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Abstract. Many real-world applications based on deductive databases
require incrementally updating output relations (tables) in response to
changes to input relations. To make such applications easier to implement
we have created Differential Datalog (DDlog), a dialect of Datalog that
automates incremental computation. A DDlog programmer writes tradi-
tional, non-incremental Datalog programs. However, the execution model
of DDlog is fully incremental: at runtime DDlog programs receive streams
of changes to the input relations (insertions or deletions) and produce
streams of corresponding changes to derived relations. The DDlog com-
piler translates DDlog programs to Differential Dataflow (DD) [17] pro-
grams; DD provides an incremental execution engine supporting all the
relational operators, including fixed-point.

The DDlog language is targeted for system builders. In consequence,
the language emphasizes usability, by providing a rich type system, a
powerful expression language, a module system, including string manip-
ulation, arithmetic, and integration with C, Rust, and Java. The code is
open-source, available using an MIT permissive license [1].

1 Introduction

Motivation. Many real-world applications must update their output in response
to input changes. Consider, for example, a cluster management system such as
Kubernetes [11], that configures cluster nodes to execute a user-defined workload.
As the workload changes, e.g., container instances are added or removed from the
system, the configuration must change accordingly. In a large cluster computing
configuration from scratch is prohibitively expensive. Instead, modern cluster
management systems, including Kubernetes, apply changes incrementally, only
updating state effected by the change.

As another example, program analysis frameworks like Doop [5] evaluate a set
of rules defined over the abstract syntax tree of the program. Such an analyzer
can be integrated into an IDE to alert the developer as soon as a potential bug
is introduced in the program. This requires re-evaluating the rules after every
few keystrokes. In order to achieve interactive performance when working with
very large code bases, the re-evaluation must occur incrementally, preserving as
much as possible intermediate results computed at earlier iterations.

Incremental algorithms tend to be significantly more complex than their non-
incremental versions. An incremental algorithm must propagate input changes
to the output via all intermediate computation steps. This, in turn, requires (1)
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maintaining intermediate computation results for each step, and (2) implement-
ing an incremental version of each operation, which, given an update to its input,
computes an update to its output. Incremental computations that operate on
relational state are ubiquitous throughout systems management software stacks.
The complexity of the incremental algorithms greatly impacts the development
cost, feature velocity, maintainability, and performance of the control systems.

We argue that, instead of dealing with the complexity of incremental com-
putation on a case-by-case basis, developers should embrace programming tools
that solve the problem once and for all. In this paper we present one such tool
— Differential Datalog (DDlog) — a programming language that automates
incremental computation. A DDlog programmer only has to write a Datalog
specification for the original (non-incremental) problem. From this description
the DDlog compiler generates an efficient incremental implementation.

Overview. DDlog is a bottom-up, incremental, in-memory, typed Datalog engine
for building embedded deductive databases.

Bottom-up: DDlog starts from a set of ground facts (provided by the user)
and computes all possible derived facts by following Datalog rules, in a bottom-
up fashion. (In contrast, top-down engines are optimized to answer individual
user queries without computing all possible facts ahead of time.)

Incremental: whenever presented with changes to the ground facts, DDlog
only performs the minimum computation necessary to compute all changes in
the derived facts. This has significant performance benefits, and only produces
output of minimum size, also reducing communication requirements. DDlog eval-
uation is always incremental; non-incremental (traditional) evaluation can be
implemented as a special case, starting from empty relations.

In-memory: DDlog stores and processes data in memory'. At the moment,
DDlog keeps all the data in the memory of a single machine?.

Typed: Pure Datalog does not have concepts like data types, arithmetic,
strings or functions. To facilitate writing of safe, maintainable, and concise code,
DDlog extends Datalog with:

— A powerful type system, including Booleans, unlimited precision integers,
bit-vectors, strings, tuples, and Haskell-style tagged unions.

— Standard integer and bit-vector arithmetic.

— A simple functional language containing functions that allows expressing
many computations over these data-types in DDlog without resorting to
external functions.

— String operations, including string concatenation and interpolation.

— The ability to store and manipulate sets, vectors, and maps as first-class
values in relations, including performing aggregations.

