. Triple-stores can offer a valid alternative.

Semantic triples are best known in the Semantic Web com-
munity as the atomic data unit in the RDF data model.
Triples encode statements about resources, in the form of
(subject ,property,object), and a collection of such state-
ments can be interpreted as a graph. Triple-stores are
(mostly relational) database systems specifically designed to
store and manipulate this special kind of 3-column tables (or
4, when managing quadruples for named graphs), although
any relational DBMS would also serve the purpose. In fact,
we use the standard SQL interface of MonetDB to imple-
ment and query a triple-store, with an important custom
addition that we describe in Section 2.3. One direct advan-
tage of using a standard SQL interface is that it allows to
exploit the strengths of both triples and standard tables.

For the toy scenario of Section 2, the docs table to be
provided as input for keyword search (see Section 2.1) can
be generated at query time by the following SQL view:

CREATE VIEW docs as

SELECT t2.subject as docID, t2.object as data

FROM triples tl1, triples t2

WHERE t1.property = ’category’ AND tl.object = ’toy’
AND t2.property = ’description’

AND tl.subject = t2.subject;

The triple model allows to write this and other
queries using simple and application-independent pat-
terns. However, this flexibility comes at the price
of having to reconstruct the typical relational row
(product,category,description, ...) at query time,
which requires self-joins of a possibly large triples table.
Vertical partitioning of the set of triples can address per-
formance and scalability issues, as long as the right par-
titioning approach is chosen for the application context at

hand. The only data-driven partitioning that we apply is
by the physical data type of objects (rather than serializ-
ing every literal into strings). It is always applicable and
can improve efficiency, but does not solve scalability is-
sues. With the assumption that product categories and de-
scriptions are accessed often, storing (?7,category,?) and
(7,description,?) triples into separate tables would dra-
matically improve our scenario. This is the main reasoning
of [1], where the authors propose a vertical partitioning of
all properties into separate tables. However, [13] shows that
this solution is less scalable when the number of properties is
high. We use an on-demand approach to vertical partition-
ing, which is applied not only to selections on the property
column of triples, but to any intermediate result generated in
our database. This creates an adaptive, query-driven set of
“cache” tables each corresponding to a specific sub-query on
the original data. When the same computation is requested
several times, its full result is already materialized. An in-
teresting alternative to consider would be the detection of
emergent schemas [11], a data-driven technique to find a re-
lational schema that is considered optimal for a given graph,
thus eliminating many join operations.

2.3 Score propagation

Sections 2.1 and 2.2 show how to combine filtering (struc-
tured search) and ranking (unstructured search) of the text
collection defined on-the-fly by such filtering. What makes
these operations still disconnected is their inherently dif-
ferent computational model: one produces certain answers
from facts, the other applies statistical methods to produce
likely relevant answers.

We reduce this gap by implementing a probabilistic rela-
tional database with tuple-level uncertainty: a probability
column p is appended to all tables, including triples, in our
RDBMS. Semantic triples no longer encode facts, but rather
uncertain events: (subject,property,object,p). Prob-
abilities smaller than 1 can originate from the data (e.g.
due to confidence-based data extraction techniques), or from
any intermediate computation that produces ranked results.
With probabilistic tuples, structured search need not be re-
stricted to boolean facts and can play alongside unstructured
search with the very same tools.

Encoding probabilistic information is one part of the solu-
tion. We still need to combine and propagate such probabil-
ities when tuples are processed by relational operators. For
this, we use a proprietary domain specific language called
SpinQL, which implements the Probabilistic Relational Al-
gebra (PRA) developed in [8, 12], with particular focus on
efficient translation to SQL. SpinQL is used everywhere in
the system, including the implementation of BM25 and other

retrieval models. Extracting toy descriptions is expressed in
SpinQL as:

docs = PROJECT [$1,$6] (
JOIN INDEPENDENT [$1=$1] (
SELECT [$2="category" and $3="toy"] (triples),
SELECT [$2="description"] (triples)));

and translates to:

