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Abstract. The paper is devoted to the development of methods of ontology 

supported knowledge discovery in the field of mobile network subscribers. We 

develop the ontological model of the domain of mobile networks. This ontolog-

ical model is intended to describe the behavior of mobile network subscribers. 

The ontological model is based on the four-level model of knowledge represen-

tation. In the paper, special attention is given to the third level which represents 

the set of cases from the domain. For the analysis of domain cases and for the 

generation of fuzzy knowledge about the domain we use Boolean-valued mod-

els, fuzzy models and Formal Concept Analysis. To describe the set of cases 

from the domain we use formal contexts; objects of these formal contexts are 

models representing sets of subscribers. We study formal contexts generated by 

Boolean-valued models, and formal concepts of these formal contexts. We ob-

tain a description of theories of classes of domain cases in the language of for-

mal concepts.  

Keywords: Boolean-valued model, fuzzy model theory, ontology, ontological 

model, mobile networks, mobile network subscribers, FCA, formal context, 

formal concept  

1 Introduction 

The article is devoted to the development of an ontological model of the domain of 

mobile networks. The ontological model is based on the four-level model of 

knowledge representation [1, 2]. We apply model-theoretical methods [3], theory of 

fuzzy models [4] and FCA [5, 6] to construct the ontological model.  

The present investigations continue the studies begun in [7, 8]. In [8] the ontologi-

cal model of the domain of mobile networks was used to determine which tariffs and 

services of the mobile operator are most interesting and useful for a given mobile 

network user. In this article we expand the borders of our consideration of the do-

main. We are interested in revealing high-level characteristics of the subscriber: in-

come level, social status, mobility, interests, preferences, etc. The elucidation of high-

level characteristics is necessary to predict the behavior of the subscriber.    

Thus we need to consider not only properties of individual subscribers, but also the 

interaction of subscribers (for example, calls between subscribers and so on). There-

fore, in contrast to [8], we need to consider not only unary predicates, but also binary 

predicates to describe the domain ontology. A case model of this domain is represent-

ed as a set of countable algebraic systems. 



Next, in the paper we describe a method for constructing a formal context for the 

case model (using the notion of a Boolean-valued model) and a method of transition-

ing to an object-clarified context.   

This work is mainly theoretical. The results of practical implementation will be de-

scribed in the next paper.  

2 Ontological model of the domain of mobile networks 

The ontological model of the domain of mobile networks is constructed on the basis 

of the four-level model of knowledge representation [1, 2]. We call a tuple  

𝓞𝓜 = 〈𝐾, 𝜎, 𝑇𝑎 , 𝑇𝑠, 𝑇𝑓〉 
an ontological model of the domain. Here 𝐾 is the set of cases of the domain, 𝜎 is the 

signature of the domain,  𝑇𝑎  is the analytic theory of the domain,  𝑇𝑠 is the theory of 

the domain and  𝑇𝑓 is the fuzzy theory of the domain. 

The first step of the construction of the ontological model is the description of the 

ontology of the domain. From the model-theoretical point of view, the construction of 

the domain ontology consists of describing a signature σ (i.e. the set of key concepts) 

and a set of axiom 𝒜𝓍𝑎 of the given domain [9, 10]. The pair 〈𝜎, 𝒜𝓍𝑎〉 generates the 

analytic theory 𝑇𝑎, i.e. description of sense of the key concepts of the domain, defini-

tions of used notions. The theory of the domain 𝑇𝑠  represents general (universal) 

knowledge of the domain. 

We consider six classes of concepts to determine the signature 𝜎𝕄 of the object 

domain 𝕄 = “Mobile networks”: 

1. 𝜎𝑃 represents individual indicators of subscribers, and contains two parts:  𝜎𝑃1
 are 

traffics and 𝜎𝑃2
 are accruals.   

2. 𝜎𝑄 represents different tariff plans and services. 

3. 𝜎𝑅 represents properties and characteristics of various tariff plans, services and op-

tions; for example, the number of free minutes of talk, the volume of the SMS 

package, etc. 

4. 𝜎𝐼 represents concepts which express different interests of subscribers. 

5. 𝜎𝑆 represents concepts which express subscriber's social status.  

6. 𝜎𝑇 represents concepts which express relationships and interactions between sub-

scribers: calls / SMS / MMS of one subscriber to another and so on. 

Note that the concepts from the classes 𝜎𝑃, 𝜎𝑄 , 𝜎𝑅 , 𝜎𝐼 , 𝜎𝑆  represent different 

properties of subscribers; these concepts are formalized as unary predicates. The con-

cepts from the class 𝜎𝑇 represent relationships and interactions between subscribers; 

these concepts are formalized as binary predicates. 

The presented classes of concepts have a hierarchical structure which is de-

scribed by a set of axioms “hyponym-hypernym”. For these classes of concepts we 

present axioms of completeness and axioms of including. A detailed description of 

these axioms is given in [8]. We present a set of axioms of irreflexivity for the class of 

concepts 𝜎𝑇 . For example, for any concept 𝑄(𝑥, 𝑦) ∈ 𝜎𝑇  we formulate an axiom 



¬𝑄(𝑥, 𝑥) which means that no subscriber can call to himself. This concludes the first 

step of the ontological model's constructing. 