! In a typical use case, a DDlog program is used in conjunction with a persistent
database; database records are fed to DDlog as inputs and the derived facts computed
by DDlog are written back to the database; DDlog does not include a storage engine.

2 The core engine of DDlog is differential dataflow [14], which supports distributed
computation over partitioned data; we may add this capability in the future.
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Fig. 1. Incremental evaluation of a Datalog program.

Embedded: while DDlog programs can be run interactively via a command
line interface, the primary use case is to run DDlog in the same address space with
an application that requires deductive database functionality. A DDlog program
is compiled into a Rust library that can be linked against a Rust, C/C++ or
Java program (bindings for other languages can be easily added).

DDlog is an open-source project, hosted on github [1] using an MIT-license.

2 Differential Datalog (DDlog)

A DDlog program operates on typed relations. The programmer defines a set of
rules to compute a set of output relations based on input relations (Figure 1).
Rules are evaluated incrementally: given a set of changes to the input relations
(insertions or deletions), DDlog produces a set of changes to the output relations
(expressed also as insertions or deletions).

Here we give a brief overview of the language; the DDlog language refer-
ence [22] and tutorial [23] provide a detailed presentation of language features.

2.1 Type system.

DDlog is a statically-checked, strongly-typed language; users specify types for
relations, variables, functions, but often DDlog can infer types from the con-
text. The type system is inspired by Haskell, and supports a rich set of types.
Base types include Booleans, bit-strings (e.g., bit<32>), infinite-precision in-
tegers (bigint), and UTF-8 strings. Derived types are tuples, structures, and
tagged unions (which generalize enumerated types). We currently do not allow
defining recursive types like lists or trees; however DDlog contains three built-
in collection types: maps, sets, and arrays (described in Section 2.4). Figure 2
shows several type declarations.

Generic types are supported; type variables are syntactically distinguished
by a tick: ’A. The language contains a built-in reference type Ref<’T>. Unlike
other languages, two references are equal if the objects referred are equal; thus
references do not alter the nature of Datalog. References can be used to reduce
memory consumption when complex objects are stored in multiple relations.
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// A tagged-union type
typedef IPAddress = IPv4Address{ipv4addr: bit<32>}
| IPv6Address{ipv6addr: bit<128>}
// A generic option type
typedef Option<’A> = None
| Some{value: ’A}
typedef OptionalIPAddress = Option<IPAddress>

Fig. 2. Type declarations in DDlog. None, Some, IPv6Address are pattern constructors.

input relation Edge(from: node_t, to: node_t)
primary key (e) e.from
input relation Exclude(node: node_t)
output relation Path(src: node_t, dst: node_t)
/* The Path relation is computed as a union of two rules */
// Rule 1: base case
Path(x, y) :- Edge(x,y).
// Rule 2: recursive step: join Path relation with Edge
// followed by an antijoin with Exclude.
Path(x, z) :- Path(x, w), Edge(w, z), not Exclude(z).

Fig. 3. A graph described by two relations and a rule to compute paths in the graph
that exclude some nodes.

2.2 Relations and Rules.

Relations are strongly typed; the value in each column must have a statically-
determined type. There are three kinds of relations in DDlog:

Input relations: the content of these relations is provided by the environment,
in an incremental way.

Output relations: these are computed by the DDlog program, and the DDlog
runtime will inform the environment of changes in these relations.
Intermediate relations: these are also computed by the DDlog program, but
they are hidden from the environment.

Figure 3 shows three relation declarations. An input relation may declare an
optional primary key — which is a set of columns that can be used to delete
entries efficiently by specifying only the key.

DDlog rules are composed of standard Datalog operators: joins, antijoins, and
unions, illustrated in Figure 3, as well as aggregation, and flatmap, discussed in
Section 2.4. DDlog allows recursive rules with stratified negation: intuitively, a
DDlog relation cannot recursively depend on its own negation.

2.3 Computations in rules.

Much of DDlog’s power stems from its ability to perform complex computation
inside rules. For example, the rule in Figure 4 computes an inner join of height
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input relation Height(object_id: int, height: int)

input relation Width(object_id: int, width: int)

output relation Area(object_id: int, area: int)

// Compute the area of an object as the product of

// its height and width.