CREATE VIEW docs as
SELECT t2.subject as docID, t2.object as data,
tl.p * t2.p as p
FROM triples t1, triples t2
WHERE t1.property = ’category’ AND tl.object = ’toy’
AND t2.property = ’description’
AND tl.subject = t2.subject;

Data Source Term list

product database
&
Filter by String
category = toy
A
Extract Strings

deseription

&

Rank by Text BM25

snowball-english

Figure 2: rank toy products by their description

Each relational operator defines how to compute proba-
bility columns. For example, the query above joins indepen-
dent events from the two tables, which makes the resulting
probability of each join match be computed as the product
of two input tuples’ probabilities. If applied correctly, this
algebra allows to keep the probabilistic computation sound.
Using SpinQL leads to more concise query plans and is less
error-prone than hand-specifying probability computations,
as these are only made explicit upon translation into SQL.

2.4 Modeling complexity

While SQL / SpinQL interfaces allow to express mixed
structured and unstructured search and can be evaluated
efficiently, they are not well suited for search engine de-
signers. A basic search engine would easily require tens of
queries with hundreds of lines of code. Therefore, we created
a graphical environment where a so-called search strategy is
modeled out of building blocks.

Figure 2 shows the search strategy that defines the toy sce-
nario used throughout Section 2. Block Rank by Text BM25
contains the BM25 implementation shown in Section 2.1,
though expressed in SpinQL rather than SQL. It takes a
probabilistic (docID, data) table on the left and a list of
query terms on the right. The sub-strategy on the left corre-
sponds to the sub-collection filtering of sections 2.2 and 2.3.

Connecting blocks is a convenient way to express complex
search scenarios declaratively without programming efforts.
The SpinQL queries contained in each block are combined
automatically under the hood.

3. A REAL-WORLD SCENARIO

Figure 3 depicts a simplified version (due to space and
confidentiality constraints) of a real strategy used by one of
our customers in the business of online auctions. Via the
website’s search-bar, users activate this strategy to find the
items they are interested in. The primary retrieval unit in
the database is a lot, which is an item or a set of items
for sale in an auction. Lots are connected to auctions via
triples like (1ot23,hasAuction,auction12). Both lots and
auctions have their own identifier and a textual description,
as part of a rich semantic graph.

Let us summarize the strategy in Figure 2 in a few steps:

1. The strategy first selects nodes of type lot from the
graph, then it splits in two branches.

2. The branch on the left extracts the lot descriptions, on
which it ranks the lots with the given query keywords,
similarly to the toy scenario (Figure 2).

Data Source Term list
auctions dat ase
M b A
' 4
Filter by Class |
lot
/ L
/)
~ Traverse relation
fw: hasCategory
p .
< p P

* & 4
Extract Strings ‘ Extract Strings ‘
description description

"

‘ Rank by Text BM25 ‘ ‘ Rank by Text BM25 ‘

snowball-english snowball-english

* \
‘ Traverse relation
bw: hasCa

Figure 3: rank auction lots

3. The branch on the right uses the same keywords
to rank lots by the description of the auctions in
which they are contained: it first traverses prop-
erty hasAuction to find the containing auction; then
ranks auctions by their description; finally, it traverses
hasAuction backward, to obtain lots again.

4. The two different ranked lists of lots are mixed via
linear combination, with the given weights.

This strategy exemplifies the concepts expressed in Sec-
tion 2:

Keyword search. No specific indexing configuration was
required. Two distinct inverted indices were created on-
demand, given the selected sub-collection.

Flexible data model. Structured search, such as fil-
tering and graph traversal steps, rely on a data-agnostic
database schema. This allowed the design of strategy blocks
that work consistently on any collection.

Score propagation. All the operations in this strat-
egy propagate probabilities through the graph, including the
first ones, which carry unaltered probabilities (1.0) from ini-
tial data. On the right branch however, the last traverse
operation finds lots with probabilities that depend on those
of their ranked auctions. This happens transparently, thanks
to the underlying probabilistic relational algebra layer.