At the second step of the construction of the ontological model, we present the 

set  𝒜𝓍𝑠 of general statements about the domain. The set 𝒜𝓍𝑠 is considered to be 

true at the moment but may be changed at the future time. This knowledge is synthet-

ic, in contrast to the analytical knowledge presented in the ontology. The synthetic 

knowledge does not follow from the meaning of the terms used in the description of 

the domain. The truth value of this knowledge depends on the present state of the real 

world. An example of such knowledge is the statement that a given tariff and a specif-

ic service of the mobile operator are not compatible. 

The set of all axioms 𝒜𝓍𝑎 ∪ 𝒜𝓍𝑠 generates the theory of the domain 𝑇𝑠, i.e., 

a set of statements which are true in the given domain. This concludes the second step 

of the ontological model's constructing. 

The third step of the building the ontological model is a formalization of em-

pirical knowledge about the domain, i.e., knowledge about the concrete precedents 

(cases) of the given object area. In the domain 𝕄 the set 𝐴 of subjects is the set of 

various individuals and organizations using mobile network services, etc. Note that 

the set of subjects 𝐴 is finite at each point of time, but it is constantly changing in 

dynamics. Therefore we may consider the set 𝐴 as potentially infinite. Thus in this 

paper we consider a countable set A of subjects. 

Let us consider a set 𝐴 = {𝑎1, 𝑎2, … } of the subjects of the domain. Each case 

(instance) of the domain 𝕄  determines an algebraic system 𝔄 = ⟨𝐴, 𝜎𝕄⟩, i.e., defines 

the signature 𝜎𝕄  on the set A. 

Further, to simplify the formalization, we will consider models  𝔄 = ⟨𝐴, 𝜎𝕄⟩ in 

the signature (𝜎𝕄)𝐴, enriched by constants for all elements of the model:  

(𝜎𝕄)𝐴 = 𝜎𝕄 ∪ {𝑐𝑎 | 𝑎 ∈ 𝐴}. 

So, for simplicity, we denote 𝜎 = 𝜎𝕄,  𝜎𝐴 = (𝜎𝕄)𝐴  and   𝔄𝐴 = ⟨𝐴, 𝜎𝐴⟩. 

Note that not every algebraic system 𝔄 = ⟨𝐴, 𝜎𝕄⟩ is the case of the domain 𝕄. 

We say that a model 𝔄𝐴 is a domain’s case  if  𝔄𝐴 ⊨ 𝒜𝓍𝑎 ∪ 𝒜𝓍𝑠. 

To solve different problems we may consider different sets of cases 𝐾 ⊆
𝕂(𝜎𝐴). For example, the set of cases  𝐾 may describe temporal "slices" of the domain, 

or geolocation "slices" of the domain. Also, the set 𝐾 may be used to describe the 

behavior of different groups of subscribers. 

Empirical knowledge completely depends on the selection of the set of cases 

𝐾 ⊆ 𝕂(𝜎𝐴) of the domain and serves as a source of generating a new knowledge 

about the given domain.  Below we will be construct the case model of the domain 

based on the selected set of cases  𝐾. 

Using the presented formalization of the case model, we can identify high-

level characteristics of mobile network subscribers and make portraits of mobile users' 

segments. To do this, we generate different Boolean-valued and fuzzy models (see 

Section 3) and construct corresponding formal contexts for given case models (see 

Section 4). 



3 Preliminaries: Boolean-valued models and fuzzy models 

In the present paper a model (an algebraic system) is a tuple  

𝔄 = 〈𝐴; 𝑃1, . . . , 𝑃𝑛 , 𝑐1, . . . , 𝑐𝑘〉. The set  |𝔄| = 𝐴 is called the universe of the model, 

𝑃1, . . . , 𝑃𝑛  are predicates defined on the set 𝐴 and 𝑐1, . . . , 𝑐𝑘  are constants. The tuple 

𝜎 = 〈 𝑃1, . . . , 𝑃𝑛 , 𝑐1, . . . , 𝑐𝑘〉 is called the signature of the algebraic system 𝔄. 

A formula having no free variables is called a sentence. For a signature 𝜎 we de-

note:  
𝑭(𝝈) ⇋ {𝝋 | 𝝋  𝐢𝐬 𝐚 𝐟𝐨𝐫𝐦𝐮𝐥𝐚 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐢𝐠𝐧𝐚𝐭𝐮𝐫𝐞  𝝈}, 

𝑺(𝝈) ⇋ {𝝋 | 𝝋  𝐢𝐬 𝐚 𝐬𝐞𝐧𝐭𝐞𝐧𝐜𝐞 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐢𝐠𝐧𝐚𝐭𝐮𝐫𝐞  𝝈}  and 
𝑲(𝝈) ⇋ {𝕬 | 𝕬  𝐢𝐬 𝐚 𝐦𝐨𝐝𝐞𝐥 𝐨𝐟 𝐭𝐡𝐞 𝐬𝐢𝐠𝐧𝐚𝐭𝐮𝐫𝐞  𝝈}. 

For a sentence  𝜑 ∈ 𝑆(𝜎) and a model 𝔄 ∈ 𝐾(𝜎) we denote  𝔄 ⊨ 𝜑  if the sentence  

𝜑  is true in the model  𝔄. 

