
Applying Inference Engine to Context-Aware Computing

Services
Jaemoon Sim, Jihoon Kim, Ohbyung Kwon
College of Management and International Relations

KyungHee University

Yongin, Kyungggi-do, 449701, South Korea

+82-31-201-2306

{ deskmoon, hdlamb, obkwon}@khu.ac.kr

Sean S. Lee, Jungho Kim, HK Jang,
Myungchul Lee

IBM Ubiquitous Computing Lab

Dogok-dong, Kangnam-gu, Seoul, Korea Rep 135700

+82-2-3781-8598

{ lsean, kjungho, hkjang, mclee}@kr.ibm.com

ABSTRACT
Ubiquitous computing services started taking advantage of the

reasoning capabilities of inference engines to acquire hidden and

potentially useful contextual information. However, performance

evaluations of the inference engines have been limited to the

domain of static information reasoning; evaluations of

requirements pertaining to ubiquitous computing environment

have been largely neglected. This paper aims to examine how

different types of inference engines perform by applying them to

realistic ubiquitous computing scenarios. Based on the scenarios,

three measurement criteria are proposed and measured including

scalability as data set gets large, responsiveness for user’s requests,

and adaptability to frequent inference requests.

Keywords
Inference Engine, OWL-DL, scalability, MINERVA, DLDB-OWL

1. INTRODUCTION
Ubiquitous computing services aim to provide information and

services in more intelligent ways with more seamless interfaces

that aid users to be conveniently served anytime, anywhere with

any devices without awkward user intervention. These must rely

on not only multiple sensors capturing user’s context but also

reasoning capabilities for processing raw sensed context data into

more useful and meaningful information within the user’s

environment. Recently, inference engines such as Jena, RacerPro,

FacT++, and Minerva have been proposed as a core component of

intelligent ubiquitous computing systems. There had been many

extensive evaluations of their reasoning capabilities in correctness,

completeness, and response time [10, 11]. It is less widely known

without fully analyzing how well the inference engines can fare

full-fledged ubiquitous computing services covering vast zones

with various sets of requirements such as lots of fast moving users

and other transient computing entities. The main purpose of this

paper is to examine how well inference engines satisfy

responsiveness requirement, scalability requirement and

requirement to accommodate frequent inference requests in

response to dynamic data insertion and deletion that realistic

ubiquitous computing environments exhibit. To do so, we have

modeled scenarios based in a major Korean university such as

MyEntrance service. MyEntrance service scenario is a part of a

larger Celadon project [8] in aim to study and adopt the most

suitable reasoner for ubiquitous environment in its system.

Specifically, five most prominent engines are considered based on

their reasoning mechanisms: three memory-based and two DBMS-

based engines.

2. INFERENCE ENGINES
MINERVA, JENA, Pellet, RacerPro, and DLDB-OWL (HAWK)

[1, 2, 3, 4, 5, 6, 7] are discussed as representative instances of each

class of reasoners and they are summarized in Table 1.

2.1 MINERVA

Minerva is high performance OWL storage, inference, and query

system built on RDBMS. The advantages of the system could be

categorized in two important aspects of a reasoner: response time

and scalability. It does all required inferences in the time of data

load instead of data query, making it more responsive at the time

of user query. In addition, it calculates all inferences in relational

database management system, making it more scalable than

memory based counterpart. It is provided as a component of

IBM’s Integrated Ontology Development Toolkit (IODT) [4] and

it supports DLP (Description Logic Program), a subset of OWL

DL and conjunctive query, a subset of the SPARQL language.

Minerva uses Description Logic reasoner for TBox and a set of

logic rules translated from Description Logic Programming (DLP)

for ABox inference.

2.2 DLDB-OWL/HAWK

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that copies

bear this notice and the full citation on the first page. To copy otherwise,

or republish, to post on servers or to redistribute to lists, requires prior

specific permission and/or a fee.

