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Abstract

A compact difference scheme for a class of non-linear fractional
diffusion-wave equations with fixed time delay is considered. Analysis
of the constructed difference scheme is done in L∞-norm by means of
the discrete energy method. A numerical test example is introduced to
illustrate the accuracy and efficiency of the proposed method.

1 Introduction
An important class of fractional differential equations which has been studied widely in recent years is the
time fractional diffusion-wave equation (FDWE). The time FDWE is obtained from the classical diffusion-wave
equation by replacing the second-order time derivative term by a fractional derivative of order 1 < α ≤ 2.
The fractional diffusion equation was introduced in physics by Nigmatullin [16] to describe diffusion in media
with fractal geometry, which is a special type of porous media. Gorenflo et al. [10] presented the scale-invariant
solutions for the time-fractional diffusion-wave equation in terms of the generalized Wright function. Agrawal [2]
extended this formulation to a diffusion-wave equation that contains a fourth-order space derivative term in a
bounded space domain. Recently, simulations of the approximation solutions of time-fractional wave, forced wave
(shear wave) and damped wave equations are given in [1]. A novel fractional diffusion-wave equation with non-
local regularization for noise removal was presented in [24]. The existence and uniqueness of solutions for Dirichlet
initial-boundary value problem associated to the semi linear fractional wave equation was recently studied in [14].
As a numerical approach to solve FDWE, Sun and his co-authors proposed a high order difference methods for the
fractional diffusion-wave equation [8]. Also, in [22], the efforts of the authors were devoted to the application of
fractional multi-step method to obtain a numerical solution of time fractional diffusion-wave equation. Compact
finite difference schemes for the modified anomalous fractional sub-diffusion equation and fractional diffusion-
wave equation were studied in [21]. A numerical solution for a general class of diffusion problem was considered
in [3], where the standard time derivative is replaced by a fractional one. An efficient numerical method was
constructed in [26] to solve this moving boundary problem.

Time delay occurs in many realistic applications which are modeled mathematically, e.g. [9, 6, 13, 4, 15, 5].
Reaction-diffusion equations with time delay effect have been proposed as models for the population ecology, the
cell biology and the control theory in recent years [19]. The existence of mild solutions for initial value problem
for nonlinear time fractional non-autonomous evolution equations with delay in Banach space E was studied
in [7]. Numerically, a linearized quasi-compact difference scheme was proposed for semi-linear space-fractional
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diffusion equations with a fixed time delay [11]. A linearized compact finite difference scheme was presented for
the semi-linear fractional delay convection-reaction–diffusion equation in [23]. The authors of the manuscript at
hand, recently proposed a difference scheme for a class of non-linear delay distributed order fractional diffusion
equations in [17]. As an extension to this contribution and depending on Sun ’s work [20], we seek to derive a
compact linear difference scheme to solve numerically FDWE effected with a non-linear delayed source function,
more specific we consider

∂αu(x, t)

∂tα
= K

∂2u(x, t)

∂x2
+ f(x, t, u(x, t), u(x, t− s)), t > 0, 0 ≤ x ≤ L, (1a)

with the following initial and boundary conditions

u(x, t) = r̃(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0],
∂u(x, 0)

∂t
= ψ̃(x) = lim

t→−0

∂r̃(x, t)

∂t
, (1b)

u(0, t) = φ0(t), u(L, t) = φL(t), t > 0, (1c)

where s > 0 is the delay parameter, K is a positive constant. The fractional derivative of order 1 < α ≤ 2 is
defined in Caputo sense.

In order to transform (1) to a system with zero Dirichlet boundary conditions, we define h(x, t) := φ0(t) +
x
L (φL(t)− φ0(t)) and introduce the new function v(x, t) = u(x, t)− h(x, t). Hence, we have

∂αv(x, t)

∂tα
= K

∂2v(x, t)

∂x2
+ f(x, t, v(x, t), v(x, t− s)), t > 0, 0 ≤ x ≤ L, (2a)

with the following initial and boundary conditions

v(x, t) = r(x, t), 0 ≤ x ≤ L, t ∈ [−s, 0],
∂v(x, 0)

∂t
= ψ(x) = lim

t→−0

∂r(x, t)

∂t
, (2b)

v(0, t) = v(L, t) = 0, t > 0. (2c)

