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Abstract

In this paper we continue to study the property of separability of
function space C(X) with the open-point and bi-point-open topologies.
We show that for every perfect Polish space X a set C(X) with the bi-
point-open topology is separable. We also show in the iterated perfect
set model that for every regular space X with countable network a set
C(X) with bi-point-open topology is separable iff a dispersion character
∆(X) = c.

1 Introduction
The space C(X) with the point-open topology (also known as the topology of pointwise convergence) is denoted
by Cp(X). It has a subbase consisting of sets of the form [x, V ]+ = {f ∈ C(X) : f(x) ∈ V }, where x ∈ X and V
is an open subset of real line R.

In [3], authors were defined two new kinds of topologies on C(X) now well-known as the open-point and
bi-point-open topologies. The open-point topology on C(X) has a subbase consisting of sets of the form

[U, r]− = {f ∈ C(X) : f−1(r)
⋂
U 6= ∅}, where U is an open subset of X and r ∈ R. The open-point topology

on C(X) is denoted by h and the space C(X) equipped with the open-point topology h is denoted by Ch(X).
Now the bi-point-open topology on C(X) is the join of the point-open topology p and the open-point topology

h. It is the topology having subbasic open sets of both kind: [x, V ]+ and [U, r]−, where x ∈ X and V is an
open subset of R, while U is an open subset of X and r ∈ R. The bi-point-open topology on the space C(X) is
denoted by ph and the space C(X) equipped with the bi-point-open topology ph is denoted by Cph(X). One can
also view the bi-point-open topology on C(X) as the weak topology on C(X) generated by the identity maps
id1 : C(X) 7→ Cp(X) and id2 : C(X) 7→ Ch(X).

In [3] and [2], the separation and countability properties of these two topologies on C(X) have been studied.
In [3] the following statements were proved.

• Ch(P) is separable where P is the set of irrational numbers. (Proposition 5.1.)
• If Ch(X) is separable, then every open subset of X is uncountable. (Theorem 5.2.)
• If X has a countable π-base consisting of nontrivial connected sets, then Ch(X) is separable.(Theorem 5.5.)
• If Cph(X) is separable, then every open subset of X is uncountable. (Theorem 5.8.)
• If X has a countable π-base consisting of nontrivial connected sets and a coarser metrizable topology, then

Cph(X) is separable. (Theorem 5.10.)
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In [1], there was proved that necessary condition for Ch(X) be a separable space is condition: X has a
π-network consisting of I-sets.

• A set A ⊆ X be called I-set if there is a continuous function f ∈ C(X) such that f(A) contains an interval
I = [a, b] ⊂ R.
• If Ch(X) is a separable space, then X has a π-network consisting of I-sets. (Theorem 2.3.)

In this paper we use the following conventions. The symbols R, P, Q and N denote the space of real numbers,
irrational numbers, rational numbers and natural numbers, respectively. Recall that a dispersion character ∆(X)
of X is the minimum of cardinalities of its nonempty open subsets.

Recall also that a space be called Polish space if it is a separable complete metrizable space.
By a set of reals we mean a zero-dimensional, separable metrizable space every non-empty open set which has

the cardinality the continuum.

2 Main results
Note that if the space Ch(X) is a separable space then ∆(X) ≥ c. If A = {fi} is a countable dense set of Ch(X)
then for each non-empty open set U of X we have

⋃
fi(U) = R. It follows that |U | ≥ c.

Also note that if the space Cph(X) is a separable space then Cp(X) is a separable space and Ch(X) is separable.
It follows that X is a separable submetrizable (coarser separable metric topology) space and ∆(X) = c.

Recall that a family γ of subsets of a space X is called T0-separating if whenever x and y are distinct points
of X, there exists V ∈ γ containing exactly one of the points x and y.

In [1], Osipov was proved the following result.

Theorem 2.1. If X is a Tychonoff space with network consisting non-trivial connected sets, then the following
are equivalent.

1. Cph(X) is a separable space.

2. X is a separable submetrizable space.

In the present paper, we consider more general form this theorem.

Theorem 2.2. If X is a Tychonoff space with π-network consisting non-trivial connected sets, then the following
are equivalent.

1. Cph(X) is a separable space.

2. X has a countable T0-separating family of zero-sets.

3. X is a separable submetrizable space.

Доказательство. (1) ⇒ (2). Let Cph(X) be a separable space. There is a countable dense subset A = {fi} of
the space Cph(X). Fix β = {Bj} some a countable base for R consisting of bounded open intervals.