UbiPCMM06 September 18, 2006, California, USA

ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications

Table 1. The Comparative Table for Inference Engine

Import Inference Repository Query

Ontology
Language

Capability
Internal
Engine

External
Engine

Persistent
Storage

Memo
-ry

Language

Version Source

Minerva OWL DL O Racer, Pellet
DB2, Derby,

HSQLDB
X SPARQL

Semantics

Toolkit-

1.1.1

IBM

DLDB-

OWL
OWL DL X Racer

MS-Access,

PostgreSQL
O

KIF-Like

language

HAWK 1.3

beta

Lehigh

University

SWAT Lab

Pellet

DIG tell

document,

OWL

DL O X X O

DIG ask

document,

RDQL

pellet-1.3 mindswap

Racer

DIG tell

document,

OWL

DL O O X O

DIG ask

document,

Racer Query

Language

RacerPro

1.9.0

Racer

Systems

GmbH & Co.

KG

JENA OWL DL O

Racer Pro,

Pellet,

Fact++

(JenaOntMo

del)

MySQL,

HSQLDB,

PostgreSQL,

Oracle, MS-

SQL Server

O SPARQL Jena 2.4 HP Labs

DLDB-OWL is a repository framework and toolkit that supports

OWL It provides APIs as well as implementations for parsing,

editing, manipulating and preservation of OWL ontologies. The

architecture of DLDB-OWL consists of three packages: core, owl

and storage. The core package defines the generic interfaces of the

data structures of ontology and ontology objects, e.g. class and

property. The core package, that is independent of underlying

model the application will use, provides an API for constructing

and manipulating ontology models. The owl package provides the

utilities for parsing and serializing ontologies in OWL language.

2.3 Pellet
Pellet is an open-source Java based OWL DL reasoner. It can be

used in conjunction with both Jena and OWL API libraries and

also provides a DIG interface. Pellet API provides functionalities

to see the species validation, check consistency of ontologies,

classify the taxonomy, check entailments and answer a subset of

RDQL queries. It supports the full expressivity OWL DL including

reasoning about nominals (enumerated classes).

2.4 RacerPro
RacerPro is an OWL reasoner and inference server for the

semantic web. The origins of RacerPro are within the area of

description logics. It can be used as a system for managing

semantic web ontologies based on OWL. However, RacerPro can

also be seen as a semantic web information repository with

optimized retrieval engine because it can handle large sets of data

descriptions.

2.5 JENA
Jena is a Java framework for building Semantic Web applications.

It provides a programmatic environment for RDF, RDFS and

OWL, SPARQL and includes a rule-based inference engine. The

Jena Framework includes a RDF API, reading and writing RDF in

RDF/XML, N3 and N-Triples and an OWL API and SPARQL

query engine.

3. PERFORMANCE EVALUATION

3.1 MyEntrance Service Scenario
To analyze how the legacy inference engines perform in realistic

ubiquitous computing environments, we used a MyEntrance

service scenario modeled based on Kyunghee Univerity (KHU).

KHU has two great campuses, Seoul campus with 50 departments

and YongIn campus with 51 departments.

“When a member of KHU enters the Student Union Building, a

service agent recognizes the member’s preference and searches for

an Event on the Application Server to provide it for him/her.

Additionally, a sports equipment shop located in Student Union

Building wants to advertise its sales promotion on new baseball

products for the KHU students and faculty members. The Service

Agent of the sports equipment shop in KHU requests Application

Server to retrieve the information on the hobbies of members

located in the Student Union Building. The Application Server

hands over the request of Service Agent to Context Server about

the hobby information of members who are located in the Student

Union Building. Context Server returns the result of preference

and product matching inference. Consequently, the Service Agent

checks for the members who like to play baseball and it sends the

Discount Event Information to appropriate members. The

members who receive the event information make a purchase

decision with the received offer.

ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications

To accommodate this scenario, we have developed KHU campus

ontology based on the ontology generation program supported by

IBM China Lab [9]. On top of the generated ontology, we have

installed area-based location context. An experimental data set

which represents an actual college (9 departments, file size=

11.8MB), International College in KHU at Suwon, was made and

used in the performance evaluation.

3.2 Results: Performance Evaluation on Static
and Dynamic Context Information

For the performance evaluation on static information, we placed

our focus on scalability and subsequent performance issue.