We need to overcome two degrees of complexity; how to employ a suitable approximation of the time fractional
derivative on the one hand, and how to approximate the non linear delay source function linearly on the other,
in order to obtain a numerical solution for (2). Throughout this work and by the aid of [23], we suppose that the
function f(x, t, µ, v) and the solution u(x, t) of (2) are sufficiently smooth in the following sense:

• Let m be an integer satisfying ms ≤ T < (m + 1)s, define Ir = (rs, (r + 1)s), for r = −1, 0, . . . ,m − 1,
Im = (ms, T ), I =

⋃m
q=−1 Iq and assume that u(x, t) ∈ C(6,3) ([0, L]× [0, T ]),

• The partial derivatives fµ(x, t, µ, v) and fv(x, t, µ, v) are continuous in the ε0-neighborhood of the solution.
Define

c1 = sup
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

|fµ(x, t, u(x, t) + ε1, u(x, t− s) + ε2)| , (3a)

c2 = max
0<x<L, 0<t≤T
|ε1|≤ε0,|ε2|≤ε0

|fv(x, t, u(x, t) + ε1, u(x, t− s) + ε2)| . (3b)

The structure of this paper is arranged as: a derivation of the linear difference scheme is done in the following
section. Next, in the third section, the solvability, convergence and stability for the difference scheme are carried
out. In the fourth section, numerical examples are given to illustrate the accuracy of the presented scheme and
to support our theoretical results.

2 Construction of the difference scheme
A numerical solution based on the Crank-Nicholson method is derived. Before we continue, some further notations
are fixed. Take two positive integersM and n, let h = L

M , τ = s
n and denote xi = i h for i = 0, . . . ,M ; tk = k τ and

tk−1/2 =
(
k − 1

2

)
τ = 1

2 (tk+tk−1), for k = −n, . . . , N , where N =
⌊
T
τ

⌋
. Using the points xi in space and tk in time

we cover the space-time domain by Ωhτ = Ωh×Ωτ , where Ωh = {xi | 0 ≤ i ≤M} and Ωτ = {tk | −n ≤ k ≤ N}.
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Let W =
{
w : Ωhτ → R | w(xi, tk) = W k

i ; i = 0, 1, . . . ,M ; k = −n,−n+ 1, . . . , N
}
be a grid function space on

Ωhτ . For w ∈ W, we define W k−1/2
i := 1

2

(
W k
i +W k−1

i

)
.

Lemma 1. Let q(x) ∈ C6([xi−1, xi+1]), then

1

12
(q′′(xi−1) + 10q′′(xi) + q′′(xi+1))− 1

h2
(q(xi−1)− 2q(xi) + q(xi+1)) =

h4

240
q(6)(ωi),

where ωi ∈ (xi−1, xi+1).[25]
In [20], an approximation for the time Caputo fractional derivative at tk−1/2 with 1 < α < 2 was given:

∂αv(xi, tk−1/2)

∂tα
=

1

µ̄

bα0 δtV k−1/2
i −

k−1∑
j=1

(bαk−j−1 − bαk−j)δtV
j−1/2
i − bαk−1ψ(xi)

+ rk, (4a)

where ψ(x) is defined in (2b),

bαk =
τ2−α

2− α
(
(k + 1)2−α − k2−α) , µ̄ = τΓ(2− α), (4b)

|rk| ≤
1

Γ(3− α)

(
2− α

12
+

23−α

3− α
− (1 + 21−α) +

1

12

)
max

0≤t≤tk

∣∣∣∣∂3v

∂t3

∣∣∣∣ τ3−α, (4c)

and for any function v : [0, L]× [−s,+∞)→ R one denotes v(xi, tj) = V ji for i ∈ N, j ∈ Z and defines

V
k−1/2
i =

1

2

(
V ki + V k−1

i

)
, δtV

k−1/2
i =

1

τ

(
V ki − V k−1

i

)
, (4d)

δxV
k
i−1/2 =

1

h

(
V ki − V ki−1

)
, δ2

xV
k
i =

1

h2

(
V ki+1 − 2V ki + V ki−1

)
. (4e)

We are now in a position to apply and combine the above, that is (4), to (2a) at the points (xi, tk−1/2), and
arrive at 1

µ̄

bα0 δtV k−1/2
i −

k−1∑
j=1

(
bαk−j−1 − bαk−j

)
δtV

j−1/2
i − bαk−1ψ(xi)

+ rk


= K

∂2v(xi, tk−1/2)

∂x2
+ f(xi, tk−1/2, v(xi, tk−1/2), v(xi, tk−1/2 − s)), (5)

such that i = 0, . . . ,M, k = 1, . . . , N.
Lemma 2. For g = (g0, g1, . . . , gM ), let the linear operator A be defined as

Agi =
1

12
(gi−1 + 10gi + gi+1), 1 ≤ i ≤M − 1.