 

Definition 1 [11]. Let  𝔹  be a complete Boolean algebra and  𝜏: S(𝜎A) → 𝔹.  A 

triple 𝔄𝔹 = 〈𝐴, 𝜎𝐴,  𝜏〉  is called a Boolean-valued model if the following conditions 

hold: 

𝜏(𝜑) = 𝜏(𝜑)̅̅ ̅̅ ̅̅ ;     𝜏(𝜑 ∨ 𝜓) = 𝜏(𝜑) ∪ 𝜏(𝜓); 

𝜏(𝜑 & 𝜓) = 𝜏(𝜑) ∩ 𝜏(𝜓);   𝜏(𝜑 → 𝜓) = 𝜏(𝜑)̅̅ ̅̅ ̅̅ ∪ 𝜏(𝜓); 

𝜏(∀𝑥𝜑(𝑥)) = ⋂ 𝜏(𝜑(𝑐𝑎));

𝑎∈𝐴

 𝜏(∃𝑥𝜑(𝑥)) = ⋃ 𝜏(𝜑(𝑐𝑎)).

𝑎∈𝐴

 

 

We use the notion of a fuzzy model to formalize the estimated knowledge of the 

object domain (the fourth level of the construction of the ontological model).  Each 

fuzzy model is a special case of the fuzzification of some Boolean-valued model [12, 

13]. 

Definition 2 [4]. Let 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉  be a Boolean-valued model, where  

𝜏: S(𝜎A) → 𝔹, and ℎ: 𝔹 → [0,1]  be a mapping for which ℎ(0) = 0  and ℎ(1) = 1. 

 We define a valuation 𝜇: S(𝜎A) → [0,1] as a composition 𝜇(𝜑) = ℎ(𝜏(𝜑)). 

A triple 𝔄𝜇 = ⟨𝐴,  𝜎𝐴,  𝜇⟩ is called a fuzzification of the Boolean valued-model 𝔄𝔹 via 

the mapping ℎ. 

 

Definition 3 [4]. The mapping ℎ: 𝔹 → [0,1] is called an additive homomorphism 

if 

(1) ℎ preserves the order, i.e., ℎ is a homomorphism ℎ: 𝔹 → [0,1] of posets 

with constants 0 and 1;  

(2) ℎ is additive, i.e.,  

𝑎 ∩ 𝑏 = 0 ⇒   ℎ(𝑎 ∪ 𝑏) = ℎ(𝑎) + ℎ(𝑏) for any 𝑎,  𝑏 ∈ 𝔹. 

 

Definition 4 [4]. A fuzzy model  𝔄𝜇 = ⟨𝐴,  𝜎𝐴,  𝜇⟩  is a fuzzification of a Boolean-

valued model 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉 via an additive homomorphism. 



4 Main results: formal contexts for Boolean-valued models 

Remark 5. Let 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉 be a Boolean-valued model and  𝜏: S(σA) → 𝔹. Con-

sider the formal context  (𝔹, 𝑆(𝜎𝐴), 𝐼), where  𝑏 𝐼 𝜑  ⇔  𝜏(𝜑) = 𝑏. Note that the non-

empty extents of formal concepts are one-element sets. 

 

Fig. 1. The formal context  (𝔹, 𝑆(𝜎𝐴), 𝐼). 

For a formal context  (𝐺, 𝑀,  𝐼)  by  𝔙(𝐺, 𝑀,  𝐼)  we denote the lattice of formal 

concepts of the formal context  (𝐺, 𝑀,  𝐼).  

Definition 6 [14]. Let 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉  be a Boolean-valued model, where 

𝜏: S(𝜎A) → 𝔹. Consider an atom 𝑏 ∈ At(𝔹). Define a model  𝔄b ∈ 𝕂(𝜎A) by setting  

𝔄b ⊨ 𝑃(𝑐1,  … ,  𝑐n) ⇔   𝑏 ≤ τ(𝑃(𝑐1,  … ,  𝑐n)) 

for any  𝑃,   𝑐1,  … , 𝑐n ∈ 𝜎A. 

Proposition 7 [14]. For the model 𝔄b and for an arbitrary sentence φ ∈ S(𝜎A), we 

have  𝔄b ⊨ φ  ⇔   𝑏 ≤ τ(φ). 

 A Boolean-valued model 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉 is called atomic if the Boolean al-

gebra 𝔹 is atomic.  

Definition 8. Let  𝔄𝔹   be an atomic Boolean-valued model. Denote 𝐴𝑡(𝔹) =

{𝑎 ∈ 𝔹 | 𝑎 is an atom}. Consider the formal context  (𝐴𝑡(𝔹),  𝑆(𝜎A),  𝐼𝜏), where  

𝑎 𝐼𝜏  𝜑 ⇔  𝑎 ≤ 𝜏(𝜑). 

 

Proposition 9. Let (𝐶,  Γ) ∈ 𝔅(𝐴𝑡(𝔹),  𝑆(𝜎A),  𝐼𝜏). Then Γ is a theory of the signa-

ture 𝜎A, i.e., for any 𝜑 ∈ S(𝜎A)  if  Γ ⊢ 𝜑  then  𝜑 ∈ Γ. 

Proof. Let (𝐶,  Γ) ∈ 𝔅(𝐴𝑡(𝔹),  𝑆(𝜎A),  𝐼𝜏). Let us show that Γ is a theory. Suppose 

that 𝜑 ∈ 𝑆(𝜎𝐴) and Γ ⊢ 𝜑. Prove that 𝜑 ∈ Γ. We have 𝐶′ = Γ; consequently, we must 

only show that 𝜑 ∈ 𝐶′.  