Area(oid, area) :- Height(oid, h), Width(oid, w),
var area = w * h.

// Alternative syntax for defining the same relation.
for o in Height // o is a tuple with fields (object_id, height)
for ol in Width if ol.o0id == o.o0id
Area(o.o0id, ol.width * o.height)

Fig. 4. Rule examples. The first rule uses expressions and variables — var introduces
a variable binding. The second rule is equivalent with the first one, but is written using
an imperative-style syntax.

and width tables on the object id column, and then computes the area of the
object as the product of its height and width.

The DDlog expression language supports arithmetic, string manipulation,
control flow constructs and function calls.

Local variables. Local variables are used to store intermediate results of compu-
tations. In DDlog, local variables can be introduced in three different contexts:
(1) variables can be defined directly in the body of a rule, e.g., the area variable
in Figure 4; (2) a variable can be defined in a match pattern, as in Figure 5; and
(3) finally, a variable can be defined inside an expression, e.g., the res variable
in Figure 6. A variable is visible within the syntactic scope where it was defined.

“Imperative” rule syntax. We have also defined an alternative syntax for rules,
inspired by the FLWOR syntax of XQuery expressions [4]. The “imperative”
fragment offers several statements: skip (does nothing), for, if, match, block
statements (enclosed in braces), and variable definitions var. ..in. An example
is shown in Figure 4. This language is essentially a language of monoid com-
prehensions [7], so it is easily converted to a traditional Datalog representation
using a syntax-directed translation in the compiler front-end. Recursive relations
cannot be expressed using this syntax.

Integers. The integer types (bigint and bit<N>) provide the standard arith-
metic operations, as well as bit-wise operations, bit selection v[15:8], shifting,
and concatenation.

Strings All primitive types contain built-in conversions to strings, and users
can implement string conversion functions for user-defined types (like Java’s
toString () method). Expressions enclosed within ${. ..} in a string literal are
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function lastByte(a: OptionalIPAddress): bit<8> = {
match (a) {
None -> O,
Some{IPv4Address{.ipv4addr = addr}} -> addr[7:0],
Some{IPv6Addressq{.ipv6addr = addr}} -> addr[7:0]

}
}
relation Host(address: OptionalIPAddress)
// Rule that performs matching on address structure
IPv6Addr (addr) :- Host(.address=Some{IPv6Address{addr}}).

Fig. 5. Pattern matching used in a DDlog function and in a rule.

interpolated: they are evaluated at run-time, converted to strings and substi-
tuted; this is a feature inspired by JavaScript; for example "x+y=${x+y}".

Pattern matching. DDlog borrows the match expression from ML and Haskell;
a match expression simultaneously performs pattern-matching against type con-
structors or values, and also can bind values. Figure 5 shows a match expres-
sion that uses a nested pattern to extract a byte from a value a with type
OptionalIPAddress (this type was defined in Figure 2). For example, the last
case binds the addr variable to the value of the ipv6addr field.

Pattern matching can also be used directly in the body of a rule, as in the last
line from Figure 5, which extracts only IPv6 addresses from the Host relation
and binds their value to the addr variable, which in turn is used in the left-hand
side of the rule defining IPv6Addr relation.

Functions. DDlog functions encapsulate pure (side-effect-free) computations.
Example functions are lastByte from Figure 5, and concat from Figure 6.
Recursive functions are not supported. Users and libraries can declare prototypes
of extern functions, which must be implemented outside of DDlog (e.g., in Rust),
and linked against the DDlog program at link time. The compiler assumes that
extern functions are pure.

2.4 Collections

The DDlog standard library contains three built-in generic collection types (im-
plemented natively in Rust): Vec<’T>, Set<’T> and Map<’K, ’V>. Values of
these types can be stored as first-class values within relations. Equality for values
of these types is defined element-wise. In theory such types are not necessary,
since collections within relations can be represented using separate relations.
We have introduced them into the language because many practical applications
have data models that contain nested collections; by supporting collection-valued
columns natively in DDlog we can more easily interface with such applications,
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// declare external function returning a vector of strings
extern function split(s: string, sep: string): Vec<string>
// DDlog function to concatenate all elements of a vector
function concat(s: Vec<string>, sep: string): string = {
var res =
for (e in s) {
res = (if (res != "") (res + sep) else res) + e
}s
res // last value is function evaluation result

}

nwn o,
>

input relation Phrases(p: string)

relation Words(w: string)

// Words contains all words that appear in some phrase
Words (w) :- Phrases(p), var w = FlatMap(split(p, ",")).

