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Abstract 

This article provides a new method for accelerating the convergence 
such that is a synthesis of two methods: Seidel method and an iterative 
method for solving a linear system of equations. Using a new method 
accelerating the convergence for various grades of operator equations 
allows to construct a sequence of approximations that more convergence 
to solve the operator equations. In this paper, the method allows to 
significantly speed up the process of convergence to the precise solution. 
There is an implementation of the resulting method and sufficient 
conditions of convergence. 

Keywords: approximate methods, operator equations, spectral radius, 
Seidel method, method of iterative aggregation. 

1 Introduction 

A development of mankind result in speed up the amount of processed information, that`s why it is required to solve 
optimization problems of large dimensions. This is particularly marked in areas such as bioengineering and economy. 
To meet the challenges of large dimension along with the increased processing power of computers it is necessary to 
develop new algorithms and methods to effectively use computing resources and to obtain solutions 
to previously unsolvable tasks.  

Many algorithms and methods has been developed for solving various optimization integrated problems. Many 
practical problems are characterized by high dimensionality and a presence of difficulty formalizable restrictions. 
Both the formalization as well as numerical solution of problem of decision-making in planning, allocation of 
resources, optimize complex processes in various application cause the known issues [Arh75], [Dud79], [Gol04]. 

Significant difficulties, inter alia, connected with the large dimensionality of problems, which is not solved by 
traditional ways, so develop the new approaches of solution involving powerful computing resources is therefore 
required. 

It is required to find the precise solution of linear and nonlinear algebraic equations systems for solving many 
problems of analysis and algebra. Typically, the modeling of complex systems confronted 
with large dimension tasks, a considerable number of internal linkages and different stochastic properties. The 
modeling process is difficult to implement at a sufficiently large number of unknown parameters. In such case, it is 
required to use the various methods to find the precise solution by using iterative processes. One of the simplest and 
well-known approximate method is Seidel method, which is a derivative of the method of successive approximations.  

In the papers [Kra69] and [Gro11], authors provided the Seidel method and various modification of it. Consider 
now a one of the possible modification of Seidel method for solving the linear algebraic equations systems. 

Let x be an operator equation of the form 
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x=Ax+f          (1) 

 

where x be an unknown vector of  Banach space E, f be a prescribed vector of E, A be a linear operator in the 
Banach space E. 

Let the operator A be as a sum of operators A1 and A2 

A=A1+A2       (2) 
 

If there is an operator inverse to the operator (I-A1), then the equation (1) will be such that  

fAIxAAIx   1
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Using the method of successive approximations to (3), we get 
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There has been a significant acceleration of convergence to the solution compared with the method of successive 
approximations when solving the equation (1) by Seidel method [MEU99]. 
This article provides a modification of method of one-parameter iterative aggregation: the solution for equation (3) 
will search by using method of one-parameter iterative aggregation and we get a new method of accelerating for 
convergence in the result. 
 
 

2 Approach 

There were the methods of one-parameter and multiparameter aggregation, and their conditions of convergence in 
the paper [GRO14]. 

Consider now the convergence for method of one-parameter aggregation to solve an integral equation (1) with 
integral operator A 

 

 

where a kernel K(t,s) be an  nonnegative measurable function and f(t) be a nonnegative constant term, when the kernel 
K(t,s) is enough small.  

In paper [GRO14], if the conditions (5) and (6) are true, the method of one-parameter aggregation is just an 
equation, if “aggregation” functionality is (7). 

            (5) 

                    

                 (6) 

        (7) 

In paper [GRO14] the condition of convergence method of one-parameter aggregation is true, if the parameter c 
in the inequality (5) be  

            (8) 

Moreover, the method ensures convergence to the precise solution with denominator q < 1 of geometric 
progression. The condition (8) is a sufficient condition for convergence of method of one-parameter aggregation and 
the experimental material shows that the convergence of method is relevant at less stringent requirements on 
the smallness of the kernel. 