 

Fig. 2. The formal context  (𝐴𝑡(𝔹),  𝑆(𝜎𝐴),  𝐼𝜏). 



Consider 𝑏 ∈ 𝐶, then 𝑏 ∈ 𝐴𝑡(𝔹). It is true that  𝐶′ = Γ, so for any 𝜓 ∈ Γ, we have 

𝑏 𝐼𝜏  𝜓, therefore 𝑏 ≤ 𝜏(𝜓). Hence, by Proposition 7, we have 𝔄𝑏 ⊨ 𝜓.  

Consequently, for any 𝜓 ∈ Γ, it is true that 𝔄𝑏 ⊨ 𝜓, which means that 𝔄𝑏 ⊨ Γ. In-

volving the fact that Γ ⊢ 𝜑, we conclude that 𝔄𝑏 ⊨ 𝜑. Therefore, by Proposition 7, 

we have 𝑏 ≤ 𝜏(𝜑), so 𝑏 𝐼𝜏  𝜑. 

Thus, we have proved that 𝑏 𝐼𝜏  𝜑 for any 𝑏 ∈ 𝐶. Then 𝜑 ∈ 𝐶′ = Γ. Therefore, we 

have shown that for any 𝜑 ∈ 𝑆(𝜎𝐴), if  Τ ⊢ 𝜑 then 𝜑 ∈ Τ. Hence, Γ is a theory.        ∎ 

Theorem 10. Let  𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉  be an atomic Boolean-valued model. There ex-

ists an atomic Boolean-valued model  𝔄𝔹1
= 〈𝐴, 𝜎A,  𝜏1 〉, where 𝜏1: S(𝜎A) → 𝔹1, and 

an epimorphism g: 𝔹→ 𝔹1 such that 

1) the formal context (𝐴𝑡(𝔹1), 𝑆(𝜎𝐴), 𝐼𝜏1
) is object-clarified;  

2) for any  φ ∈ S(𝜎A)  we have g(𝜏(𝜑)) = 𝜏1(𝜑);  

3) for any 𝑏 ∈ At(𝔹), if  𝑔(𝑏) ≠ 0  then  𝑔(𝑏) ∈ At(𝔹1); 

4) for any 𝑏 ∈ At(𝔹) and 𝜑 ∈ S(𝜎A), if  𝑔(𝑏) ≠ 0  then  𝑏 𝐼𝜏  𝜑 ⇔ g(𝑏) 𝐼𝜏1
𝜑. 

Proof. Let 𝔄𝔹 = 〈𝐴, 𝜎A,  𝜏〉 be a Boolean-valued model and 𝔹 be atomic.  

 

 

Fig. 3. Epimorphism 𝑔: 𝔹 → 𝔹1 

Suppose that the formal context (𝐴𝑡(𝔹), 𝑆(𝜎𝐴), 𝐼𝜏) is not object-clarified. Consider 

an equivalence relation ~ on the set 𝐴𝑡(𝔹) of the atoms of the Boolean algebra 𝔹 

defined as follows: for 𝑎, 𝑏 ∈ 𝐴𝑡(𝔹) we have 𝑎~𝑏  iff for any 𝜑 ∈ 𝑆(𝜎𝐴) it is true that 

𝑎 𝐼𝜏  𝜑 ⇔ 𝑏 𝐼𝜏  𝜑. 

Consider the quotient set  𝔹/~ ,  and denote  𝐻 = 𝐴𝑡(𝔹)/~ . 

We chose exactly one element 𝑐[𝑎] ∈ [𝑎] in each equivalence class [𝑎] ∈ 𝐴𝑡(𝔹)/~. 

Denote 

𝐶 = {𝑐[𝑎] | [𝑎] ∈ 𝐻} ⊆ 𝐴𝑡(𝐵)    and    𝑑 = ⋃ 𝑏

(𝑏∈(𝐴𝑡(𝐵)\𝐶))

. 

Consider a principal ideal 𝐼 = 𝑑̂ = {𝑏 ∈ 𝔹 | 𝑏 ≤ 𝑑}  of the Boolean algebra 𝔹 : 

𝐼 ⊲ 𝔹.  

Consider a Boolean algebra 𝔹1 = 𝔹
𝐼⁄  which is the quotient algebra of the Boolean 

algebra 𝔹 by the ideal  𝐼. 

Consider an epimorphism 𝑔: 𝔹 → 𝔹1  defined as follows: 𝑔(𝑏) = 𝑏
𝐼⁄   for any  

𝑏 ∈ 𝔹;  here  𝑏 𝐼⁄   is the quotient class of the element 𝑏. 

Define a mapping 𝜏1: 𝑆(𝜎𝐴) → 𝔹1 as follows: 



𝜏1(𝜑) =
𝜏(𝜑)

𝐼
⁄    for   𝜑 ∈ 𝑆(𝜎𝐴). 

Lemma 11. 𝔄𝔹1
= 〈𝐴, 𝜎𝐴, 𝜏1〉 is a Boolean-valued model. 