Consider γ = {f−1(B) : f ∈ A,B ∈ β}.
We show that the family γ is required family.
Let x1 and x2 be distinct points of X. Consider an open base set Q = [{x1}, (c1, d1)]+

⋂
[{x2}, (c2, d2)]+ of

the space Cph(X) where (ci, di) ∈ β for i = 1, 2 and (c1, d1)
⋂

(c2, d2) = ∅. There is h ∈ Q
⋂
A. Clearly that

h−1((ci, di)) ∈ γ, xi ∈ h−1((ci, di)) for i = 1, 2 and h−1((c1, d1))
⋂
h−1((c2, d2)) = ∅.

The countable family γ is required family.
(2) ⇒ (3). Let γ = {Zi} be the countable family with required conditions. We can assume that γ is closed

under finite unions. For each i ∈ N there is a continuous function fi : X 7→ I = [0, 1] such that Zi = f−1i (0).
Let Ii = I × {i} for every i ∈ N. By letting (x, i1)E(y, i2) whenever x = 0 = y or x = y and i1 = i2 we define

an equivalence relation E on the set
⋃
i∈N Ii.

The formula

ρ([(x, i1)], [(y, i2)]) =

{
|x− y|, if i1 = i2,
x+ y, if i1 6= i2,
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defines a metric on the set of equivalence classes of E. This space - as well as the corresponding metrizable
space - be called the metrizable hedgehog of spininess ℵ0 and be denoted J(ω) (Example 4.1.5 in [6]).

Note that for every i ∈ N the mapping ji of the interval I to J(ω) defined by letting ji(x) = [(x, i)] is a
homeomorphic embedding. The family of all balls with rational radii around points of the form [(r, i)], where r
is a rational number, is a base for J(ω); so that J(ω) is a separable metrizable space.

The formula hi(x) = ji(fi(x)) defines a continuous mapping hi : X 7→ J(ω). Note that the family {hi}∞i=1 is
functionally separates points of X. Really let x and y be distinct points of X. There exists Z ∈ γ containing
exactly one of the points x and y and there are i′ ∈ N and continuous function fi′ : X 7→ I = [0, 1] such that
Z = f−1i′ (0). Hence hi′(x) 6= hi′(y). Thus diagonal mapping h = 4i∈Nhi : X 7→ J(ω)ω is a continuous one-to-one
mapping from X into the separable metrizable space J(ω)ω.

It follows that X is a separable submetrizable space.
(3) ⇒ (1). Let X be a separable submetrizable space, i.e. X has coarser separable metric topology τ1 and γ

be π-network of X consisting non-trivial connected sets. Let β = {Bi} be a countable base of (X, τ1). We can
assume that β closed under finite union of its elements.

For each finite family {Bsi}di=1 ⊂ β such that Bsi
⋂
Bsj = ∅ for i 6= j and i, j ∈ 1, d and {pi}di=1 ⊂ Q we fix

f = fs1,...,sd,p1...,pd ∈ C(X) such that f(Bsi) = pi for each i = 1, d.
Let G be the set of functions fs1,...,sd,p1...,pd where si ∈ N and pi ∈ Q for i ∈ N. We claim that the countable

set G is a dense set of Cph(X).
By proposition 2.2 in [3], letW = [x1, V1]+

⋂
...
⋂

[xm, Vm]+
⋂

[U1, r1]−
⋂
...
⋂

[Un, rn]− be a base set of Cph(X)
where n,m ∈ N, xi ∈ X, Vi is open set of R for i ∈ 1,m, Uj is open set of X and rj ∈ R for j ∈ 1, n and for
i 6= j, xi 6= xj and Ui

⋂
Uj = ∅.

Choose Bsl ∈ β for l = 1,m+ n such that
1. Bsl1

⋂
Bsl2 = ∅ for l1 6= l2 and l1, l2 ∈ 1, n+m;

2. xi ∈ Bsl for l ∈ 1,m;
3. Bsl

⋂
Uk 6= ∅ for l ∈ m+ 1, n+m and k = l −m.

Choose Bs′l ∈ β for l ∈ 1,m such that xi ∈ Bs′l and Bs′l ⊆ Bsl .
Choose Ak ∈ γ for k ∈ 1, n such that Ak ⊆ (Uk

⋂
Bsl) where l = k +m.

