On separability of the functional space with the open-point and bi-point-open topologies, II

Alexander V. Osipov OAB@list.ru

Ural Federal University (Yekaterinburg, Russia) Ural State University of Economics (Yekaterinburg, Russia) Krasovskii Institute of Mathematics and Mechanics (Yekaterinburg, Russia)

Abstract

In this paper we continue to study the property of separability of function space C(X) with the open-point and bi-point-open topologies. We show that for every perfect Polish space X a set C(X) with the bi-point-open topology is separable. We also show in the iterated perfect set model that for every regular space X with countable network a set C(X) with bi-point-open topology is separable iff a dispersion character $\Delta(X) = \mathfrak{c}$.

1 Introduction

The space C(X) with the point-open topology (also known as the topology of pointwise convergence) is denoted by $C_p(X)$. It has a subbase consisting of sets of the form $[x, V]^+ = \{f \in C(X) : f(x) \in V\}$, where $x \in X$ and Vis an open subset of real line \mathbb{R} .

In [3], authors were defined two new kinds of topologies on C(X) now well-known as the open-point and bi-point-open topologies. The open-point topology on C(X) has a subbase consisting of sets of the form

 $[U,r]^- = \{f \in C(X) : f^{-1}(r) \cap U \neq \emptyset\}$, where U is an open subset of X and $r \in \mathbb{R}$. The open-point topology on C(X) is denoted by h and the space C(X) equipped with the open-point topology h is denoted by $C_h(X)$.

Now the bi-point-open topology on C(X) is the join of the point-open topology p and the open-point topology h. It is the topology having subbasic open sets of both kind: $[x, V]^+$ and $[U, r]^-$, where $x \in X$ and V is an open subset of \mathbb{R} , while U is an open subset of X and $r \in \mathbb{R}$. The bi-point-open topology on the space C(X) is denoted by ph and the space C(X) equipped with the bi-point-open topology ph is denoted by $C_{ph}(X)$. One can also view the bi-point-open topology on C(X) as the weak topology on C(X) generated by the identity maps $id_1 : C(X) \mapsto C_p(X)$ and $id_2 : C(X) \mapsto C_h(X)$.

In [3] and [2], the separation and countability properties of these two topologies on C(X) have been studied. In [3] the following statements were proved.

• $C_h(\mathbb{P})$ is separable where \mathbb{P} is the set of irrational numbers. (Proposition 5.1.)

• If $C_h(X)$ is separable, then every open subset of X is uncountable. (Theorem 5.2.)

• If X has a countable π -base consisting of nontrivial connected sets, then $C_h(X)$ is separable. (Theorem 5.5.)

• If $C_{ph}(X)$ is separable, then every open subset of X is uncountable. (Theorem 5.8.)

• If X has a countable π -base consisting of nontrivial connected sets and a coarser metrizable topology, then $C_{ph}(X)$ is separable. (Theorem 5.10.)

Copyright © by the paper's authors. Copying permitted for private and academic purposes.

In: A.A. Makhnev, S.F. Pravdin (eds.): Proceedings of the International Youth School-conference «SoProMat-2017», Yekaterinburg, Russia, 06-Feb-2017, published at http://ceur-ws.org

In [1], there was proved that necessary condition for $C_h(X)$ be a separable space is condition: X has a π -network consisting of \mathcal{I} -sets.

• A set $A \subseteq X$ be called \mathcal{I} -set if there is a continuous function $f \in C(X)$ such that f(A) contains an interval $\mathcal{I} = [a, b] \subset \mathbb{R}$.

• If $C_h(X)$ is a separable space, then X has a π -network consisting of \mathcal{I} -sets. (Theorem 2.3.)

In this paper we use the following conventions. The symbols \mathbb{R} , \mathbb{P} , \mathbb{Q} and \mathbb{N} denote the space of real numbers, irrational numbers, rational numbers and natural numbers, respectively. Recall that a dispersion character $\Delta(X)$ of X is the minimum of cardinalities of its nonempty open subsets.

Recall also that a space be called Polish space if it is a separable complete metrizable space.