Specifically, in evaluating the performance of query processing,

we considered 16 sets of University Ontology Benchmark [9]

queries that were generated by IBM China Research Lab. by

extending widely used Lehigh University Benchmark [10].

In order to evaluate handling of context information, SPARQL is

used as follows:

SELECT

DISTINCT ?person ?zone ?Hobby1 ?Hobby2 ?Hobby3

WHERE

(?person benchmark:locatedIn

<http://rcubs.kyunghee.ac.kr/owl/rcubs-univ-bench-

dl.owl#Zone1>)

(?person benchmark:locatedIn ?zone)

(?person benchmark:like ?Hobby1)

For DLDB-OWL/HAWK evaluation, the above query is translated

into KIF-like query as follows:

[http://rcubs.kyunghee.ac.kr/owl/univ-bench-

dl.owl]

(type Person ?x)

(locatedIn ?x

http://rcubs.kyunghee.ac.kr/owl/rcubs-univ-bench-

dl.owl#Zone1)

(locatedIn ?x ?z)

(like ?x ?y1)

We set up our scenario environment of campus like the topology

shown as Figure 1. For context generation, user’s current location

is gathered by the context event handler on the client’s portable

device or tags at any time the user is passing by sensors located in

the entrance gate of the campus buildings. At a fixed cycle, the

context event handler sends the user’s current context information

as OWL-DL format to the context server. The context server

returns the result if the ontology files comes through successfully

to the context event handler. The user may invoke the application

server to get location-based service at any time the user wants.

Then the application server asks the context server to get service-

related context data as facts. According to the facts, the inference

engine determines the location-based services most appropriate for

the user.

Context server
(OWL DL ontology)

Context event handler
(context ontology writer)

Application server
(context ontology reader)
(Inference engine)

Client

Figure 1. Simulation Environment

We select query response time as the performance measure. The

summary of response time is listed in Table 2.

Table 2. Summary of query response time

Response Time (ms)

Query #
MINERVA

DLDB-

OWL

/HAWK

Pellet

1 424.90 10.00 5858.00

2 312.80 12.85 268.70

3 284.30 241.85 115.50

4 382.80 221.57 89.00

5 358.00 2.85 31.20

6 343.70 5.71 42.20

7 483.00 5.71 40.50

8 743.60 5.71 1813723.00

9 843.90 160.14 295.40

10 857.90 25.71 7.80

11 ­ 81.71 17.40

12 1176.60 43.00 9.20

13 906.40 2.85 1199564.80

14 1076.60 173.00 467724.80

15 978.10 158.71 208571.80

16 1186.00 291.71 51.50

Performance evaluations in case of dynamic context were also

performed. Dynamic context evaluations were differentiated from

the static context evaluation in that, engines were constantly

requested to inference based on new data whereas the static

evaluations were performed after the inference processing is

finished. For this test, since the memory-based reasoning systems

cannot be directly compared to the DBMS-based reasoning

systems in their absolute loading time, we tested two database-

based reasoning systems: MINERVA and DLDB-OWL/HAWK.

Only the test with data set 1 is described in this paper because we

encountered a consistent problem with the dynamic data set and

did not see the value in presenting more data in this study. The

result is listed in

ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications

Table 3. Summary of load time in dynamic situation

Load Time (%)

Cycle time of

updating

context data

Cycle time of

query

processing

Minerva
DLDB-

OWL

600sec

33.3

0.0

66.7

99.8

0.2

0.0

60sec

5.0

6.7

88.3

89.5

10.5

0.0

1200 SEC

10sec

0.6

3.6

95.8

91.3

8.7

0.0

600sec

33.3

16.7

50.0

93.3

6.7

0.0

60sec

5.0

6.7

88.3

84.0

16.0

0.0

900 SEC

10sec

0.8

6.7

92.5

89.1

10.9

0.0

600sec

50.0

0.0

50.0

90.0

10.0

0.0

60sec

6.7

5.0

88.3

71.0

29.0

0.0

600 SEC

10sec

0.8

6.7

92.5

85.7

14.3

0.0

Table 3 where the first number of the three denotes the rate of

yielding correct answers to the query aforementioned. The second

and third numbers denote the rate of yielding wrong answers and

no response to the query, respectively.

