
Towards Mac Lane’s Comparison Theorem for the

(co)Kleisli Construction in Coq

Burak Ekici
University of Innsbruck

Innsbruck, Austria
burak.ekici@uibk.ac.at

Abstract

This short paper summarizes an ongoing work on the formalization of
Mac Lane’s comparison theorem for the (co)Kleisli construction in the
Coq proof assistant.

1 Adjoint Functors and Monads

Definition 1.1. Let C and D be two categories. A hom-adjunction F a G : D → C is a triple 〈F,G, ϕ〉 such
that F : C → D , G : D → C are functors and ϕ = (ϕX,A)X,A is a family of bijections, natural in X and A,
where X is an object of C and A is an object of D :

ϕX,A : HomD(FX, A)
∼=−→ HomC (X, GA) (1)

Let F a G : D → C be a hom-adjunction. By instantiating A = FX in (1) we obtain ηX : X → GFX in C
which is the image of idFX by ϕX,FX . Symmetrically, by setting X = GA, we obtain εA : FGA → A in D
which is the image of idGA by ϕ−1GA,A. As shown in [ML71, Ch. IV, §1], η : IdC ⇒ GF and ε : FG ⇒ IdD are
natural transformations. This gives us the following proposition by [ML71, Ch. VI, §1] and [ML71, Ch. IV, §1,
Theorem 1].

Proposition 1.2. A hom-adjunction F a G : D → C , with associated family of bijections ϕ as in Definition 1.1,
determines a monad on C and a comonad on D as follows:

• The monad (T, η, µ) on C has endofunctor T = GF : C → C , unit η : IdC ⇒ T where ηX = ϕX,FX(idFX)
and multiplication µ : T 2 ⇒ T such that µX = G(εFX).

• The comonad (D, ε, δ) on D has endofunctor D = FG : D → D , counit ε : D ⇒ IdD where εA =
ϕ−1GA,A(idGA) and comultiplication δ : D ⇒ D2 such that δA = F (ηGA).

In addition, we have:

ϕX,Af = Gf ◦ ηX : X → GA for each f : FX → A (2)

ϕ−1X,Ag = εA ◦ Fg : FX → A for each g : X → GA. (3)

Proposition 1.3. Each monad (T, η, µ) on a category C determines a Kleisli category CT and an associated
hom-adjunction FT a GT : CT → C as follows:

C
FT

,,⊥

T

��
CT

GT

ll

Copyright © by the paper’s authors. Copying permitted for private and academic purposes.

In: O. Hasan, C. Kaliszyk, A. Naumowicz (eds.): Proceedings of the Workshop Formal Mathematics for Mathematicians (FMM),
Hagenberg, Austria, 13-Aug-2018, published at http://ceur-ws.org

We give an overview below, please find the related details in [ML71, Ch. VI, §5].

• The categories C and CT have the same objects and there is a morphism f [: X → Y in CT for each
morphism f : X → TY in C . So that there is a bijection defined as:

(ϕT)X,Y : HomCT
(X,Y)

∼=−→ HomC (X,TY)

f [←[f

• For each object X in CT , the identity arrow is idX = h[: X → X in CT where h = ηX : X → TX in C .

• The composition of a pair of morphisms f [: X → Y and g[: Y → Z in CT is given by the Kleisli composition:
g[◦ f [= h[: X → Z where h = µZ ◦ Tg ◦ f : X → TZ in C .

• The functor FT : C → CT is the identity on objects. On morphisms,

FT f = (ηY ◦ f)[, for each f : X → Y in C . (4)

• The functor GT : CT → C maps each object X in CT to TX in C . On morphisms,

GT (g[) = µY ◦ Tg, for each g[: X → Y in CT . (5)

Theorem 1.4. (The comparison theorem for the Kleisli construction) Let F a G : D → C be a hom-adjunction
and let (T, η, µ) be the associated monad on C . Then, there is a unique comparison functor L : CT → D such
that GL = GT and LFT = F , where CT is the Kleisli category of (T, η, µ), with the associated hom-adjunction
FT a GT : CT → C .