Proof. Consider 𝜑, 𝜓 ∈ 𝑆(𝜎𝐴). We have 

𝜏1(¬𝜑) =
𝜏(¬𝜑)

𝐼
⁄ =

𝜏(𝜑)
𝐼

⁄ =
𝜏(𝜑)

𝐼
⁄ = 𝜏1(𝜑); 

𝜏1(𝜑 ∨ 𝜓) =
𝜏(𝜑 ∨ 𝜓)

𝐼
⁄ =

𝜏(𝜑) ∪ 𝜏(𝜓)
𝐼

⁄ =
𝜏(𝜑)

𝐼⁄  ∪  
𝜏(𝜓)

𝐼
⁄ = 𝜏1(𝜑) ∪ 𝜏1(𝜓); 

𝜏1(𝜑 &𝜓) =
𝜏(𝜑&𝜓)

𝐼
⁄ =

𝜏(𝜑) ∩ 𝜏(𝜓)
𝐼

⁄ =
𝜏(𝜑)

𝐼⁄  ∩  
𝜏(𝜓)

𝐼
⁄ = 𝜏1(𝜑) ∩ 𝜏1(𝜓); 

𝜏1(𝜑 → 𝜓) =
𝜏(𝜑 → 𝜓)

𝐼
⁄ =

𝜏(𝜑) ∪ 𝜏(𝜓)
𝐼

⁄ =
𝜏(𝜑)

𝐼
⁄ ∪  

𝜏(𝜓)
𝐼

⁄ = 𝜏1(𝜑) ∪ 𝜏1(𝜓). 

Consider 𝜑(𝑥) ∈ 𝐹(𝜎𝐴). We have 

𝜏1(∀𝑥𝜑(𝑥)) =
𝜏(∀𝑥𝜑(𝑥))

𝐼
⁄ =

⋂ 𝜏(𝜑(𝑐𝑎))𝑎∈𝐴
𝐼

⁄ = 

= ⋂
𝜏(𝜑(𝑐𝑎))

𝐼
⁄

𝑎∈𝐴

= ⋂ 𝜏1(𝜑(𝑐𝑎))

𝑎∈𝐴

; 

 

𝜏1(∃𝑥𝜑(𝑥)) =
𝜏(∃𝑥𝜑(𝑥))

𝐼
⁄ =

⋃ 𝜏(𝜑(𝑐𝑎))𝑎∈𝐴
𝐼

⁄ = 

= ⋃
𝜏(𝜑(𝑐𝑎))

𝐼
⁄

𝑎∈𝐴

= ⋃ 𝜏1(𝜑(𝑐𝑎))

𝑎∈𝐴

. 

Note that the equalities 

 

⋂ 𝜏(𝜑(𝑐𝑎))𝑎∈𝐴
𝐼

⁄ = ⋂
𝜏(𝜑(𝑐𝑎))

𝐼
⁄

𝑎∈𝐴

 

and  

 

⋃ 𝜏(𝜑(𝑐𝑎))𝑎∈𝐴
𝐼

⁄ = ⋃
𝜏(𝜑(𝑐𝑎))

𝐼
⁄

𝑎∈𝐴

 

are true in virtue of the fact that the Boolean algebra 𝔹 is complete. 

Thus, we have shown that 𝔄𝔹1
= 〈𝐴, 𝜎A,  𝜏1〉 is Boolean-valued model. 

The lemma is proved.                                                                                              ∎ 

Continue the proof of the theorem. First we prove that the set of atoms    

𝐴𝑡(𝔹1) = {𝑏
𝐼⁄  | 𝑏 ∈ 𝐶}. 

Let 𝑏 ∈ 𝐶. Then 𝑏 ∉ 𝐼 and so,  𝑏 𝐼⁄ ≠ 0.  If  𝑐 𝐼⁄ ≠ 0  and  𝑐 𝐼⁄ ≤ 𝑏
𝐼⁄   then  

 
𝑐

𝐼⁄ = 𝑐
𝐼⁄  ∩  𝑏

𝐼⁄ = 𝑐 ∩ 𝑏
𝐼⁄ . 



So, 𝑐 ∩ 𝑏 ≠ 0 and 𝑐 ∩ 𝑏 ≤ 𝑏, therefore, 𝑐 ∩ 𝑏 = 𝑏. Hence, 𝑐 ∩ 𝑏
𝐼⁄ = 𝑏

𝐼⁄   and so, 

𝑐
𝐼⁄ = 𝑏

𝐼⁄ . Thus, 𝑏 𝐼⁄  is an atom of the Boolean algebra 𝔹1. 

On the other hand, let  𝑐 𝐼⁄   be an atom of the Boolean algebra 𝔹1. Then  𝑐 𝐼⁄ ≠ 0 

and so,  𝑐 ≠ 0. The Boolean algebra 𝔹 is atomic, hence the set of atoms 𝐴𝑡(𝑐) =
{𝑏 ∈ 𝐴𝑡(𝔹)| 𝑏 ≤ 𝑐} ≠ ∅  and  𝑐 = ⋃ 𝑏𝑏∈𝐴𝑡(𝔹) . Involving the fact that  𝑐 𝐼⁄ ≠ 0  we 

conclude that  𝑐 ∉ 𝐼 = 𝑑̂, consequently,  𝑐 ≰ 𝑑. 