By a *set of reals* we mean a zero-dimensional, separable metrizable space every non-empty open set which has the cardinality the continuum.

2 Main results

Note that if the space $C_h(X)$ is a separable space then $\Delta(X) \ge \mathfrak{c}$. If $A = \{f_i\}$ is a countable dense set of $C_h(X)$ then for each non-empty open set U of X we have $\bigcup f_i(U) = \mathbb{R}$. It follows that $|U| \ge \mathfrak{c}$.

Also note that if the space $C_{ph}(X)$ is a separable space then $C_p(X)$ is a separable space and $C_h(X)$ is separable. It follows that X is a separable submetrizable (coarser separable metric topology) space and $\Delta(X) = \mathfrak{c}$.

Recall that a family γ of subsets of a space X is called T_0 -separating if whenever x and y are distinct points of X, there exists $V \in \gamma$ containing exactly one of the points x and y.

In [1], Osipov was proved the following result.

Theorem 2.1. If X is a Tychonoff space with network consisting non-trivial connected sets, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. X is a separable submetrizable space.

In the present paper, we consider more general form this theorem.

Theorem 2.2. If X is a Tychonoff space with π -network consisting non-trivial connected sets, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. X has a countable T_0 -separating family of zero-sets.
- 3. X is a separable submetrizable space.

 \mathcal{A} оказательство. (1) \Rightarrow (2). Let $C_{ph}(X)$ be a separable space. There is a countable dense subset $A = \{f_i\}$ of the space $C_{ph}(X)$. Fix $\beta = \{B_j\}$ some a countable base for \mathbb{R} consisting of bounded open intervals. Consider $\gamma = \{f^{-1}(\overline{B}) : f \in A, B \in \beta\}$.

We show that the family γ is required family.

Let x_1 and x_2 be distinct points of X. Consider an open base set $Q = [\{x_1\}, (c_1, d_1)]^+ \bigcap [\{x_2\}, (c_2, d_2)]^+$ of the space $C_{ph}(X)$ where $(c_i, d_i) \in \beta$ for i = 1, 2 and $\overline{(c_1, d_1)} \bigcap \overline{(c_2, d_2)} = \emptyset$. There is $h \in Q \bigcap A$. Clearly that $h^{-1}(\overline{(c_i, d_i)}) \in \gamma, x_i \in h^{-1}(\overline{(c_i, d_i)})$ for i = 1, 2 and $h^{-1}(\overline{(c_1, d_1)}) \bigcap h^{-1}(\overline{(c_2, d_2)}) = \emptyset$.

The countable family γ is required family.

 $(2) \Rightarrow (3)$. Let $\gamma = \{Z_i\}$ be the countable family with required conditions. We can assume that γ is closed under finite unions. For each $i \in \mathbb{N}$ there is a continuous function $f_i : X \mapsto I = [0, 1]$ such that $Z_i = f_i^{-1}(0)$.

Let $I_i = I \times \{i\}$ for every $i \in \mathbb{N}$. By letting $(x, i_1)E(y, i_2)$ whenever x = 0 = y or x = y and $i_1 = i_2$ we define an equivalence relation E on the set $\bigcup_{i \in \mathbb{N}} I_i$.

The formula

$$\rho([(x,i_1)],[(y,i_2)]) = \begin{cases} |x-y|, \ if \ i_1 = i_2, \\ x+y, \ if \ i_1 \neq i_2, \end{cases}$$

defines a metric on the set of equivalence classes of E. This space - as well as the corresponding metrizable space - be called the *metrizable hedgehog of spininess* \aleph_0 and be denoted $J(\omega)$ (Example 4.1.5 in [6]).

Note that for every $i \in \mathbb{N}$ the mapping j_i of the interval I to $J(\omega)$ defined by letting $j_i(x) = [(x, i)]$ is a homeomorphic embedding. The family of all balls with rational radii around points of the form [(r, i)], where r is a rational number, is a base for $J(\omega)$; so that $J(\omega)$ is a separable metrizable space.