4. CONCLUSION
We first studied the responsiveness to the user request using both

memory-based and DBMS-based inference engines in static

context setting. The result indicated that database-based inference

engines far outperform the other in this criterion owing to the fact

that memory based inference engines pre-process context data

while loading and thus is able to respond without further

calculation at query time.

Then, using DBMS-based inference engines, we analyzed how

they perform in conducting a context-aware MyEntrance service

under the setting and environment of a major university. By

varying the cycle of context changes and knowledge loading,

performance measures such as correctness and completeness were

examined. We noticed that engines do not respond to queries in the

middle of their inferences and sometimes generate invalid or no

responses.

We conclude that current state-of-the-art inference engines do not

fulfill responsiveness, scalability and high-update frequency

requirements demanded for ubiquitous computing environments

with lots of fast moving users and other transient computing

entities. And, evolutionary algorithms or inference mechanisms to

deal with enormous amount of data, frequency of updates and

respond to user’s needs in time are needed for the inference

engines to be improved.

5. ACKNOWLEDGEMENT
Thanks to the Institute of Information Technology Assessment and

Ministry of Information and Communication of Republic of Korea

for providing an opportunity to participate in the IT839 project.

And, thanks to IBM China Research Laboratory for providing

detailed information about Integrated Ontology Development

Toolkit available on IBM AlphaWorks.

REFERENCES
[1] Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D.,

Seaborne, A., Wilkinson, K. Jena: Implementing the

Semantic Web Recommendations. Proceedings of the 13th

International World Wide Web Conference. ACM Press, New

York (2004) 74-83

[2] Guo, Y., Pan, Z., Heflin., J. An Evaluation of Knowledge

Base Systems for Large OWL Datasets. Proceedings of the

3rd International Semantic Web Conference, Hiroshima.

LNCS, Vol. 3298. (2004) 274-288

[3] Haarslev, V., M¨oller, R., Wessel, M. Querying the Semantic

Web with Racer + nRQL, In: Proc. of the KI-04 Workshop

on Applications of Description Logics. (2004)

[4] IBM’s IODT/Minerva team: Minerva Reasoner, See,

http://www.alphaworks.ibm.com/tech/semanticstk or

http://www.ifcomputer.com/MINERVA/

[5] Kevin, W., Sayers, C., Kuno, H. Efficient RDF Storage and

Retrieval in Jena2. Proceedings of First International

Workshop on Semantic Web and Databases (2003) 131-151

[6] Sirin, E., Parsia, B. Pellet: An owl dl reasoner. Proceedings

Of the Int. Third International Semantic Web Conference

(ISWC 2004) - Poster (2004)

[7] Wessel, M., Möller, R. A High Performance Semantic Web

Query Answering Engine. International Workshop on

Description Logics (DL2005), Edinburgh, Scotland, UK.

(2005)

[8] MC Lee, HK Jang, YS Paik, SE Jin, S Lee A Ubiquitous

Device Collaboration Infrasturcture: Celadon. Third

Workshop on Software Technologies for Future Embedded &

Ubiquitous Systems (SEUS 2006)

ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications

[9] Li Ma, Yang Yang, Zhaoming Qiu, Guotong Xie, Yue Pan,

Shengping Liu: Towards A Complete OWL Ontology

Benchmark. 3rd European Semantic Web Conference

(ESWC06) – 2006

[10] Y. Guo, Z. Pan, and J. Heflin. LUBM: A Benchmark for

OWL Knowledge Base Systems. Journal of Web Semantics

3(2), 2005, pp158-182.

[11] T. Liebig, H. Pfeifer, F. von Henke, Reasoning Services for

an OWL Authoring Tool: An Experience Report, in:

Proceedings of the 2004 International

ubiPCMM06:2nd International Workshop on Personalized Context Modeling and Management for UbiComp Applications