Strategy abstraction. Despite the mix of structured
and unstructured search that this strategy involves, it re-
mains understandable at a glance, with technical details hid-
den, and can be engineered and modified easily.

Industrial-strength implementation. The produc-
tion version of this strategy (which includes 5 parallel key-
word search branches and query expansion with synonyms
and compound terms), runs, together with several others,
on a single VM server (8-core, Intel Xeon E5-2620, 2.40GHz,
16GB RAM, 256GB SSD). It searches about 8 million lots
in 25 thousand auctions, 150,000 times per day (with peaks
of 450 per minute) with response times of about 150ms per
request (hot database). We consider this performance ade-
quate to the complexity of this task, but more importantly
it was achieved with no programming or optimization effort.

4. WRAP UP

This work explored the long-standing IR and DB inte-
gration issue with particular emphasis on the implemen-
tation of industrial-strength search solutions. While [10]
already claimed that “databases form a flexible rapid proto-
typing tool”, we can add that “databases are also a solid and
viable solution for search in production environments”.

We showed that by pulling information retrieval into a
database it becomes possible to realize a transparent combi-
nation of structured and unstructured queries. This opens
up new ways to support complex search scenarios. With
the right abstractions on top of this infrastructure, realizing
effective and efficient search solutions becomes a task for
domain and information specialists instead of programmers.

S. REFERENCES

[1] D. J. Abadi, A. Marcus, S. R. Madden, and
K. Hollenbach. Scalable semantic web data
management using vertical partitioning. VLDB ’07,
pages 411-422. VLDB Endowment, 2007.

[2] K. Balog, Y. Fang, M. de Rijke, P. Serdyukov, and
L. Si. Expertise retrieval. Foundations and Trends in
Information Retrieval, 6(2-3):127-256, 2012.

[3] A. Bellogin, J. Wang, and P. Castells. Bridging
memory-based collaborative filtering and text
retrieval. Inf. Retr., 16(6):697—724, Dec. 2013.

[4] S. Biittcher, C. Clarke, and G. V. Cormack.
Information Retrieval: Implementing and Evaluating
Search Engines. The MIT Press, 2010.

[5] R. Cornacchia, S. Héman, M. Zukowski, A. P. Vries,
and P. Boncz. Flexible and efficient ir using array
databases. The VLDB Journal, 17(1):151-168, 2008.

[6] R. G. Crawford. The relational model in information
retrieval. Journal of the American Society for
Information Science, 32(1):51-64, 1981.

[7] M. Fazel-Zarandi, H. J. Devlin, Y. Huang, and
N. Contractor. Expert recommendation based on
social drivers, social network analysis, and semantic
data representation. HetRec ’11, pages 41-48, 2011.

[8] N. Fuhr and T. Rélleke. A probabilistic relational
algebra for the integration of information retrieval and
database systems. ACM Trans. Inf. Syst., 15(1), 1997.

[9] D. Hawking. Challenges in enterprise search. ADC ’04,
pages 15-24, Darlinghurst, Australia, 2004. ACS, Inc.

[10] H. Miihleisen, T. Samar, J. Lin, and A. de Vries. Old
dogs are great at new tricks: Column stores for ir
prototyping. SIGIR 14, pages 863-866, New York,
NY, USA, 2014. ACM.

[11] M.-D. Pham and P. Boncz. Exploiting Emergent
Schemas to Make RDF Systems More Efficient, pages
463-479. Springer, Cham, 2016.

[12] T. Roelleke, H. Wu, J. Wang, and H. Azzam.
Modelling retrieval models in a probabilistic relational
algebra with a new operator: The relational bayes.
The VLDB Journal, 17(1):5-37, Jan. 2008.

[13] L. Sidirourgos, R. Goncalves, M. Kersten, N. Nes, and
S. Manegold. Column-store support for rdf data
management: Not all swans are white. Proc. VLDB
Endow., 1(2):1553-1563, Aug. 2008.

[14] J. Zobel and A. Moffat. Inverted files for text search
engines. ACM Comput. Surv., 38(2), July 2006.

