Elements of a Data-Driven Approach to
Adaptation

Fadi Badra

Université Paris 13, Sorbonne Paris Cité, LIMICS, (UMR_S 1142), F-93430
Sorbonne Universités, UPMC Univ Paris 06, UMR_S 1142, LIMICS, F-75006
INSERM, U1142, LIMICS, F-75006, Paris, France
badra@univ-parisi3.fr

Abstract. Adaptation is what enables a system to respond to perturba-
tions in its environment. Even though case-based reasoning is commonly
thought of as a data-driven problem-solving paradigm, adaptation me-
thods often follow a model-driven pattern. This paper discusses what a
purely data-driven approach to adaptation might look like. The proposed
method uses co-variations to extrapolate to the target case some parts of
the relational structure underlying the case base. One of the outcomes of
this work is to show that adaptation can be (at least partially) included
in the case-based inference process, which is known to be a special case
of analogical reasoning.
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1 Introduction

To make predictions over unobserved features, inference mechanisms usually
require having an adequate abstraction of the domain. Such an abstraction is
either built directly from a human expert (deduction/abduction), or extracted
from data (induction). Two strategies can be distinguished to overcome the pres-
ence of a missing or inadequate abstraction. The model-driven strategy consists
in using the faulty abstraction anyway: this is the basis underlying most non-
monotonic [27] and approximate reasoning [29] methods. Another strategy, more
data-driven [14], is to get rid of the abstraction and reason directly from data.
Analogical classification [19] and commonsense reasoning [8] methods such as
similarity-based reasoning, interpolation or extrapolation fall into this category.

Adaptation is what enables a system to respond to perturbations in its en-
vironment. Even though case-based reasoning (CBR) is commonly thought of
as a data-driven problem-solving paradigm, where data takes the form of a
collection of prior experiences (the cases), many adaptation strategies such as
critique-based adaptation [11] or conservative adaptation [16] proposed in the
CBR community follow a model-driven pattern. They simulate the correspond-
ing “rule-based” inference process, perform an adaptation by copy, and then
optionally repair solution inconsistencies.
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This paper discusses what a purely data-driven approach to adaptation might
look like. The proposed method uses co-variations to extrapolate to the target
case some parts of the relational structure underlying the case base. The wor-
king hypothesis is that past experiences are more than just a collection of cases
but are somehow related to each other and that it is this relational structure
that drives the adaptation process. One of the outcomes of this work is to show
that adaptation can be (at least partially) included in the case-based inference
process, which is known to be a special case of analogical reasoning. This con-
tradicts the view of [21], in which the authors argue that the main difference
between CBR and analogy is that adaptation is not theoretically explained by
computational methods of analogy.

The paper is organized as follows. Sec. 2 presents the main principles un-
derlying the envisioned data-driven adaptation method. In Sec. 3, a modeling
of similarity and of the case-based inference process is proposed. Co-variations
are introduced in Sec. 4, and Sec. 5 shows that co-variations can be used to
extrapolate to the target some parts of the relational structure underlying the
case base. Sec. 6 gives some related work and Sec. 7 concludes the article and
gives future work.

2 Idea of the Method

This section presents the main principles underlying the envisioned data-driven
adaptation method.

Principle #1: Adaptation is a transfer, guided by the target, of some
relational structure present in the case base.

Adaptation is a relational concept since it consists in a change (in the system’s
knowledge) as a response to a change (in the system’s environment). For the
system to go beyond its initial problem-solving capabilities and propose original
solutions to unseen target problems, the adaptation strategy consists in harness-
ing the relational structure of the case base.

Principle #2: Similarity is a preorder on the set of pairs of cases.

The usual numerical distance between cases is generalized to a preorder < on
the set of pairs of cases. Dropping numerical values in similarity assessment is
justified by the fact that actual values of distance between two cases are less
significant than the ability to compare two distances. This comparison is done
here directly through the similarity preorder < and if for two pairs (z,y) and
(z,t) the relation (z,y) < (z,t) holds, we would say that = is more similar to y
than z is to ¢.
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Principle #3: Regularity should drive the adaptation inference process.