C
FT

,,

F

��

⊥

T

��

`

CT
GT

ll

=

L

��
D

G

^^

Proof. Let us first assume that L : CT → D is a functor satisfying GL = GT and LFT = F . And, let

θX,Y : HomCT
(FTX,Y)

∼=−→ HomC (X,GTY) be a bijection associated to the hom-adjunction FT a GT . Simi-

larly, let ψX,Y : HomD(FX, Y)
∼=−→ HomC (X,GY) be a bijection associated to the hom-adjunction F a G. Since

both units of FT a GT and F a G are the unit η of the monad (T, η, µ) by [ML71, Ch. IV, §7, Proposition 1],
we obtain the commutative diagram below:

HomCT
(FTX,Y)

=

θX,Y //

LFT X,Y

��

HomC (X,GTY)

idX,GT Y

��
HomD(LFTX,LY) HomC (X,GTY)

= =

HomD(FX,LY)
ψX,LY // HomC (X,GLY)

Therefore, LFTX,Y = ψ−1X,LY ◦ θX,Y . This formula ensures that the functor L is unique. Using the Equa-

tion (2) in Proposition 1.2, we have: θX,Y f
[= GT f

[◦ ηX : X → GTY, for each f [: FTX = X → Y in CT . Since
GT f

[= µY ◦ Tf in C , for each f [: X → Y in CT , by Equation (5), we have θX,Y f
[= µY ◦ Tf ◦ ηX : X →

GTFTY = GTY. Thanks to the naturality of η, we get θX,Y f
[= µY ◦ ηTY ◦ f . The monadic axiom

µY ◦ ηTY = idTY yields θX,Y f
[= f : X → GTY . Presumed that GT = GL and since FT is the identity

on objects, we have θX,Y f
[= f : X → GLY and LFTY = LY = FY. Now, by Equation (3) in Propo-

sition 1.2, we obtain ψ−1X,LY f = εLY ◦ Ff = εFY ◦ Ff = ψ−1X,FY f for each f : X → GFY in C . Hence

ψ−1X,LY (θX,Y f
[) = ψ−1X,FY f = εFY ◦ Ff.

In other words: given a functor L satisfying GL = GT and LFT = F , then it must be such that LX = FX for
each object X in CT and Lf [= εFY ◦ Ff in D for each f [: X → Y in CT . We additionally need to prove that
L : CT → D , characterized by LX = X and Lf [= εY ◦ Ff , is a functor satisfying GL = GT and LFT = F :

1. For each X in CT , due to the fact that idX = (ηX)[in CT , we have L(idX) = L((ηX)[) = εFX ◦ FηX .
By [ML71, Ch. IV, §1, Theorem 1], we get εFX ◦ FηX = idFX = idLX . For each pair of morphisms
f [: X → Y and g[: Y → Z in CT , by Kleisli composition, we obtain L(g[◦f [) = εFZ ◦FGεFZ ◦FGFg◦Ff.
Since ε is natural, we have εFZ ◦Fg ◦ εFY ◦Ff which is L(g[) ◦L(f [) in D . Hence L : CT → D is a functor.

2. For each object X in CT , LX = FX in D and GLX = GFX = TX = GTX in C . For each morphism
f [: X → Y in CT , Lf [= εFY ◦Ff in D by definition. Hence, GLf [= GεFY ◦GFf. Similarly, Equation (5)
gives GT f

[= GεFY ◦GFf. We get GLf [= GT f
[for each mapping f [. Thus GL = GT .

3. FT is the identity on objects, thus LFTX = LX = FX. For each morphism f : X → Y in C , we have
FT f = (ηY ◦ f)[in CT , by definition. So that LFT f = L(ηY ◦ f)[= εFY ◦ FηY ◦ Ff. Due to ε and η being
natural, we have εFY ◦ FηY = idFY yielding LFT f = Ff for each mapping f . Therefore LFT = F .

A specialized version of the theorem is used by the author to model some formal logics in order to handle
computational side effects in his thesis [Eki15]. An alternative definition of adjunctions is given in the following.