The close condition to the condition (8) on the smallness of the rules of the matrix operator A be 
obtained as a sufficient condition for convergence of method of one-parameter iterative aggregation in solving linear 
system of algebraic equations. Consider now an algorithm of method for solving linear system of algebraic equations. 

Suppose that A be a nonnegative matrix and it is required to solve the following set of equations: 

             (9) 

Let x=x1 for solution x* of equation (9) and l0(x) be a functionality: 
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,   

Using (1), we get the equation (10) with an unknown scalar t. Let the condition (11) will be fulfilled, if for any 
𝛼 ∈ [0; 1) a condition (12) is true where A* be a transpose for matrix A: 

                                                              (10) 
 

              (11) 

                                   (12) 

If the condition (12) is true then the equation (10)  has a unique solution (13) t=t(x1)  and this solution will be 
positive, if the vector f is positive 

 
 𝑓: 𝑓 ≥ 𝜃. 

 

                 (13) 

When the value t=t(x1) is founded, let find an element x2 by using the formula: 

fAxxtx  112 )(          (14) 

Using induction, we have the assertion (15): 

...),2,1()(1  mfAxxtx mmm
           (15) 

This means that the method of one-parameter iterative aggregation is to construct a sequence {xm}. 
In papers [GRO14] and [Gro11], author`s computational experiments indicate, that the method of one-parameter 

iterative aggregation, firstly, isn`t depend from functionality, secondly, the method converges fast enough for 
relatively large values 𝜌(𝐴). It is interesting, that the method converges for 𝜌(𝐴)  be close to the unit and greater than 
the unit as opposed to the method of successive approximations, which isn`t convergence for 𝜌(𝐴) 1. Therefore, 
let interpret Seidel method to use the aggregation coefficient to the both part of equation (7): 
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where t be an unknown scalar. 
Let we have the condition (17) 
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If the condition (17) is true, that the equation (16) has a unique solution t=t(x1) and t(x1) be  
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Finally, let find the element x2: 

fAxxtx  112 )(          (19) 

Using induction, we have the assertion (20): 
 

...),2,1()(1  mfAxxtx mmm
           (20) 

These computational experiments indicate that the proposed modification method of one-parameter iterative 
aggregation has the higher speed of convergence than Seidel method for the large values of spectral radius 𝜌(𝐴) and 
the faster than the method of successive approximations. 

 

3 Usage Examples 

For the examples from 1 to 3, an A be a prescribed nonnegative matrix of order n, f be prescribed vector and x1 be a 
start value.  
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3.1 The first example 

Let consider the system of linear algebraic equations 
 

{

𝑥 = 0.15 ∙ 𝑥 + 0.2 ∙ 𝑦 + 0.31 ∙ 𝑧 + 0.4
𝑦 = 0.2 ∙ 𝑥 + 0.33 ∙ 𝑦 + 0.4 ∙ 𝑧 + 0.1
𝑧 = 0.3 ∙ 𝑥 + 0.2 ∙ 𝑦 + 0.14 ∙ 𝑧 + 0.1

 

 

Table 1: Start parameters 

 

      Matrix A 𝜌(𝐴) Free vector  f Precise solution 

x* 

Initial value x1 

   

(
0.15 0.2 0.31
0.2 0.03 0.4
0.3 0.2 0.14

) 

 

 

0.644 

    

𝑓 = (
0.4
0.1
0.1
) 

 

(
0.756
0.460
0.487

) 

        

(
1
1
1
) 

 

Compare the results of the given system on method of successive approximations, Seidel method and modification 
of method of one-parameter iterative aggregation. We get the following results. 