Then, we obtain

A

 1

µ̄

bα0 δtV k−1/2
i −

k−1∑
j=1

(
bαk−j−1 − bαk−j

)
δtV

j−1/2
i − bαk−1ψ(xi)


= Kδ2

xV
k−1/2
i + Af

(
xi, tk−1/2,

3

2
V k−1
i +

1

2
V k−2
i ,

1

2
V k−n−1
i +

1

2
V k−ni

)
+R

k−1/2
i , (6)

where ∣∣∣Rk−1/2
i

∣∣∣ ≤ C̄ (τ3−α + h4
)
, 1 ≤ i ≤M − 1, 1 ≤ k ≤ N. (7)
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Proof. By using the following Taylor expansions

∂2v(xi, tk−1/2)

∂x2
=

1

2

(
∂2v(xi, tk)

∂x2
+
∂2v(xi, tk−1)

∂x2

)
+O

(
τ2
)
,

v(xi, tk−1/2) =
3

2
V k−1
i − 1

2
V k−2
i +O

(
τ2
)
,

v(xi, tk−1/2 − s) =
1

2
V k−ni +

1

2
V k−n−1
i +O

(
τ2
)
,

in (5) we obtain

 1

µ̄

bα0 δtV k−1/2
i −

k−1∑
j=1

(bαk−j−1 − bαk−j)δtV
j−1/2
i − bαk−1ψ(xi)

+ rk

 =

K

2

(∂2v(xi, tk)

∂x2
+
∂2v(xi, tk−1)

∂x2

)
+ f

(
xi, tk−1/2,

3

2
V k−1
i − 1

2
V k−2
i ,

1

2
V k−ni +

1

2
V k−n−1
i

)
+O(τ2), (8)

where we used the continuity of the derivatives of f in its third and fourth component when letting τ → 0.
According to Lemma 1, we have

A

[
∂2v(xi, tk)

∂x2

]
= δ2

xV
k
i +

h4

240

∂6v

∂x6

(
θki , tk

)
, θki ∈ (xi−1, xi+1),

so applying A to (8) we arrive at, using (4e),

A

 1

µ̄

bα0 δtV k−1/2
i −

k−1∑
j=1

(
bαk−j−1 − bαk−j

)
δtV

j−1/2
i − bαk−1ψ(xi)

+ rk

+O
(
h4
)

+O
(
τ2
)

=
K

2
δ2
x

(
V ki + V k−1

i

)
+ Af

(
xi, tk−1/2,

3

2
V k−1
i − 1

2
V k−2
i ,

1

2
V k−ni +

1

2
V k−n−1
i

)
,

as v(x, t) ∈ C(6,3)([0, L] × [0, T ]). Define Rk−1/2
i = Ark + O

(
h4
)

+ O
(
τ2
)
, then from (4c), the estimate (7) is

achieved and the proof is complete. �

The final form of our difference scheme is obtained by neglecting Rk−1/2
i and replacing V ki with vki in (6)

A

 1

µ̄

bα0 δtvk−1/2
i −

k−1∑
j=1

(bαk−j−1 − bαk−j)δtv
j−1/2
i − bαk−1ψ(xi)


= Kδ2

xv
k−1/2
i + Af

(
xi, tk−1/2,

3

2
vk−1
i − 1

2
vk−2
i ,

1

2
vk−n−1
i +

1

2
vk−ni

)
, (9a)

such that 1 ≤ i ≤M − 1, 1 ≤ k ≤ N, and supplying appropriate initial and boundary conditions

vk0 = φ0(tk), vkM = φL(tk), 1 ≤ k ≤ N, (9b)

vki = r(xi, tk), 0 ≤ i ≤M, −n ≤ k ≤ 0. (9c)

Recall that v(xi, tk) = V ki and vki is the solution of the difference scheme, hoping to have v(xi, tk) ≈ vki , we
discuss in the next section εki := |V ki − vki |.

We now prove that our difference scheme admits a unique solution. Next, we show that the obtained solution
solves (2).