Regularity is the idea that properties are implicitly preserved in the neighbor-
hood of an object. Applied to knowledge representation, it can be seen as a hy-
pothesis that similar objects have similar properties. This notion, that is central
in commonsense reasoning methods [8], should also drive data-driven adaptation
methods.

Principle #4: The quality of the solution should be maximized.

Among possible adaptations, the preferred one(s) are the ones that optimize a
quality measure on solutions. This quality measure measures the consistency of
the solution with respect to the underlying process. For example, in the medical
domain, a health care trajectory adaptation should keep the health care quality
maximal. In the cooking domain, an adapted recipe should be as tasty as possible
for the end-user.

3 Modelling the Case-Based Inference Process

In this section, the case-based inference (CBI) process is modeled by a self map
on the set of pairs of cases.

Agent’s memory and knowledge. Let U be a set (called the case universe). An
element of U is called a case and represents a possible experience. Among the
cases of U, some actually happened, were witnessed by the agent and retained
in memory. These cases, the case base, constitute the memory of the agent. An
element srce of the case base is called a source case. As in [21], a case is a
single description, and the problem and the solution are two parts of this single
description. The CBI aims at making more precise the description of a target
case tgt for which a partial description &g is already known (Fig. 1).

Etgt

Fig. 1: A schematic view of the agent’s memory and knowledge, with (U) the
case universe, (srce) a source case, (Eggr) a partial description of the desired
target case, and (tgt) the constructed target case.
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Similarity. Similarity is modeled by a preorder (U x U, <) on the set of pairs of
possible cases. A preorder is a binary relation that is reflexive (Ve e U x U, e < ¢e)
and transitive (Ve, f,ge U xU, if e < f and f < g then e < g). For two pairs of
cases (z,y) and (z,t) of U xU , (z,y) < (2z,t) means that = is more similar to y
than z is to ¢.

Case-Based Inference. The CBI is a self map ¢ : Y xUd — U xU. This function
associates to each pair of possible cases of U (representing a possible change in
the system’s knowledge) to another pair of possible cases of U (representing a
change in the system’s environment). It should verify the following properties,
for all e, f € U xU, which makes it a kernel operator (or projection) on (U xU, <):

1. (Contraction) ¢(e) < e
2. (Monotonicity) if e < f then ¢(e) < ¢(f)

3. (Idempotency) ¢(d(e)) = ¢(e)

The (Contraction) property states that the proposed solution should be consis-
tent with the constraints or observations made on tgt (that is, tgt S gt ). The
(Monotonicity) property expresses the common hypothesis in CBR that “similar
problems have similar solutions”. It states that the more similar two problems
are, the more similar their two solutions should be. The (Idempotency) property
states that re-adapting an adapted case does not lead to any improvement.

Note that here, the CBI function does not produce a representation of the
target case tgt. It is rather used to determine a region of the relational structure
(U x U, <) where the pair (srce,tgt) is to be found.

4 Formalization using Variations

Variations provide relational structures that can be transported to the set of
binary relations between cases and then provide local approximations of the
adaptation function.

4.1 Variations

A wvariation between cases [3] is a function v : U x U —> V which associates a
value (or, more generally, a description) taken in a set V to some pairs of possible
cases of the case universe. An example of variation is the function age™, which
returns true for a pair of cases (x,y) if the value of the numerical attribute age
is strictly smaller for z than for y:

true if age(x) < age(y)
age~((z,y)) =
ge~((@,9)) false otherwise
When cases are represented by sets of binary attributes, let us say, through a
mapping ¢ : U — 2" with M = {a,b, c,d, e}, the variation

Vap(7, ) = {p(z) N p(y), () np(y) }
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associates to a pair of cases (z,y) the sets of attributes that are lost (p(z) N p(y))
and the sets of attributes that are gained (¢(x) N ¢(y)) when going from x to
y. For example, if p(z) = {a,b} and ¢(y) = {b,d}, then vap(z,y) = {{a},{d}}
since a is lost and d is gained when going from z to y.