 
 

Table 2: Method of Successive Approximations 

 

 

Values\Number of 

iteration 

 

n=1 

 

n=10 

 

n=20 

 

n=25 

 

n=30 

)(

1

nx  1.06 0.762 0.757 0.757 0.756 

)(

2

nx  0.73 0.465 0.46 0.46 0.46 

)(

3

nx  0.74 0.492 0.487 0.487 0.487 

    

Table 3: Seidel Method 

 

 

Values\Number of 

iteration 

 

 

n=1 

 

 

n=10 

 

 

n=15 

 

 

n=20 

 

 

n=21 

)(

1

nx  1.06 0.757 0.757 0.757 0.756 

)(

2

nx  0.742 0.461 0.46 0.46 0.46 

)(

3

nx  0.706 0.488 0.487 0.487 0.487 

  

Let consider the modification of method of iterative aggregation – «mixed method».   
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Table 4: Mixed Method 

 

 

Values\Number of 

iteration 

 

n=1 

 

n=2 

 

n=4 

 

n=5 

)(

1

nx  0.816 0.749 0.757 0.756 

)(

2

nx  0.497 0.451 0.46 0.46 

)(

3

nx  0.503 0.483 0.487 0.487 

 

 

We have the precise solution on the fifth iteration.  
As can be seen, the mixed method provides the convergence better in comparison with considerable methods. 

 
3.2 The Second Example 

Let consider the system of forth equations with forth unknown variables. 

{

𝑥1 = 0.1 ∙ 𝑥1 + 0.2 ∙ 𝑥2 + 0.3 ∙ 𝑥3 + 0.2 ∙ 𝑥4 + 0.1
𝑥2 = 0.2 ∙ 𝑥1 + 0.3 ∙ 𝑥2 + 0.4 ∙ 𝑥3 + 0.2 ∙ 𝑥4 + 0.1
𝑥3 = 0.3 ∙ 𝑥1 + 0.2 ∙ 𝑥2 + 0.1 ∙ 𝑥3 + 0.2 ∙ 𝑥4 + 0.1
𝑥4 = 0.1 ∙ 𝑥1 + 0.1 ∙ 𝑥2 + 0.1 ∙ 𝑥3 + 0.1 ∙ 𝑥4 + 0.1

 

Let 𝑓 = (
0.1
0.1
0.1
0.1

) be a free vector, 𝑥1 = (
0.1
0.1
0.1
0.1

)  be a start value. We get the results: 

 

Table 5: Start Parameters 

 

Matrix А 𝜌(𝐴) Free vector  f The precise  

solution x* 

Initial  

value x1 

 

(

0.1 0.2 0.3 0.2
0.2 0.3 0.4 0.2
0.3
0.1

0.2
0.1

0.1 0.2
0.1 0.1

) 

 

 

0.787 

 

𝑓 = (

0.1
0.1
0.1
0.1

) 

 

(

0.471
0.629
0.471
0.286

) 

 

(

0.1
0.1
0.1
0.1

) 

 

Table 6: Method of Successive Approximations 

 

 

Values\Number of iteration 

 

n=1 

 

n=10 

 

n=20 

 

n=30 

 

n=33 

)(

1

nx  0.18 0.437 0.468 0.471 0.471 
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)(

2

nx  0.21 0.58 0.624 0.628 0.629 

)(

3

nx  0.18 0.438 0.468 0.471 0.471 

)(

4

nx  0.14 0.269 0.284 0.286 0.286 

 

Table 7: Seidel method 

 

Values\Number of 

iteration 

 

n=1 

 

n=10 

 

n=15 

 

n=16 

 

n=17 

)(

1

nx  0.296 0.461 0.47 0.47 0.471 

)(

2

nx  0.196 0.615 0.626 0.627 0.629 

)(

3

nx  0.178 0.463 0.47 0.471 0.471 

)(

4

nx  0.150 0.282 0.285 0.285 0.286 

 

Table 8: Mixed method 

 

Values\Number of 

iteration 

 

n=1 

 

n=2 

 

n=3 

)(

1

nx  0.498 0.471 0.471 

)(

2

nx  0.648 0.628 0.629 

)(

3

nx  0.498 0.471 0.471 

)(

4

nx  0.299 0.285 0.286 

 

In this case, the mixed method has a priority of thirty iteration order as compared with the method of successive 
approximations and a priority of fourteen iterations as compared with Seidel method.  

 

3.3 The Third Example 

Let consider the system of fifth equations with five unknown variables. 
 