Theorem 1. (Solvability). The difference scheme (9) is uniquely solvable.
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Proof. We can arrange the system (9) as follows[
1

12

bα0
µ̄τ
− K

2h2

]
vki+1 +

[
10

12

bα0
µ̄τ

+
K

h2

]
vki +

[
1

12

bα0
µ̄τ
− K

2h2

]
vki−1

=

[
1

12
µ̄τ(2bα0 − bα1 )− K

2h2

]
vk−1
i+1 +

[
10

12
µ̄τ(2bα0 − bα1 ) +

K

h2

]
vk−1
i

+

[
1

12
µ̄τ(2bα0 − bα1 )− K

2h2

]
vk−1
i−1

+ µ̄τA

k−2∑
j=1

(bαk−j−1 − bαk−j)v
j
i −

k−1∑
j=1

(bαk−j−1 − bαk−j)v
j−1
i + τbαk−1ψi


+ Af

(
xi, tk+1/2,

3

2
vk−1
i − 1

2
vk−2
i ,

1

2
vk+1−n
i +

1

2
vk−ni

)
, (10)

or written in a more concise form
Avk = ϕk(vk−1, vk−1, . . . , v−n).

The tridiagonal coefficient matrix A = (aij) is strictly diagonally dominant because aii >
∑
j 6=i
|aij |;

aii =
10

12

bα0
µ̄τ

+
K

h2
, ai+1,i =

1

12

bα0
µ̄τ
− K

2h2
= ai−1,i.

Therefore, the coefficient matrix is nonsingular and the theorem is readily proved by strong induction. �

3 Convergence and stability for the difference scheme
Now, we introduce the uniqueness, stability and convergence theorems in L∞-norm using the discrete energy
method for the proposed difference scheme.
The spatial domain [0, L] is covered by Ωh = {xi | 0 ≤ i ≤M, } and let Vh = {v | v = (v0, . . . , vM ), v0 = vM =
0} be a grid function space on Ωh. For any u, v ∈ Vh, define the discrete inner products and corresponding norms
as

〈u, v〉 = h

M−1∑
i=1

uivi, 〈δxu, δxv〉 = h

M∑
i=1

(δxui−1/2)(δxvi−1/2),

〈δ2
xu, v〉 = −〈δxu, δxv〉, δxui =

1

h
(ui − ui−1),

‖u‖ =
√
〈u, u〉, |u|1 =

√
〈δxu, δxu〉, ‖u‖∞ = max

0≤i≤M
|u|,

and denote

|v|1 =

√√√√h

M∑
i=1

(δxvi)2, ‖δ2
xv‖∞ =

√√√√h

M−1∑
i=1

(δ2
xvi)

2.

According to [25], the following inequalities are fulfilled

‖u‖∞ ≤
√
L

2
|u|1, ‖u‖ ≤ L√

6
|u|1. (11)

For the analysis of the difference scheme, we will use the following lemmas:
Lemma 3. Let v ∈ Vh, we have ‖δ2

xv‖ ≤ 2
h |v|1.

Lemma 4. [18] Let v ∈ Vh and v0 = vM = 0. Then, we have ‖v‖∞ ≤
√
L

2 |v|1.
Lemma 5. [20] For any G = {G1, G2, G3, . . .} and ψ, we obtain

m∑
k=1

[
bα0Gk −

k−1∑
j=1

(bαlk−j−1 − b
αl
k−j)Gj − b

αl
k−1ψ

]
Gk ≥

t1−αlm

2(2− αl)
τ

m∑
k=1

G2
k −

t2−αlm

2(2− αl)
ψ2.
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Lemma 6. Gronwall inequality [25]. Suppose that {F k | k ≥ 0} is a nonnegative sequence and satisfies
F k+1 ≤ A+Bτ

∑k
l=1 F

l, k ≥ 0, for some nonnegative constants A and B. Then F k+1 ≤ A exp(Bkτ).
Theorem 2. (Convergence). Let v(x, t) ∈ [0, L]× [−s, T ], be the solution of (2) such that v(xi, tk) = V ki and

vki (0 ≤ i ≤M,−n ≤ k ≤ N) be the solution of the difference scheme (9), denote eki = V ki − vki , for 0 ≤ i ≤M ,
−n ≤ k ≤ N ,

C =

√
3L

8θK
exp

( 3T

8θK
(5c21 + c22)

)
, θ =

1

2
Tα−1Γ(3− α),

then if

τ ≤ τ0 =
( ε0

4C

) 1
3−α

, h ≤ h0 =
( ε0

4C

) 1
4

, (12)

one has that
‖ ek ‖∞≤ C

(
τ3−α + h4

)
, 0 ≤ k ≤ N, (13)

where c1, c2 and ε0 are those from (3).
The proof uses the previous formulated lemmas in the sense of our results in [12].