We have 𝑑 = ⋃ 𝑏𝑏∈𝐴𝑡(𝔹)\𝐶   and  𝑐 = ⋃ 𝑏𝑏∈𝐴𝑡(𝑐) , hence, if  𝐴𝑡(𝑐) ⊆ 𝐴𝑡(𝔹)\𝐶 then 

𝑐 ≤ 𝑑. Therefore,  𝐴𝑡(𝑐) ⊈ 𝐴𝑡(𝔹)\𝐶, so 𝐴𝑡(𝑐) ∩ 𝐶 ≠ ∅. 

Consequently, there exists an atom 𝑏 ∈ 𝐴𝑡(𝑐) ∩ 𝐶 . Hence, 𝑏 ∈ 𝐶  and 𝑏 ≤ 𝑐 , so 
𝑏

𝐼⁄ ≤ 𝑐
𝐼⁄ . As we proved above, 𝑏 ∈ 𝐶 implies that  𝑏 𝐼⁄   is an atom of the Boolean 

algebra 𝔹1. Involving the fact that 𝑐 𝐼⁄  is an atom we conclude that  𝑏 𝐼⁄ = 𝑐
𝐼⁄   and so, 

𝑐
𝐼⁄ ∈ {𝑒

𝐼⁄  | 𝑒 ∈ 𝐶}. Therefore,   𝐴𝑡(𝔹1) = {𝑏
𝐼⁄  | 𝑏 ∈ 𝐶}.  

Thus, that for any  𝑏 ∈ 𝐴𝑡(𝔹)  if  𝑏 ∈ 𝐴𝑡(𝔹)\𝐶  then  𝑏 ≤ 𝑑, hence,  𝑏 𝐼⁄ = 0. If  

𝑏 ∈ 𝐶  then  𝑏 𝐼⁄ ∈ 𝐴𝑡(𝔹1). Consequently, the statement (3) holds. 

Next, by the definition of the epimorphism 𝑔: 𝔹 → 𝔹1 we have  

𝑔(𝜏(𝜑)) =
𝜏(𝜑)

𝐼⁄ = 𝜏1(𝜑). 

Therefore, the statement (2) holds. 

Lemma 12. For every 𝑏 ∈ 𝐴𝑡(𝔹), and every 𝜑 ∈ 𝑆(𝜎𝐴), if 𝑔(𝑏) ≠ 0 then  

𝑏 𝐼𝜏  𝜑  ⇔   𝑔(𝑏) 𝐼𝜏1
𝜑. 

Proof. Consider 𝑏 ∈ 𝐴𝑡(𝔹)  and 𝜑 ∈ 𝑆(𝜎𝐴) . Let 𝑔(𝑏) ≠ 0 . Let us prove that 

𝑏 𝐼𝜏  𝜑  ⇔   𝑔(𝑏) 𝐼𝜏1
𝜑. 

(⇒)  Suppose that 𝑏 𝐼𝜏  𝜑  holds. Then 𝑏 ≤ 𝜏(𝜑) , hence 𝑏
𝐼⁄ ≤

𝜏(𝜑)
𝐼

⁄ = 𝜏1(𝜑) . 

Therefore, we have  (𝑏
𝐼⁄ ) 𝐼𝜏1

𝜑  and so,  𝑔(𝑏)𝐼𝜏1
 𝜑  holds. 

(⇐) Suppose that  𝑏 𝐼𝜏  𝜑  doesn’t hold. Then  𝑏 ≰ 𝜏(𝜑), so, 𝑏 ≠ 𝑏 ∩ 𝜏(𝜑). The el-

ement  𝑏   is an atom and we have 𝑏 ≠ 𝑏 ∩ 𝜏(𝜑) ≤ 𝑏 . Then 𝑏 ∩ 𝜏(𝜑) = 0 , hence 

𝑏
𝐼⁄ ∩

𝜏(𝜑)
𝐼

⁄ =
𝑏 ∩ 𝜏(𝜑)

𝐼
⁄ = 0. 

Since 𝑏
𝐼⁄ = 𝑔(𝑏) ≠ 0 , we have 𝑏

𝐼⁄ ≠ 𝑏
𝐼⁄ ∩

𝜏(𝜑)
𝐼

⁄ , hence,  𝑏 𝐼⁄ ≰
𝜏(𝜑)

𝐼
⁄ =

𝜏1(𝜑), i.e.,  𝑔(𝑏) ≰ 𝜏1(𝜑). Therefore, 𝑔(𝑏)𝐼𝜏1
 𝜑 doesn’t hold. 

The lemma is proved.                                                                                               ∎ 

Thus, we have proved the statement (4). Now let us prove that the formal context 

(𝐴𝑡(𝔹1), 𝑆(𝜎𝐴), 𝐼𝜏1
) is object-clarified – the statement (1). 