Definition 1.5. Let C and D be two categories. The functors F : C → D and G : D → C form an adjunction
F a G : D → C iff there exists natural transformations η : IdC ⇒ GF and ε : FG⇒ IdD such that:

εFX ◦ FηX = idFX for each X in C (6)

GεX ◦ ηGX = idGX for each X in D (7)

Lemma 1.6. Definition 1.5 ⇐⇒ Definition 1.1.
See the proof in [Hen08, §3, Theorem 3.5].

2 Coq formalization

In a Coq implementation1, we represent category theoretical objects such as functors, natural transformations,
monads and adjunctions with data structures having single constructors and several fields, namely classes. This
is no different than the approaches by Gross et al. [GCS14], Timany et al. [TJ16]2 and John Wiegley3. To our
knowledge, none of them include the formalization of Mac Lane’s comparison theorem. Also, our formalization
makes use of proof irrelevance and functional extensionality axioms. These being said, let us start with the
formalization of Definition 1.1:

Class HomAdjunction {C D: Category} (F: Functor D C) (G: Functor C D): Type , mk_Homadj
{ ob: @Isomorphism (FunctorCategory (D^op × C) CoqCatT) (BiHomFunctorC F G) (BiHomFunctorD F G) }.

An instance of the HomAdjunction class is defined as an isomorphism of bifunctors in the category of functors. In
the above snippet, the notation D^ op denotes the dual of the category D, and CoqCatT represents the category of
Sets. BiHomFunctorC implements the hom-functor HomC (X, GA) while BiHomFunctorD stands for the functor
HomD(FX, A) in (1). On the other hand, Definition 1.5 looks like:

Class Adjunction {C D: Category} (F: Functor C D) (G: Functor D C): Type , mk_Adj
{ unit : NaturalTransformation (@Id catC) (Compose_Functors F G);

counit: NaturalTransformation (Compose_Functors G F) (@Id D);
ob1 : ∀ a, (trans counit (fobj F a)) o fmap F (trans unit a) = @identity D (fobj F a);
ob2 : ∀ a, (fmap G (trans counit a)) o trans unit (fobj G a) = @identity C (fobj G a) }.

1https://github.com/ekiciburak/ComparisonTheorem-MacLane
2https://github.com/amintimany/Categories
3https://github.com/jwiegley/category-theory

https://github.com/ekiciburak/ComparisonTheorem-MacLane
https://github.com/amintimany/Categories
https://github.com/jwiegley/category-theory

where unit and counit correspond to η and ε as well as proof obligations ob1 and ob2 implement Equations (6)
and (7) respectively. This means that to build an adjunction out of given categories and functors, one needs
to provide two natural transformations satisfying the obligations. In the script, fmap is a field of the Functor

type class that maps arrows while fobj is another field of the same class mapping objects of a domain category;
trans is a filed of the NaturalTransformation class representing the component of the natural transformation
at a given object. Id is the identity functor.

Formalizing in Coq Propositions 1.2, 1.3 and Theorem 1.4, we use Adjunction class instances instead of the
ones of HomAdjunction. This is indeed not a problem thanks to Lemma 1.6. We have it certified in Coq:

Lemma adjEq1: ∀ (C D: Category) (F: Functor C D) (U: Functor D C), Adjunction F U → HomAdjunction F U.

Lemma adjEq2: ∀ (C D: Category) (F: Functor C D) (U: Functor D C), HomAdjunction F U → Adjunction F U.

We move on with the formalization of Proposition 1.2:

Theorem adj_mon : ∀ {C D: Category} (F: Functor C D) (U: Functor D C), Adjunction F U → Monad C (Compose_Functors F U).

Theorem adj_comon: ∀ {C D: Category} (F: Functor C D) (U: Functor D C), Adjunction F U → coMonad D (Compose_Functors U F).