To discuss the stability of the difference scheme (9), we also use the discrete energy method in the same way
like the discussion of the convergence. Let {zki | 0 ≤ i ≤M, 0 ≤ k ≤ N} be the solution of

A

 1

µ̄

bα0 δtzk−1/2
i −

k−1∑
j=1

(bαk−j−1 − bαk−j)δtz
j−1/2
i − bαk−1ψ(xi)


= Kδ2

xz
k−1/2
i + Af

(
xi, tk−1/2,

1

2
zki +

1

2
zk−1
i ,

1

2
zk−n−1
i +

1

2
zk−ni

)
, (14a)

such that 1 ≤ i ≤M − 1, 1 ≤ k ≤ N, and supplied by appropriate initial and boundary conditions

zk0 = φ0(tk), zkM = φL(tk), 1 ≤ k ≤ N, (14b)

zki = r(xi, tk) + ρki , 0 ≤ i ≤M, −n ≤ k ≤ 0, (14c)

where ρki is the perturbation of ψ(xi, tk).
Following the same steps as in the proof of the convergence theorem, the stability of the scheme is obtained.
Theorem 3. (Stability). Let θki = zki − vki , for 0 ≤ i ≤ M,−n ≤ k ≤ N. Then there exist some arbitrary
positive constants c4, c5, h0, τ0 which fulfill

‖θk‖∞ ≤ c4
√
τ

0∑
k=−n

‖ρk‖, 0 ≤ k ≤ N, ‖ρk‖ =

√√√√h

M−1∑
i=1

(ρki )2,

conditioned by
h ≤ h0, τ ≤ τ0, max

−n≤k≤0

0≤i≤M

|ρki | ≤ c5.

4 Numerical Verification
Let νki be the solution of the constructed difference scheme (9) with the step sizes τ and h. Define the maximum
norm error by E(τ, h) = max

0≤i≤M
0≤k≤N

‖V ki − νki ‖∞. Also, define the following error rates

rate1 = log2

(
E(2τ, h)

E(τ, h)

)
, rate2 = log2

(
E(τ, 2h)

E(τ, h)

)
.

Consider the following numerical test example

∂αu(x, t)

∂tα
=
∂2u(x, t)

∂x2
+ f(x, t, u(x, t), u(x, t− s)), t ∈ (0, 1), 0 < x < π, (15a)
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f(x, t, u(x, t), u(x, t− s)) = sin(x)
(

(t3 + 2t+ 4) + Γ(4)
Γ(4−α) t

3−α
)
− u(x, t− s) + sin(x)((t− s)3 + 2(t− s) + 4),

with the following initial and boundary conditions

u(x, t) = (t3 + 2t+ 4) sin(x), 0 ≤ x ≤ π, t ∈ [−s, 0), s > 0, (15b)

u(0, t) = u(π, t) = 0, t ∈ [0, 1]. (15c)

The exact solution of this problem is
u(x, t) = (t3 + 2t+ 4) sin(x). (16)

Results are presented in Tables (1) - (2) (time) and Table 3 (space). From these numerical results, we can see a
good agreement between theoretical and numerical results.

Table 1: Errors and convergence order of the difference scheme (9) for (15) in time variable with α = 1.25,
h = π/3000 and with time delay s = 1.

τ E(τ, h) rate1
1
10 0.00015
1
20 0.00004 1.732
1
40 0.00001 1.738
1
80 4.049× 10−6 1.741
1

160 1.209× 10−6 1.744
1

320 3.597× 10−7 1.749

Table 2: Errors and convergence order of the difference scheme (9) for (15) in time variable with α = 1.75,
h = π/3000 and with time delay s = 1

4 .

τ E(τ, h) rate1
1
40 0.00003
1
80 0.00001 1.232
1

160 5.415× 10−6 1.238
1

320 2.288× 10−6 1.243
1

640 9.625× 10−7 1.249

Table 3: Errors and convergence order of the difference scheme (9) for (15) in space variable with α = 1.5,
τ = 1/10000 and with time delay s = 1

2 .
h E(τ, h) rate2
π
4 0.00027
π
8 0.000018 3.872
π
16 1.2525× 10−6 3.880
π
32 8.24587× 10−8 3.925
π
64 5.28023× 10−9 3.965
π

128 3.33926× 10−10 3.983
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