It can be noted that the set of pairs that share the same value for a variation
form a binary relation on U. For example, the set {(z,y) | age<((x,y)) = true}
is a binary relation which contain the pairs of cases for which there is an age
increase. Similarly, it follows from the definition of analogical proportions [22]
that x:y :: z:¢ holds for any two pairs (z,y) and (z,t) if and only if they take
the same value for vgp,.

4.2 Similarity

Any preorder on the values V of a variation can be interpreted as a similarity re-
lation on U xU. For example, let the variation age ™ (z,y) = |age(z) — age(y)| be
the function that, for two cases, returns a natural number representing the (abso-
lute) difference in value of the property age. Then, the preorder (N, <) on natural
numbers induces a preorder on the set U xU of pairs of cases. Taking this preorder
as the similarity relation (i.e., defining (z,y) < (2,t) iff age™ (z,y) < age (2, t))
amounts to supposing that the lower the age difference, the more similar two
cases are. For the variation v4p, the inclusion relation € can be used as a pre-
order on 2" x 2" ({A, B} € {A’, B’} iff A< A’ and B € B’). Taking this preorder
as the similarity relation (i.e., defining (z,y) < (z,t) iff vop(2,y) < Vap(z,t))
amounts to supposing that the less properties are lost or gained when go-
ing from a case x to a case y, the more similar x and y are. For example, if
o(@) = {a,b}, p(y) = {b.d}, (=) = {a,c}, and (t) = {c}, then (2,¢) < (z,y)
since Vap(2,t) = {{a}, {}} S vap(z,y) = {{a}, {d}}.

4.3 Co-variations

Co-variations are defined [4] as functional dependencies between variations.

Any general-to-specific ordering <, on variations generates a co-variation.
Such co-variation plays the role of some “inclusion axioms”, but for a relational
setting. A general-to-specific ordering on variations can be obtained whenever a
Boolean-value function h,, can be associated to each variation v. We would say
that a variation v’ is more general than a variation v, denoted by h,, <, hy, iff
hy () is true whenever hy, () is true. For Boolean-value variations, the variation
v itself can be chosen as the function h,,, by setting i.e., hy, = v. For example,
if the variation age” is defined by:

true if age(x) # age(y)
false otherwise

age” ((z,y)) = {

then the ordering age™ <, age” is interpreted as the co-variation age~ —~ age”.

Co-variations can also be learnt from the data. We showed in [4] that the co-
variation learning task can be reduced to association rule learning by choosing
a suitable pattern structure.
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5 Adaptation as Extrapolation

Co-variations constitute local approximations of the CBI function. Therefore,
adaptation can be performed by transferring co-variations from the case base to
a target case, in a form of extrapolation.

5.1 Example

Suppose that the goal is to predict the price of an apartment given its charac-
teristics. The case base consists in three apartments srceq, srces, and srces, of
which the prices are known, and we want to predict the price of a tgt apartment,
knowing that it has two rooms, it is on 1** floor, and in downtown area (Tab. 1).

Rooms | Floor | Area | Price
(nb_rooms)|(floor)| (area) |(price)

srce; 3 0 |downtown| 440

srces 1 15 |midtown | 290

srces 4 3 midtown | 900
tgt 2 1 |downtown| 7

Table 1: Descriptions of three source cases srcej, srces, and srces, and of the
target case tgt in the apartment price prediction scenario.

The co-variation nb_rooms= —~ price= may be extracted from the case base
and transferred to tgt. This co-variation expresses that, in previous experiences,
an increase (resp., decrease) in the number of rooms results in an increase (resp.,
decrease) in price. Applying this co-variation enables to make the hypothesis that
the price of tgt is between 290 $ and 440 $.

5.2 Some Remarks

Several remarks can be made when considering such an approach to adaptation.