See Adjunctions.v file for the proofs of so far stated theorems/lemmas. We implement Proposition 1.3 in three
steps starting with the fact that every monad gives raise to a Kleisli Category whose objects are the ones of
the base category C and morphisms are of the form f? : b→ T a for each f : b→ a in C. Notice also that, nothing
more than a design criteria, @arrow C a b implements a Coq type of maps defined from b to a in the category C:

Definition Kleisli_Category (C: Category) (T: Functor C C) (M: Monad C T): Category.
Proof. unshelve econstructor.

- exact (@obj C).
- intros a b. exact (@arrow C (fobj T a) b).
...

Defined.

Once obtaining this category, we can then claim that there is a special adjunction, namely Kleisli adjunction,
between the base category C and the Kleisli Category. We implement the candidate adjoint functors as in
Equations (4) and (5). Below, we only show the way they map objects and arrows respectively.

Definition LA {C D: Category} (F: Functor C D) (G: Functor D C) (T , Compose_Functors F G) (M: Monad C T)

(CT , (Kleisli_Category C T M)): Functor C CT.
Proof. unshelve econstructor; simpl.

- exact id.
- intros a b f. exact (trans b o f).
...

Defined.

Definition RA {C D: Category} (F: Functor C D) (G: Functor D C) (T , Compose_Functors F G) (M: Monad C T)

(CT , (Kleisli_Category C T M)): Functor CT C.
Proof. unshelve econstructor; simpl.

- exact (fobj T).
- intros a b g. exact (trans b o fmap T g).
...

Defined.

Above three definitions are implemented in the source Monads.v. We then prove that these candidate functors
do actually form an adjunction:

Theorem mon_kladj: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (T , Compose_Functors F G) (M: Monad C T)

(FT , LA F G M) (GT , RA F G M), Adjunction FT GT.

Now, we can state Theorem 1.4 in Coq.

Theorem ComparisonMacLane: ∀ {C D: Category} (F: Functor C D) (G: Functor D C) (A1: Adjunction F G),

let M , (@adj_mon C D F G A1) in let CT , (Kleisli_Category C (Compose_Functors F G) M) in

let FT , (LA F G M) in let GT , (RA F G M) in let A2 , (mon_kladj F G M) in
∃ L: Functor CT D, Compose_Functors FT L = F ∧ Compose_Functors L G = GT.

Notice that proving this statement, we only get the existence of a comparison functor L satisfying the given
properties but not that it is unique. Unicity proof is actually the work in progress. Also, we have formalized the
dual of this theorem again leaving the unicity proof of comparison functor aside. See Coq proofs of two theorems
above and the dual of the comparison theorem in the source Adjunctions.v.

3 Conclusion

We have formalized in Coq the comparison theorem without proving the uniqueness of comparison functor L.
This uniqueness (also for the dual case) is the next property in our queue to formalize. Once getting these done,
we plan to continue with implementing in Coq the proof of Beck’s theorem which is a variant of comparison
theorem where CT being the Eilenberg-Moore category of algebras of the monad T. The theorem claims that the
comparison functor L is now an isomorphism.

3.1 Acknowledgements

This work has been supported by the Austrian Science Fund (FWF) grant P26201, the European Research
Council (ERC) grant no. 714034 SMART.

References

[Eki15] Burak Ekici. Certifications of programs with computational effects (Certification de programmes avec
des effets calculatoires). PhD thesis, Grenoble Alpes University, France, December 2015.

[GCS14] Jason Gross, Adam Chlipala, and David I. Spivak. Experience implementing a performant category-
theory library in Coq. In Proceedings of the 5th ITP, Vienna, Austria, July 2014.

[Hen08] Christopher Henderson. Generalized abstract nonsense: Category theory and adjunctions. Technical
report, University of Chicago, 2008.

[ML71] Saunders Mac Lane. Categories for the Working Mathematician. Number 5 in Graduate Texts in
Mathematics. Springer-Verlag, 1971.

[TJ16] Amin Timany and Bart Jacobs. Category theory in Coq 8.5. In Proceedings of the 1st FSCD, Porto,
Portugal, pages 30:1–30:18, June 2016.

	Adjoint Functors and Monads
	Coq formalization
	Conclusion
	Acknowledgements

