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ABSTRACT 
Ubiquitous computing services started taking advantage of the 

reasoning capabilities of inference engines to acquire hidden and 

potentially useful contextual information. However, performance 

evaluations of the inference engines have been limited to the 

domain of static information reasoning; evaluations of 

requirements pertaining to ubiquitous computing environment 

have been largely neglected. This paper aims to examine how 

different types of inference engines perform by applying them to 

realistic ubiquitous computing scenarios. Based on the scenarios, 

three measurement criteria are proposed and measured including 

scalability as data set gets large, responsiveness for user’s requests, 

and adaptability to frequent inference requests. 
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1. INTRODUCTION 
Ubiquitous computing services aim to provide information and 

services in more intelligent ways with more seamless interfaces 

that aid users to be conveniently served anytime, anywhere with 

any devices without awkward user intervention. These must rely 

on not only multiple sensors capturing user’s context but also 

reasoning capabilities for processing raw sensed context data into 

more useful and meaningful information within the user’s 

environment. Recently, inference engines such as Jena, RacerPro, 

FacT++, and Minerva have been proposed as a core component of 

intelligent ubiquitous computing systems. There had been many 

extensive evaluations of their reasoning capabilities in correctness, 

completeness, and response time [10, 11]. It is less widely known 

without fully analyzing how well the inference engines can fare 

full-fledged ubiquitous computing services covering vast zones 

with various sets of requirements such as lots of fast moving users 

and other transient computing entities. The main purpose of this 

paper is to examine how well inference engines satisfy 

responsiveness requirement, scalability requirement and 

requirement to accommodate frequent inference requests in 

response to dynamic data insertion and deletion that realistic 

ubiquitous computing environments exhibit. To do so, we have 

modeled scenarios based in a major Korean university such as 

MyEntrance service. MyEntrance service scenario is a part of a 

larger Celadon project [8] in aim to study and adopt the most 

suitable reasoner for ubiquitous environment in its system. 

Specifically, five most prominent engines are considered based on 

their reasoning mechanisms: three memory-based and two DBMS-

based engines. 

 

2. INFERENCE ENGINES 
MINERVA, JENA, Pellet, RacerPro, and DLDB-OWL (HAWK) 

[1, 2, 3, 4, 5, 6, 7] are discussed as representative instances of each 

class of reasoners and they are summarized in Table 1. 

 
2.1 MINERVA 

Minerva is high performance OWL storage, inference, and query 

system built on RDBMS. The advantages of the system could be 

categorized in two important aspects of a reasoner: response time 

and scalability. It does all required inferences in the time of data 

load instead of data query, making it more responsive at the time 

of user query. In addition, it calculates all inferences in relational 

database management system, making it more scalable than 

memory based counterpart. It is provided as a component of 

IBM’s Integrated Ontology Development Toolkit (IODT) [4] and 

it supports DLP (Description Logic Program), a subset of OWL 

DL and conjunctive query, a subset of the SPARQL language. 

Minerva uses Description Logic reasoner for TBox and a set of 

logic rules translated from Description Logic Programming (DLP) 

for ABox inference.  

 

2.2 DLDB-OWL/HAWK 
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Table 1. The Comparative Table for Inference Engine 

Import Inference Repository Query 
 

Ontology 
Language 

Capability 
Internal 
Engine 

External 
Engine 

Persistent 
Storage 

Memo
-ry 

Language 

Version Source 

Minerva OWL DL O Racer, Pellet 
DB2, Derby, 

HSQLDB 
X SPARQL 

Semantics

Toolkit-

1.1.1 

IBM 

DLDB-

OWL 
OWL DL X Racer 

MS-Access, 

PostgreSQL 
O 

KIF-Like 

language 

HAWK 1.3 

beta 

 

Lehigh 

University 

SWAT Lab 

Pellet 

DIG tell 

document, 

OWL 

DL O X X O 

DIG ask 

document, 

RDQL 

pellet-1.3 mindswap 

Racer 

DIG tell 

document, 

OWL 

DL O O X O 

DIG ask 

document, 

Racer Query 

Language 

RacerPro 

1.9.0 

Racer 

Systems 

GmbH & Co. 