Consider 𝑏1, 𝑏2 ∈ 𝐶. Let  
𝑏1

𝐼⁄ ≠
𝑏2

𝐼⁄ . Then there are atoms 𝑎1, 𝑎2 ∈ 𝐴𝑡(𝔹) such 

that 𝑏1 = 𝑐[𝑎1]  and  𝑏2 = 𝑐[𝑎2] . Hence, 𝑏1 ∈ [𝑎1] and 𝑏2 ∈ [𝑎2]. Since 𝑏1 ≠ 𝑏2 , we 

have [𝑎1] ≠ [𝑎2], so, 𝑏1 ≁ 𝑏2. Therefore, there is a sentence 𝜑 ∈ 𝑆(𝜎𝐴) such that only 

one of the statements 𝑏1 𝐼𝜏  𝜑 and 𝑏2 𝐼𝜏  𝜑 holds. Suppose that 𝑏1 𝐼𝜏  𝜑 holds and 𝑏2 𝐼𝜏  𝜑 

doesn’t hold. We conclude by Lemma 12 that  𝑔(𝑏1) 𝐼𝜏1
 𝜑  holds and  𝑔(𝑏2) 𝐼𝜏1

 𝜑 

doesn’t hold. Therefore, the rows corresponding to the objects  
𝑏1

𝐼⁄   and  
𝑏2

𝐼⁄   of the 



formal context (𝐴𝑡(𝔹1), 𝑆(𝜎𝐴), 𝐼𝜏1
)  are different. Thus, the formal context 

(𝐴𝑡(𝔹1), 𝑆(𝜎𝐴), 𝐼𝜏1
)  is object-clarified. 

The theorem is proved.                                                                                             ∎ 

Recall that  𝕂(𝜎A) = {〈{𝑐𝑎
𝔄 | 𝑎 ∈ 𝐴},  𝜎A〉 | 𝑐𝑎

𝔄 ≠ 𝑐𝑏
𝔄  for 𝑎 ≠ 𝑏} and  

𝑇ℎ(𝐾) = {𝜑 ∈ S(𝜎A)| 𝐾 ⊨ 𝜑}  is the theory of the class  𝐾 ⊆ 𝕂(𝜎A). 

We represent the set of the cases of the domain (3rd level of the ontological model) 

as a class of models  𝐾 ⊆ 𝕂(𝜎A). So, it is interesting and important to solve the fol-

lowing 

Problem 13. How to describe the theories of the classes  𝐾 ⊆ 𝕂(𝜎A). 

Theorem 14. Let 𝑇 be a theory of the signature 𝜎𝐴. There exists a class 𝐾 ⊆ 𝕂(𝜎𝐴) 

such that 𝑇 = 𝑇ℎ(𝐾) if and only if there exists a Bolean-valued model 𝔄𝔹 such that  

(𝑇′,  𝑇) ∈ 𝔅(𝐴𝑡(𝔹),  𝑆(𝜎𝐴),  𝐼𝜏). 

Proof. Let 𝑇 be a theory in the signature 𝜎𝐴.  

(⇒) Consider a class 𝐾 ⊆ 𝕂(𝜎𝐴). Let  𝑇 = 𝑇ℎ(𝐾). Denote  𝐾0 = 𝕂(𝜎𝐴). Consider 

a Boolean algebra 𝔹 = 〈℘(𝐾0); ∪,∩, −, ∅, 𝐾0〉 and a mapping 𝜏: 𝑆(𝜎𝐴) → 𝔹 defined 

as follows: 𝜏(𝜑) = {𝔅 ∈ 𝐾 | 𝔅 ⊨ 𝜑}  for a sentence  𝜑 ∈ 𝑆(𝜎𝐴). 
Lemma 15. 𝔄𝔹 = 〈𝐴, 𝜎𝑎 , 𝜏〉  is a Boolean-valued model. 

Proof. Let 𝜑, 𝜓 ∈ 𝑆(𝜎𝐴). Then 

𝜏(¬𝜑) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ ¬𝜑} = {𝔅 ∈ 𝐾0 | 𝔅 ⊭ 𝜑} = 

𝐾\{𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑} = 𝐾0\𝜏(𝜑) = 𝜏(𝜑); 

𝜏(𝜑 ∨ 𝜓) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ (𝜑 ∨ 𝜓)} = 

= {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑} ∪ {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜓} = 𝜏(𝜑) ∪ 𝜏(𝜓); 

𝜏(𝜑&𝜓) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ (𝜑&𝜓)} = 

= {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑} ∩ {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜓} = 𝜏(𝜑) ∩ 𝜏(𝜓); 

𝜏(𝜑 → 𝜓) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ (𝜑 ∨ 𝜓)} = 𝜏(𝜑) ∪ 𝜏(𝜓). 
Let 𝜑(𝑥) ∈ 𝐹(𝜎𝐴). Then 

𝜏(∀𝑥𝜑(𝑥)) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ ∀𝑥𝜑(𝑥)} = 

= {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑎) for any 𝑎 ∈ 𝐴} = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑐𝑎) for any  𝑎 ∈ 𝐴} =

= ⋂{𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑐𝑎)} = ⋂ 𝜏(𝜑(𝑐𝑎))

𝑎∈𝐴𝑎∈𝐴

; 

𝜏(∃𝑥𝜑(𝑥)) = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ ∃𝑥𝜑(𝑥)} = 

{𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑎) for some 𝑎 ∈ 𝐴} = {𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑐𝑎) for some  𝑎 ∈ 𝐴} =

= ⋃{𝔅 ∈ 𝐾0 | 𝔅 ⊨ 𝜑(𝑐𝑎)}

𝑎∈𝐴

= ⋃ 𝜏(𝜑(𝑐𝑎))

𝑎∈𝐴

. 