Choose different points sk, tk ∈ Ak for every k = 1,m.
Let S, T ∈ β such that S

⋂
T = ∅, Bl

⋂
S = ∅, Bl

⋂
T = ∅ for l ∈ 1,m and sk ∈ S and tk ∈ T for all k = 1,m.

Fix points vi ∈ (Vi
⋂
Q) for i ∈ 1,m.

Choose p, q ∈ Q such that p < min{ri : i = 1, n} and q > max{ri : i = 1, n}.
Let

f(x) =


p for x ∈ S
q for x ∈ T
vl for x ∈ Bs′l

where l ∈ 1,m.
Note that f ∈W

⋂
G. This proves theorem.

In [1] the following statements were proved.

Theorem 2.3. (Theorem 2.4 in [1]) Let X be a Tychonoff space with a countable π-base, then the following are
equivalent.

1. Cph(X) is a separable space.

2. X is a separable submetrizable space and it has a countable π-network consisting of I-sets.

Theorem 2.4. (Corollary 2.5 [1]) Let X be a Tychonoff space with a countable π-base, then the following are
equivalent.

1. Ch(X) is a separable space.

2. X has a countable π-network consisting of I-sets.
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The next result is the corollary of Theorem 2.3, but we notes its as theorem due to the importance in the
class of separable metrizable spaces.

Theorem 2.5. If X is a separable metrizable space, then the following are equivalent.

1. Cph(X) is a separable space.

2. X has a countable π-network consisting of I-sets.

We have already noted that if a space Cph(X) is a separable space then

• X is a separable submetrizable space;
• X has a π-network consisting of I-sets.

Theorem 2.6. If X is a separable submetrizable space with a countable π-network consisting of I-sets, then
Cph(X) is a separable space.

Доказательство. The proof analogously to the proof of the implication ((2)⇒ (1)) in Theorem 2.4 ([1]).
Let S = {Si} be a countable π-network of X consisting of I-sets. By definition of I-sets, for each Si ∈ S

there is the continuous function hi ∈ C(X) such that hi(Si) contains an interval [ai, bi] of real line. Consider a
countable set
{hi,p,q(x) = p−q

ai−bi ∗ hi(x) + p− p−q
ai−bi ∗ ai}

of continuous functions on X, where i ∈ N, p, q ∈ Q. Note that if hi(x) = ai then hi,p,q(x) = p and if hi(x) = bi
then hi,p,q(x) = q.

Let β = {Bj} be a countable base of (X, τ1) where τ1 is a separable metraizable topology on X because of X
is a separable submetrizable space. For each pair (Bj , Bk) such that Bj ⊆ Bk define continuous functions

hi,p,q,j,k(x) =

{
hi,p,q(x) for x ∈ Bj
0 for x ∈ X \Bk.

and for each v ∈ Q

dj,k,v(x) =

{
v for x ∈ Bj
0 for x ∈ X \Bk.

Let G be the set of finite sum of functions hi,p,q,j,k and dj,k,v where i, j, k ∈ N and p, q, v ∈ Q. We claim that
the countable set G is a dense set of Cph(X).

By proposition 2.2 in [3], let
W = [x1, V1]+

⋂
...
⋂

[xm, Vm]+
⋂

[U1, r1]−
⋂
...
⋂

[Un, rn]− be a base set of Cph(X) where n,m ∈ N, xi ∈ X,
Vi is an open set of R for i ∈ 1,m, Uj is an open set of X and rj ∈ R for j ∈ 1, n and for i 6= j, xi 6= xj and
Ui
⋂
Uj = ∅.

Fix points yj ∈ Uj for j = 1, n and choose Bsl ∈ β for l = 1, n+m such that Bsl1
⋂
Bsl2 = ∅ for l1 6= l2 and

l1, l2 ∈ 1, n+m and xi ∈ Bsl for l ∈ 1,m and yj ∈ Bsl for l ∈ m+ 1, n. Choose Bs′l ∈ β for l ∈ 1,m such that
xi ∈ Bs′l and Bs′l ⊆ Bsl and choose Bs′l ∈ β for l ∈ m+ 1, n+m such that yj ∈ Bs′l ⊆ Bsl where l = j +m.

Fix points vi ∈ (Vi
⋂
Q) for i ∈ 1,m and pj , qj ∈ Q such that pj < rj < qj for j = 1, n.