KG 

JENA OWL DL O 

Racer Pro, 

Pellet, 

Fact++ 

(JenaOntMo

del) 

MySQL, 

HSQLDB, 

PostgreSQL, 

Oracle, MS-

SQL Server 

O SPARQL Jena 2.4 HP Labs 

DLDB-OWL is a repository framework and toolkit that supports 

OWL It provides APIs as well as implementations for parsing, 

editing, manipulating and preservation of OWL ontologies. The 

architecture of DLDB-OWL consists of three packages: core, owl 

and storage. The core package defines the generic interfaces of the 

data structures of ontology and ontology objects, e.g. class and 

property. The core package, that is independent of underlying 

model the application will use, provides an API for constructing 

and manipulating ontology models. The owl package provides the 

utilities for parsing and serializing ontologies in OWL language. 

 
2.3 Pellet 
Pellet is an open-source Java based OWL DL reasoner. It can be 

used in conjunction with both Jena and OWL API libraries and 

also provides a DIG interface. Pellet API provides functionalities 

to see the species validation, check consistency of ontologies, 

classify the taxonomy, check entailments and answer a subset of 

RDQL queries. It supports the full expressivity OWL DL including 

reasoning about nominals (enumerated classes).  

 

2.4 RacerPro 
RacerPro is an OWL reasoner and inference server for the 

semantic web. The origins of RacerPro are within the area of 

description logics. It can be used as a system for managing 

semantic web ontologies based on OWL. However, RacerPro can 

also be seen as a semantic web information repository with 

optimized retrieval engine because it can handle large sets of data 

descriptions. 

 

2.5 JENA 
Jena is a Java framework for building Semantic Web applications. 

It provides a programmatic environment for RDF, RDFS and 

OWL, SPARQL and includes a rule-based inference engine. The 

Jena Framework includes a RDF API, reading and writing RDF in 

RDF/XML, N3 and N-Triples and an OWL API and SPARQL 

query engine. 

 

3. PERFORMANCE EVALUATION 
 
3.1 MyEntrance Service Scenario 
To analyze how the legacy inference engines perform in realistic 

ubiquitous computing environments, we used a MyEntrance 

service scenario modeled based on Kyunghee Univerity (KHU). 

KHU has two great campuses, Seoul campus with 50 departments 

and YongIn campus with 51 departments. 

“When a member of KHU enters the Student Union Building, a 

service agent recognizes the member’s preference and searches for 

an Event on the Application Server to provide it for him/her. 

Additionally, a sports equipment shop located in Student Union 

Building wants to advertise its sales promotion on new baseball 

products for the KHU students and faculty members. The Service 

Agent of the sports equipment shop in KHU requests Application 

Server to retrieve the information on the hobbies of members 

located in the Student Union Building. The Application Server 

hands over the request of Service Agent to Context Server about 

the hobby information of members who are located in the Student 

Union Building. Context Server returns the result of preference 

and product matching inference. Consequently, the Service Agent 

checks for the members who like to play baseball and it sends the 

Discount Event Information to appropriate members. The 

members who receive the event information make a purchase 

decision with the received offer. 
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To accommodate this scenario, we have developed KHU campus 

ontology based on the ontology generation program supported by 

IBM China Lab [9]. On top of the generated ontology, we have 

installed area-based location context. An experimental data set 

which represents an actual college (9 departments, file size= 

11.8MB), International College in KHU at Suwon, was made and 

used in the performance evaluation. 

 

3.2 Results: Performance Evaluation on Static 
and Dynamic Context Information 

For the performance evaluation on static information, we placed 

our focus on scalability and subsequent performance issue. 

Specifically, in evaluating the performance of query processing, 

we considered 16 sets of University Ontology Benchmark [9] 

queries that were generated by IBM China Research Lab. by 

extending widely used Lehigh University Benchmark [10]. 

In order to evaluate handling of context information, SPARQL is 

used as follows: 

 

SELECT 

DISTINCT ?person ?zone ?Hobby1 ?Hobby2 ?Hobby3 

WHERE 

(?person benchmark:locatedIn 

<http://rcubs.kyunghee.ac.kr/owl/rcubs-univ-bench-

dl.owl#Zone1>) 

(?person benchmark:locatedIn ?zone) 

(?person benchmark:like ?Hobby1) 

 

For DLDB-OWL/HAWK evaluation, the above query is translated 

into KIF-like query as follows: 

 

[http://rcubs.kyunghee.ac.kr/owl/univ-bench-

dl.owl] 

(type Person ?x) 

(locatedIn ?x 

http://rcubs.kyunghee.ac.kr/owl/rcubs-univ-bench-

dl.owl#Zone1) 

(locatedIn ?x ?z) 

(like ?x ?y1) 

 

We set up our scenario environment of campus like the topology 

shown as Figure 1. For context generation, user’s current location 

is gathered by the context event handler on the client’s portable 

device or tags at any time the user is passing by sensors located in 

the entrance gate of the campus buildings. At a fixed cycle, the 

context event handler sends the user’s current context information 

as OWL-DL format to the context server. The context server 

returns the result if the ontology files comes through successfully 

to the context event handler. The user may invoke the application 

server to get location-based service at any time the user wants. 