The lemma is proved.                                                                                               ∎ 

Notice that the atoms of the Boolean algebra 𝔹 = 〈℘(𝐾0); ∪,∩, −, ∅, 𝐾0〉 are exact-

ly the one-element subsets of the set 𝐾0. Hence, 𝐴𝑡(𝔹) = {{𝔅} | 𝔅 ∈ 𝐾0}.  

Consider a formal context  〈𝐴𝑡(𝔹), 𝑆(𝜎𝐴), 𝐼𝜏〉. Let ℭ ∈ 𝐾0 and 𝜑 ∈ 𝑆(𝜎𝐴). Then we 

have  



{ℭ} 𝐼𝜏  𝜑  ⇔   {ℭ} ⊆ 𝜏(𝜑)  ⇔   {ℭ}  ⊆ {𝔅 ∈ 𝐾 | 𝔅 ⊨ 𝜑}   ⇔   ℭ ⊨ 𝜑. 

Thus, we have {ℭ} 𝐼𝜏  𝜑 ⇔  ℭ ⊨ 𝜑. Recall that 𝐾 ⊆ 𝐾0 = 𝕂(𝜎𝐴) and 𝑇 = 𝑇ℎ(𝐾). 

Denote 𝐾 = {{𝔅} | 𝔅 ∈ 𝐾} ⊆ 𝐴𝑡(𝔹). Then 

𝐾′ = {𝜑 ∈ 𝑆(𝜎𝐴) | {𝔅} 𝐼𝜏  𝜑   for any {𝔅} ∈ 𝐾}

= {𝜑 ∈ 𝑆(𝜎𝐴) | 𝔅 ⊨ 𝜑   for any 𝔅 ∈ 𝐾} = 𝑇ℎ(𝐾) = 𝑇. 

Therefore, 𝑇 = 𝑇′′ and the pair (𝑇′, 𝑇) is a formal concept of the formal context 

〈𝐴𝑡(𝔹), 𝑆(𝜎𝐴), 𝐼𝜏〉, i.e.,  (𝑇′, 𝑇) ∈ 𝔅(𝐴𝑡(𝔹), 𝑆(𝜎𝐴), 𝐼𝜏). 

(⇐)  Let 𝔄𝔹 = 〈𝐴, 𝜎𝑎, 𝜏〉  be a Boolean-valued model and a pair (𝑇′, 𝑇) ∈

𝔅(𝐴𝑡(𝔹), 𝑆(𝜎𝐴), 𝐼𝜏).` 

Denote 𝐶 = 𝑇′. Then 𝐶 ⊆ 𝐴𝑡(𝔹) and 𝐶′ = 𝑇. Consider a class  𝐾 = {𝔄𝑏 | 𝑏 ∈ 𝐶}. 

We have proved above in the proof of Proposition 9 that in this case 𝔄𝑏 ⊨ 𝑇 holds for 

any 𝑏 ∈ 𝐶. 

Therefore, for any 𝔅 ∈ 𝐾  we have 𝔅 ⊨ 𝑇 . It means that 𝐾 ⊨ 𝑇 . Hence, 𝑇 ⊆

𝑇ℎ(𝐾) = {𝜑 ∈ 𝑆(𝜎𝐴)| 𝐾 ⊨ 𝜑}. 

Let us show that  𝑇ℎ(𝐾) ⊆ 𝑇. Let 𝜑 ∈ 𝑇ℎ(𝐾). Then 𝐾 ⊨ 𝜑, which means that 

𝔅 ⊨ 𝜑 for any 𝔅 ∈ 𝐾. Consequently, for any 𝑏 ∈ 𝐶 we have 𝔄𝑏 ⊨ 𝜑. By Proposition 

7,  𝔄𝑏 ⊨ 𝜑 implies that  𝑏 ≤ 𝜏(𝜑), hence,  𝑏 𝐼𝜏  𝜑 holds. 

Thus, for any 𝑏 ∈ 𝐶 we have 𝑏 𝐼𝜏 𝜑, then 𝜑 ∈ 𝐶′ = 𝑇′′ = 𝑇, i.e., 𝜑 ∈ 𝑇. Therefore, 

for any 𝜑 ∈ 𝑇ℎ(𝐾) we have 𝜑 ∈ 𝑇, hence 𝑇ℎ(𝐾) ⊆ 𝑇, and so, 𝑇 = 𝑇ℎ(𝐾). 

The theorem is proved.                                                                                             ∎ 

5 Conclusion 

In the present paper we investigate the mathematical foundations of ontological mod-

eling of the domain of mobile networks. We use the four-level model of knowledge 

representation to formalize this domain. We construct the case model at the third level 

of ontological model creation, when we formalize the empirical knowledge. The case 

model is presented by a set of countable algebraic systems. In the ontological model, 

the high-level characteristics of mobile network subscribers are represented with the 

help of first order theories of classes of algebraic systems of the special kind. 

Next, we describe a method of constructing a formal context for a Boolean-valued 

model which represents the case model.  We show that, without loss of generality, we 

may consider only object-clarified formal contexts corresponding to the Boolean-

valued models.  

We prove that the intents of formal concepts of formal contexts corresponding to 

Boolean-valued models are first order theories of the signature under consideration. In 

the end, we solve the following problem: What are the theories of the classes         

𝐾 ⊆ 𝕂(𝜎A)? We obtain a description of theories of the classes of domain cases in the 



language of formal concepts of the formal contexts corresponding to the Boolean-

valued models. 
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