{
 
 

 
 
𝑥1 = 0.1 ∙ 𝑥1 +
𝑥2 = 0.2 ∙ 𝑥1 +

0.2 ∙ 𝑥2 +
0.1 ∙ 𝑥2 +

0.1 ∙ 𝑥3 +
0.2 ∙ 𝑥3 +

0.2 ∙ 𝑥4 +
0.1 ∙ 𝑥4 +

0.1 ∙ 𝑥5 + 0.1
0.2 ∙ 𝑥5 + 0.1

𝑥3 = 0.1 ∙ 𝑥1 + 0.1 ∙ 𝑥2 + 0.2 ∙ 𝑥3 + 0.2 ∙ 𝑥4 + 0.1 ∙ 𝑥5 + 0.1
𝑥4 = 0.2 ∙ 𝑥1 +
𝑥5 = 0.1 ∙ 𝑥1 +

0.2 ∙ 𝑥2 +
0.1 ∙ 𝑥2 +

0.1 ∙ 𝑥3 +
0.1 ∙ 𝑥3 +

0.1 ∙ 𝑥4 +
0.1 ∙ 𝑥4 +

0.2 ∙ 𝑥5 + 0.1
0.1 ∙ 𝑥5 + 0.1
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Table 9: Start Parameters 

 

Matrix А 𝜌(𝐴)  Free vector  f The precise solution 

x* 

Initial  value x1 

    

(

 
 

0.1
0.2

0.2
0.1

0.1
0.2

0.2
0.1

0.1
0.2

0.1 0.1 0.2 0.2 0.1
0.2
0.1

0.2
0.1

0.1
0.1

0.1
0.1

0.2
0.1)

 
 

 

 

 

0.7 

    

𝑓 =

(

 
 

0.1
0.1
0.1
0.1
0.1)

 
 

 

 

 

(

 
 

0.339
0.361
0.337
0.363
0.267)

 
 

   

 

(

 
 

0.1
0.1
0.1
0.1
0.1)

 
 

 

 

We get the following results: 

 

Table 10: Method of Successive Approximations 

 

Values\Number of 

iteration 

 

n=1 

 

n=5 

 

n=10 

 

n=20 

 

n=24 

)(

1

nx  0.8 0.455 0.359 0.34 0.339 

)(

2

nx  0.9 0.486 0.382 0.361 0.361 

)(

3

nx  0.8 0.452 0.356 0.337 0.337 

)(

4

nx  
0.9 0.49 0.384 0.364 0.363 

)(

5

nx  
0.6 0.347 0.280 0.267 0.267 

   

Table 11: Seidel method 

 

Values\Number of 

iteration 

 

n=1 

 

n=5 

 

n=10 

 

n=14 

 

n=15 

)(

1

nx  0.776 0.345 0.342 0.339 0.339 

)(

2

nx  0.81 0.366 0.364 0.361 0.361 

)(

3

nx  0.721 0.341 0.339 0.337 0.337 

)(

4

nx  
0.809 0.367 0.366 0.364 0.363 

)(

5

nx  
0.534 0.269 0.268 0.267 0.267 
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Table 12: Mixed method 

 

Values\Number of 

iteration 

 

n=1 

 

n=2 

 

n=3 

 

n=4 

)(

1

nx  0.34 0.341 0.339 0.339 

)(

2

nx  0.374 0.361 0.361 0.361 

)(

3

nx  0.34 0.337 0.336 0.337 

)(

4

nx  
0.374 0.364 0.363 0.363 

)(

5

nx  
0.271 0.267 0.267 0.267 

 

As can be seen, four iterations of method of one-parameter iterative aggregation result in precise solution to within 
10-4, while the method of successive approximations convergences on twenty forth iteration and Seidel method on 
fifteens iteration.  

 

4 Conclusion 

These computational experiments indicate that the proposed modification method of one-parameter iterative 
aggregation has the higher speed of convergence than Seidel method for the large values of spectral radius 𝜌(𝐴) and 
the faster than the method of successive approximations. 

The above mentioned method can significantly speed up the convergence to the precise solution, that’s a big 
advantage.  
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