Consider g ∈ G such that
g = ds′1,s1,v1 + ...+ ds′m,sm,vm + hi1,p1,q1,s′m+1,sm+1

+ ...+ hin,pn,qn,s′m+n,sn+m
where Sik ⊂ Bs′l

⋂
Uk for k = 1, n

and l = k +m.
Note that g ∈W

⋂
G. This proves theorem.

Corollary 2.7. If X is a perfect Polish space, then Cph(X) is separable.

Доказательство. It follows immediately from fact that any regular closed subset of a space X is a perfect
Polish space and it contains some set which is homeomorphic to 2ω ([7]). It follows that any non-empty open set
of X is I-set.
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Note that there is the example such that
• X hasn’t countable chain condition, hence, X hasn’t countable π-network consisting of I-sets;
• X is a separable submetrizable space;
• Cph(X) is a separable space.

Example 2.8. (Example 4.3. in [1]) Let X = ⊕α<cRα be a direct sum of real lines R.

In this connection a natural question arises.

Question 1. Assume that X is a separable submetrizable space with uncountable π-network consisting of
I-sets. Does Cph(X) is separable ?

Recall that a set of reals X is null if for each positive ε there exists a cover {In}n∈N of X such that∑
n diam(In) < ε. A set of reals X has strong measure zero if, for each sequence {εn}n∈N of positive reals,

there exists a cover {In}n∈N of X such that diam(In) < εn for all n. For example, every Lusin set has strong
measure zero.

In [1] (Example 3.1), author was shown that it is consistent with ZFC that exists the separable metrizable
space X such that ∆(X) = c and Cph(X) isn’t separable.

Example 2.9. (CH) Let X be a set of reals and it has strong measure zero.

In [8] was shown that it is consistent with ZFC that for any set of reals of cardinality the continuum, there
is a (uniformly) continuous map from that set onto the closed unit interval. In fact, this holds in the iterated
perfect set model.

In [1] the following statement was proved.

Theorem 2.10. ( the iterated perfect set model)
If X is a separable metrizable space, then the following are equivalent.

1. Cph(X) is a separable space.

2. ∆(X) = c.

In the present paper, we consider more general form this theorem.

Theorem 2.11. ( the iterated perfect set model) If X is a regular space with a countable network, then the
following are equivalent.

1. Cph(X) is a separable space.

2. ∆(X) = c.

3. X has a countable π-network consisting of I-sets.

Доказательство. (1)⇒ (2). Note that if the space Cph(X) is a separable space then Cp(X) is a separable space
and Ch(X) is separable. It follows that X is a separable submetrizable space and, hence, ∆(X) = c.

(2)⇒ (3). Let ∆(X) = c.
(I). We show that any separable metrizable spaceM of cardinality c is I-set ofM , i.e. there exists a continuous

function f : M 7→ R such that f(M) ⊇ I.
Really, if a real-valued continuous image of space M has cardinality less c for any f ∈ C(M), then M is

a zero-dimensional space. It follows that M is a set of reals and, by the iterated perfect set model, there is a
continuous map from this set onto the closed unit interval I.

If there is a real-valued continuous image of space M such that it has cardinality c, then either it contains an
interval I or it is a set of reals and, again, by the iterated perfect set model, there is a continuous map from this
set onto the closed unit interval I.

(II). Recall that a regular space with a countable network is normal and a separable submetrizable space.
Since ∆(X) = c and X is a regular space with a countable network, it follows that X has countable π-network
α consisting of closed sets of cardinality c. We show that α is required π-network.
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Let f be a condensation from X onto a separable metrizable space. Fix A ∈ α and consider the mapping
h = f � A. By point (I), h(A) is I-set of h(A), i.e. there exist the continuous function f : h(A) 7→ R such that
f(h(A)) ⊇ I. Since X is a normal space, by Tietze-Urysohn Extension Theorem, the mapping f ◦ h can be
extended to a real-valued continuous map F : X 7→ R. Note that F (A) = f(h(A)) ⊇ I i.e. A is I-set of X.

(2)⇒ (3). It follows from Theorem 2.6.

Remark 2.12. The main results of this paper were announced in:
https://arxiv.org/abs/1604.04609. Since then, several remarkable articles ([4],[5]) on the separability of a

function space C(X) with the open-point, bi-point-open, bi-compact-open topologies have been published.
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