Then the application server asks the context server to get service-

related context data as facts. According to the facts, the inference 

engine determines the location-based services most appropriate for 

the user.  

Context server
(OWL DL ontology)

Context event handler
(context ontology writer)

Application server
(context ontology reader)
(Inference engine)

Client

 

Figure 1. Simulation Environment 

 

We select query response time as the performance measure. The 

summary of response time is listed in Table 2. 

 

Table 2. Summary of query response time 

Response Time  (ms) 

Query # 
MINERVA 

DLDB-

OWL 

/HAWK 

Pellet 

1 424.90  10.00 5858.00  

2 312.80  12.85 268.70  

3 284.30  241.85 115.50  

4 382.80  221.57 89.00  

5 358.00  2.85 31.20  

6 343.70  5.71 42.20  

7 483.00  5.71 40.50  

8 743.60  5.71 1813723.00  

9 843.90  160.14 295.40  

10 857.90  25.71 7.80  

11 ­  81.71 17.40  

12 1176.60  43.00 9.20  

13 906.40  2.85 1199564.80  

14 1076.60  173.00 467724.80  

15 978.10 158.71 208571.80 

16 1186.00 291.71  51.50 

Performance evaluations in case of dynamic context were also 

performed. Dynamic context evaluations were differentiated from 

the static context evaluation in that, engines were constantly 

requested to inference based on new data whereas the static 

evaluations were performed after the inference processing is 

finished. For this test, since the memory-based reasoning systems 

cannot be directly compared to the DBMS-based reasoning 

systems in their absolute loading time, we tested two database-

based reasoning systems: MINERVA and DLDB-OWL/HAWK. 

Only the test with data set 1 is described in this paper because we 

encountered a consistent problem with the dynamic data set and 

did not see the value in presenting more data in this study. The 

result is listed in  
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Table 3. Summary of load time in dynamic situation 

Load Time (%) 

Cycle time of 

updating 

context data 

Cycle time of 

query 

processing 

Minerva 
DLDB-

OWL 

600sec 

33.3 

0.0 

66.7 

99.8 

0.2 

0.0 

60sec 

5.0 

6.7 

88.3 

89.5 

10.5 

0.0 

 

1200 SEC 

 

10sec 

0.6 

3.6 

95.8 

91.3 

8.7 

0.0 

600sec 

33.3 

16.7 

50.0 

93.3 

6.7 

0.0 

60sec 

5.0 

6.7 

88.3 

84.0 

16.0 

0.0 

 

 

900 SEC 

 

 

10sec 

0.8 

6.7 

92.5 

89.1 

10.9 

0.0 

600sec 

50.0 

0.0 

50.0 

90.0 

10.0 

0.0 

60sec 

6.7 

5.0 

88.3 

71.0 

29.0 

0.0 

 

600 SEC 

 

10sec 

0.8 

6.7 

92.5 

85.7 

14.3 

0.0 

 

Table 3 where the first number of the three denotes the rate of 

yielding correct answers to the query aforementioned. The second 

and third numbers denote the rate of yielding wrong answers and 

no response to the query, respectively. 
 
4. CONCLUSION 
We first studied the responsiveness to the user request using both 

memory-based and DBMS-based inference engines in static 

context setting. The result indicated that database-based inference 

engines far outperform the other in this criterion owing to the fact 

that memory based inference engines pre-process context data 

while loading and thus is able to respond without further 

calculation at query time. 

Then, using DBMS-based inference engines, we analyzed how 

they perform in conducting a context-aware MyEntrance service 

under the setting and environment of a major university. By 

varying the cycle of context changes and knowledge loading, 

performance measures such as correctness and completeness were 

examined. We noticed that engines do not respond to queries in the 

middle of their inferences and sometimes generate invalid or no 

responses. 

We conclude that current state-of-the-art inference engines do not 

fulfill responsiveness, scalability and high-update frequency 

requirements demanded for ubiquitous computing environments 

with lots of fast moving users and other transient computing 

entities. And, evolutionary algorithms or inference mechanisms to 

deal with enormous amount of data, frequency of updates and 

respond to user’s needs in time are needed for the inference 

engines to be improved. 
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