The formula $h_i(x) = j_i(f_i(x))$ defines a continuous mapping $h_i : X \mapsto J(\omega)$. Note that the family $\{h_i\}_{i=1}^{\infty}$ is functionally separates points of X. Really let x and y be distinct points of X. There exists $Z \in \gamma$ containing exactly one of the points x and y and there are $i' \in \mathbb{N}$ and continuous function $f_{i'} : X \mapsto I = [0, 1]$ such that $Z = f_{i'}^{-1}(0)$. Hence $h_{i'}(x) \neq h_{i'}(y)$. Thus diagonal mapping $h = \Delta_{i \in \mathbb{N}} h_i : X \mapsto J(\omega)^{\omega}$ is a continuous one-to-one mapping from X into the separable metrizable space $J(\omega)^{\omega}$.

It follows that X is a separable submetrizable space.

(3) \Rightarrow (1). Let X be a separable submetrizable space, i.e. X has coarser separable metric topology τ_1 and γ be π -network of X consisting non-trivial connected sets. Let $\beta = \{B_i\}$ be a countable base of (X, τ_1) . We can assume that β closed under finite union of its elements.

For each finite family $\{B_{s_i}\}_{i=1}^d \subset \beta$ such that $\overline{B_{s_i}} \cap \overline{B_{s_j}} = \emptyset$ for $i \neq j$ and $i, j \in \overline{1, d}$ and $\{p_i\}_{i=1}^d \subset \mathbb{Q}$ we fix $f = f_{s_1, \dots, s_d, p_1, \dots, p_d} \in C(X)$ such that $f(\overline{B_{s_i}}) = p_i$ for each $i = \overline{1, d}$.

Let G be the set of functions $f_{s_1,\ldots,s_d,p_1\ldots,p_d}$ where $s_i \in \mathbb{N}$ and $p_i \in \mathbb{Q}$ for $i \in \mathbb{N}$. We claim that the countable set G is a dense set of $C_{ph}(X)$.

By proposition 2.2 in [3], let $W = [x_1, V_1]^+ \bigcap \dots \bigcap [x_m, V_m]^+ \bigcap [U_1, r_1]^- \bigcap \dots \bigcap [U_n, r_n]^-$ be a base set of $C_{ph}(X)$ where $n, m \in \mathbb{N}, x_i \in X, V_i$ is open set of \mathbb{R} for $i \in \overline{1, m}, U_j$ is open set of X and $r_j \in \mathbb{R}$ for $j \in \overline{1, n}$ and for $i \neq j, x_i \neq x_j$ and $\overline{U_i} \bigcap \overline{U_j} = \emptyset$.

 $\begin{array}{l} \text{Choose } B_{s_l} \in \beta \text{ for } l = \overline{1, m+n} \text{ such that} \\ 1. \ \overline{B_{s_{l_1}}} \bigcap \overline{B_{s_{l_2}}} = \emptyset \text{ for } l_1 \neq l_2 \text{ and } l_1, l_2 \in \overline{1, n+m}; \\ 2. \ x_i \in B_{s_l} \text{ for } l \in \overline{1, m}; \\ 3. \ B_{s_l} \bigcap U_k \neq \emptyset \text{ for } l \in \overline{1, m}; \\ \text{Choose } B_{s'_l} \in \beta \text{ for } l \in \overline{1, m} \text{ such that } x_i \in B_{s'_l} \text{ and } \overline{B_{s'_l}} \subseteq B_{s_l}. \\ \text{Choose } A_k \in \gamma \text{ for } k \in \overline{1, n} \text{ such that } A_k \subseteq (U_k \bigcap B_{s_l}) \text{ where } l = k+m. \\ \text{Choose different points } s_k, t_k \in A_k \text{ for every } k = \overline{1, m}. \\ \text{Let } S, T \in \beta \text{ such that } \overline{S} \cap \overline{T} = \emptyset, \overline{B_l} \cap \overline{S} = \emptyset, \overline{B_l} \cap \overline{T} = \emptyset \text{ for } l \in \overline{1, m} \text{ and } s_k \in S \text{ and } t_k \in T \text{ for all } k = \overline{1, m}. \\ \text{Fix points } v_i \in (V_i \cap \mathbb{Q}) \text{ for } i \in \overline{1, m}. \\ \text{Choose } p, q \in \mathbb{Q} \text{ such that } p < \min\{r_i : i = \overline{1, n}\} \text{ and } q > \max\{r_i : i = \overline{1, n}\}. \\ \text{Let } \end{array}$

$$f(x) = \begin{cases} p & for \quad x \in S \\ q & for \quad x \in \overline{T} \\ v_l & for \quad x \in \overline{B_{s'_l}} \end{cases}$$

where $l \in \overline{1, m}$.