1 - Crisp vs Fuzzy. Co-variations give only a partial account of the (Mono-
tonicity) property introduced in Sec. 3. A co-variation expresses only that for
somee, f el xU,if e = f then a(e) = a(f). Having a more strict account of the
(Monotonicity) property may be achieved by considering a more fuzzy version
of variations, for example in the spirit of what is done in [1].

2 - Relevance. Co-variations map some problem variations to some solution
variations. Choosing which co-variations to apply for a given target amounts to
solving the relevance problem [10], which consists in identifying which relation
on the sources cases are relevant and should be transferred to the target case.
If more than one co-variation apply, one may also need to choose which one to
favor, in accordance with the quality criteria outlined in Sec. 2.
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3 - Context. Related to relevance is the notion of context: some co-variations
may be highly contextual and our modeling of variations does not allow to render
it easily. For example, the floor may influence the price differently depending on
the area, because in some parts of town the buildings are smaller and have no
elevator, so beyond the 4* floor the price of the apartments would decrease
in those areas. This knowledge could be approximated by co-variations such
as aread®"™°"m” A np_rooms~ A floor< ~ price= but many rules would be
needed to approach the complexity of the relation between the attributes floor
and price. In particular, it would be interesting to have the notion of ceteris
paribus co-variations just as what is done for preference representation [28], to
represent for example that “everything else being equal”, the price increases
when the floor increases.

4 - (De-)Composition. Each co-variation may only suggest partial modifi-
cations of a source case. To obtain a complete target case, this adapation strategy
could be coupled with a strategy of case decomposition [26], of combinaison of
solutions [23], or with a planning strategy [2].

6 Related Work

The importance for adaptation to assess the differences between cases has long
been recognized in the CBR literature. Several adaptation methods make use
of a representation of the differences between problems to generate a difference
between solutions: [7] encodes these differences in symbolic properties, whereas
other methods [6,9, 18] compute numerical values. In [17], a reformulation is a
pair (r,A;) of binary relations such that if pb r pb’ for two problems pb and
pb’, then any solution sol(pb) of pb can be adapted in a solution sol(pb’) of
pb’. According to this definition, a reformulation is simply a co-variation that
constitutes a valid approximation of the case-based inference function. Different
methods [6,7,12,18] were also proposed to derive adaptation knowledge from
differences between cases.

In transfer learning [15], the difference between source and target problems
is what characterizes the transfer distance. The proposed case-based inference
process can be considered as a kind of transfer learning method since it consists
in transferring knowledge learned from the case base to help learn a description
of the target. Our proposal is to transfer relational knowledge from the case base
to the target, following the principles of [24]. This can be contrasted with the
approach of [21], where the CBI exploits a hierarchical structure of the case base
to transfer knowledge from the source case to the target.

Our approach can be seen as a symbolic account of the credible case-based
inference [13], where we adopt a logical approach to similarity [25] by model-
ing the similarity relation as a preorder on the set of pairs of cases. The CBR
hypothesis (“similar problems have similar solutions”) is a regularity principle,
which is expressed by requiring that the CBI function obey the (Monotonicity)
property. Regularity can be linked to the idea of minimum description length in
analogy [20].
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The idea that the target case should optimize a quality measure on the
solution space was introduced in [5].

7 Conclusion and Future Work

This article gives the main principles of a data-driven method to adaptation. Co-
variations are used to extrapolate to the target case some parts of the relational
structure underlying the case base. Such an approach relies on a modeling the
case-based inference process as a self map on the set of pairs of cases. By doing
so, we show that adaptation can be (at least partially) included in the case-based
inference process.

Future work includes confronting the model to a more complex example in
order to determine in particular what choices should be made to tackle the rele-
vance and context challenges outlined in Sec. 5. We are currently implementing
the co-variation learning method proposed in [4]. This learning method could
be used to learn co-variations on the fly from the case base so that they can be
transferred to the target during the reasoning.

Acknowledgements. The author wishes to thank the reviewers for their
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