Note that $f \in W \bigcap G$. This proves theorem.

In [1] the following statements were proved.

Theorem 2.3. (Theorem 2.4 in [1]) Let X be a Tychonoff space with a countable π -base, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. X is a separable submetrizable space and it has a countable π -network consisting of \mathcal{I} -sets.

Theorem 2.4. (Corollary 2.5 [1]) Let X be a Tychonoff space with a countable π -base, then the following are equivalent.

- 1. $C_h(X)$ is a separable space.
- 2. X has a countable π -network consisting of \mathcal{I} -sets.

The next result is the corollary of Theorem 2.3, but we notes its as theorem due to the importance in the class of separable metrizable spaces.

Theorem 2.5. If X is a separable metrizable space, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. X has a countable π -network consisting of \mathcal{I} -sets.

We have already noted that if a space $C_{ph}(X)$ is a separable space then

- X is a separable submetrizable space;
- X has a π -network consisting of \mathcal{I} -sets.

Theorem 2.6. If X is a separable submetrizable space with a countable π -network consisting of \mathcal{I} -sets, then $C_{ph}(X)$ is a separable space.

Доказательство. The proof analogously to the proof of the implication $((2) \Rightarrow (1))$ in Theorem 2.4 ([1]).

Let $S = \{S_i\}$ be a countable π -network of X consisting of \mathcal{I} -sets. By definition of \mathcal{I} -sets, for each $S_i \in S$ there is the continuous function $h_i \in C(X)$ such that $h_i(S_i)$ contains an interval $[a_i, b_i]$ of real line. Consider a countable set

 $\{h_{i,p,q}(x) = \frac{p-q}{a_i - b_i} * h_i(x) + p - \frac{p-q}{a_i - b_i} * a_i \}$ of continuous functions on X, where $i \in \mathbb{N}$, $p, q \in \mathbb{Q}$. Note that if $h_i(x) = a_i$ then $h_{i,p,q}(x) = p$ and if $h_i(x) = b_i$ then $h_{i,p,q}(x) = q$.

Let $\beta = \{B_i\}$ be a countable base of (X, τ_1) where τ_1 is a separable metraizable topology on X because of X is a separable submetrizable space. For each pair (B_j, B_k) such that $\overline{B_j} \subseteq B_k$ define continuous functions

$$h_{i,p,q,j,k}(x) = \begin{cases} h_{i,p,q}(x) & \text{for } x \in B_j \\ \mathbf{0} & \text{for } x \in X \setminus B_k. \end{cases}$$

and for each $v \in \mathbb{Q}$

$$d_{j,k,v}(x) = \begin{cases} v & for \quad x \in B_j \\ \mathbf{0} & for \quad x \in X \setminus B_k. \end{cases}$$

Let G be the set of finite sum of functions $h_{i,p,q,j,k}$ and $d_{j,k,v}$ where $i, j, k \in \mathbb{N}$ and $p, q, v \in \mathbb{Q}$. We claim that the countable set G is a dense set of $C_{ph}(X)$.

By proposition 2.2 in [3], let

 $W = [x_1, V_1]^+ \bigcap \dots \bigcap [x_m, V_m]^+ \bigcap [U_1, r_1]^- \bigcap \dots \bigcap [U_n, r_n]^- \text{ be a base set of } C_{ph}(X) \text{ where } n, m \in \mathbb{N}, x_i \in X,$ V_i is an open set of \mathbb{R} for $i \in \overline{1, m}$, U_j is an open set of X and $r_j \in \mathbb{R}$ for $j \in \overline{1, n}$ and for $i \neq j$, $x_i \neq x_j$ and $\overline{U_i} \cap \overline{U_j} = \emptyset.$

Fix points $y_j \in U_j$ for $j = \overline{1, n}$ and choose $B_{s_l} \in \beta$ for $l = \overline{1, n+m}$ such that $\overline{B_{s_{l_1}}} \cap \overline{B_{s_{l_2}}} = \emptyset$ for $l_1 \neq l_2$ and $l_1, l_2 \in \overline{1, n+m}$ and $x_i \in B_{s_l}$ for $l \in \overline{1, m}$ and $y_j \in B_{s_l}$ for $l \in \overline{m+1, n}$. Choose $B_{s'_l} \in \beta$ for $l \in \overline{1, m}$ such that $x_i \in B_{s'_l}$ and $\overline{B_{s'_l}} \subseteq B_{s_l}$ and choose $B_{s'_l} \in \beta$ for $l \in \overline{m+1, n+m}$ such that $y_j \in \overline{B_{s'_l}} \subseteq B_{s_l}$ where l = j + m.

Fix points $v_i \in (V_i \cap \mathbb{Q})$ for $i \in \overline{1, m}$ and $p_j, q_j \in \mathbb{Q}$ such that $p_j < r_j < q_j$ for $j = \overline{1, n}$. Consider $g \in G$ such that

 $g = d_{s'_1, s_1, v_1} + \ldots + d_{s'_m, s_m, v_m} + h_{i_1, p_1, q_1, s'_{m+1}, s_{m+1}} + \ldots + h_{i_n, p_n, q_n, s'_{m+n}, s_{n+m}}$ where $S_{i_k} \subset B_{s'_l} \cap U_k$ for $k = \overline{1, n}$ and l = k + m.

Note that $g \in W \cap G$. This proves theorem.

Corollary 2.7. If X is a perfect Polish space, then $C_{ph}(X)$ is separable.

 \mathcal{A} or \mathcal{A} or \mathcal{A} and \mathcal{A} is a perfect that any regular closed subset of a space X is a perfect Polish space and it contains some set which is homeomorphic to 2^{ω} ([7]). It follows that any non-empty open set of X is \mathcal{I} -set.

Note that there is the example such that

- X hasn't countable chain condition, hence, X hasn't countable π -network consisting of \mathcal{I} -sets;
- X is a separable submetrizable space;
- $C_{ph}(X)$ is a separable space.

Example 2.8. (Example 4.3. in [1]) Let $X = \bigoplus_{\alpha < \mathfrak{c}} \mathbb{R}_{\alpha}$ be a direct sum of real lines \mathbb{R} .

In this connection a natural question arises.

Question 1. Assume that X is a separable submetrizable space with uncountable π -network consisting of \mathcal{I} -sets. Does $C_{ph}(X)$ is separable ?

Recall that a set of reals X is *null* if for each positive ϵ there exists a cover $\{I_n\}_{n\in\mathbb{N}}$ of X such that $\sum_n diam(I_n) < \epsilon$. A set of reals X has *strong measure zero* if, for each sequence $\{\epsilon_n\}_{n\in\mathbb{N}}$ of positive reals, there exists a cover $\{I_n\}_{n\in\mathbb{N}}$ of X such that $diam(I_n) < \epsilon_n$ for all n. For example, every Lusin set has strong measure zero.

In [1] (Example 3.1), author was shown that it is consistent with ZFC that exists the separable metrizable space X such that $\Delta(X) = \mathfrak{c}$ and $C_{ph}(X)$ isn't separable.

Example 2.9. (CH) Let X be a set of reals and it has strong measure zero.

In [8] was shown that it is consistent with ZFC that for any set of reals of cardinality the continuum, there is a (uniformly) continuous map from that set onto the closed unit interval. In fact, this holds in the iterated perfect set model.

In [1] the following statement was proved.

Theorem 2.10. (the iterated perfect set model)

If X is a separable metrizable space, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. $\Delta(X) = \mathfrak{c}$.

In the present paper, we consider more general form this theorem.

Theorem 2.11. (the iterated perfect set model) If X is a regular space with a countable network, then the following are equivalent.

- 1. $C_{ph}(X)$ is a separable space.
- 2. $\Delta(X) = \mathfrak{c}$.
- 3. X has a countable π -network consisting of \mathcal{I} -sets.

 \mathcal{A} okasamentecmeo. (1) \Rightarrow (2). Note that if the space $C_{ph}(X)$ is a separable space then $C_p(X)$ is a separable space and $C_h(X)$ is separable. It follows that X is a separable submetrizable space and, hence, $\Delta(X) = \mathfrak{c}$.

(2) \Rightarrow (3). Let $\Delta(X) = \mathfrak{c}$.

(I). We show that any separable metrizable space M of cardinality \mathfrak{c} is \mathcal{I} -set of M, i.e. there exists a continuous function $f: M \mapsto \mathbb{R}$ such that $f(M) \supseteq \mathcal{I}$.

Really, if a real-valued continuous image of space M has cardinality less \mathfrak{c} for any $f \in C(M)$, then M is a zero-dimensional space. It follows that M is a set of reals and, by the iterated perfect set model, there is a continuous map from this set onto the closed unit interval \mathcal{I} .

If there is a real-valued continuous image of space M such that it has cardinality \mathfrak{c} , then either it contains an interval \mathcal{I} or it is a set of reals and, again, by the iterated perfect set model, there is a continuous map from this set onto the closed unit interval \mathcal{I} .

(II). Recall that a regular space with a countable network is normal and a separable submetrizable space. Since $\Delta(X) = \mathfrak{c}$ and X is a regular space with a countable network, it follows that X has countable π -network α consisting of closed sets of cardinality \mathfrak{c} . We show that α is required π -network. Let f be a condensation from X onto a separable metrizable space. Fix $A \in \alpha$ and consider the mapping $h = f \upharpoonright A$. By point (I), h(A) is \mathcal{I} -set of h(A), i.e. there exist the continuous function $f : h(A) \mapsto \mathbb{R}$ such that $f(h(A)) \supseteq \mathcal{I}$. Since X is a normal space, by Tietze-Urysohn Extension Theorem, the mapping $f \circ h$ can be extended to a real-valued continuous map $F : X \mapsto \mathbb{R}$. Note that $F(A) = f(h(A)) \supseteq \mathcal{I}$ i.e. A is \mathcal{I} -set of X.

 $(2) \Rightarrow (3)$. It follows from Theorem 2.6.

Remark 2.12. The main results of this paper were announced in:

https://arxiv.org/abs/1604.04609. Since then, several remarkable articles ([4],[5]) on the separability of a function space C(X) with the open-point, bi-point-open, bi-compact-open topologies have been published.

References

- Alexander V. Osipov. On separability of the functional space with the open-point and bi-point-open topologies. Acta Mathematica Hungarica, 150(1):167–175, 2016.
- [2] Anubha Jindal, R.A. McCoy, S. Kundu. The open-point and bi-point-open topologies on C(X): Submetrizability and cardinal functions. *Topology and its Applications*, 196:229–240, 2015.
- [3] Anubha Jindal, R.A. McCoy, S. Kundu. The open-point and bi-point-open topologies on C(X). Topology and its Applications, 187:62–74, 2015.
- [4] Anubha Jindal, R.A. McCoy, S. Kundu. The bi-compact-open topology on C(X). Bollettino dell'Unione Matematica Italiana, 1–11, 2016.
- [5] Anubha Jindal, R.A. McCoy, S. Kundu. Density of the open-point, bi-point-open and bi-compact-open topologies on C(X). Topology Proceedings, 50:249–261, 2016.
- [6] R. Engelking. General Topology. Revised and completed ed., Heldermann, Berlin, 1989.
- [7] Kazimirz Kuratowski. Topology. Vol. I. Academic Press, 1966.
- [8] Arnold W. Miller. Mapping a Set of Reals Onto the Reals. Journal of Symbolic Logic, 48(3):575–584, Sep 1983.