// Shortest path between each pair of points x, y
// (x, y) is the key for grouping
// min is the function used to aggregate data in each group
ShortestPath(x, y, min_cost) :- Path(x, y, cost),
var min_cost = Aggregate((x, y), min(cost)).

Fig. 6. Operations on collections: iteration, flattening, aggregation.

without the need to write glue code to convert collections back and forth into
separate relations using foreign keys.

Figure 6 shows the declaration in DDlog of an external function which splits a
string into substrings using a separator; this function returns a vector of strings.

for loops can be used to iterate over elements in collections. Figure 6 shows
an implementation of the function concat, the inverse of split, which uses a
loop.

The FlatMap operator can be used to flatten a collection into a set of DDlog
records, as illustrated in the definition of relation Words in Figure 6.

The Aggregate operator can be used to evaluate the equivalent of SQL
groupby-aggregate queries. The aggregate operator has two arguments: a key
function, and an aggregation function. The aggregation function receives a group
of records that share the same key. The ShortestPath relation in Figure 6 is
computed using aggregation.

2.5 Module system

DDlog offers a simple module system, inspired by Haskell and Python, which
allows importing definitions (types, functions, relations) from multiple files. The
user can add imported definitions directly into the name space of the import-
ing module or keep them in a separate name space to prevent name colli-
sions. Similar to Java packages, module names are hierarchical and the module
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name hierarchy must match the paths on the the filesystem where modules are
stored. The directive import library.module will load the module from file
library/module.dl.

The DDlog standard library is a module containing a growing collection of
useful functions and data structures: some generic functions and data-types, such
as min, string manipulation and conversion to strings, functions to manipulate
vectors, sets, maps (insertion, deletion, lookup, etc.).

3 DDlog Implementation

3.1 Compiling DDlog to Differential Dataflow

Differential Dataflow. The core execution engine of DDlog is Differential Dataflow
(DD). Differential Dataflow [17] is a streaming big-data processing system which
provides incremental (differential) computation. DD is an incremental map-
reduce-like system, but supporting a wide set of relational operators, including
recursion (fixed-point) and joins. Section 4.3 in [17] describes the core relational
operators that are used by our compiler to implement DDlog operators. DD is
described in several publications [20, 17] and has an open-source implementation
with online documentation [16, 15].

Compilation. Figure 7 shows how DDlog programs are compiled. The DDlog
compiler is written in Haskell. The compiler generates Rust code (as text files);
the Rust code is compiled and linked with the open-source Rust version of the DD
library [14]. The DD engine operates on multisets, where elements can have pos-
itive or negative cardinalities; to get a set semantics we need to apply distinct
operators on some multisets, in particular, output collections.

The DDLog compiler performs parsing, type inference, validation, and sev-
eral optimization steps. In order to compute incremental results the DD runtime
has to maintain temporal indexes (indexed by logical time), containing previ-
ous versions of relations. Many of our optimizations are geared towards reduc-
ing memory consumption; for example, we attempt to share indexes between
multiple collections and operators. We use reference counting for large values,
but stack-based implementations for small values. The non-linear operators (like
distinct) can be very expensive, so we try to minimize their usage. The com-
piler attempts reuse common prefixes of disjoint rules.

The output of the DDlog compiler is a dataflow graph, which may contain
cycles (introduced by recursion). The nodes of the graph represent relations;
the relations are computed by dataflow relational operators. Edges connect each
operator to its input and output relations. DD natively implements the following
operators: map, filter, distinct, join, antijoin, groupby, union, aggregation, and
flatmap. Each operator has a highly optimized implementation, incorporating
temporal indexes that track updates to each relation over time and allow efficient
incremental evaluation. The DD library is responsible for executing the emitted
dataflow graph across many cores by running a user-defined number of worker
threads.
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Fig. 7. DDlog compilation flow.

3.2 Interacting with DDlog programs

Transactional API. The interaction with a running DDlog program is done
through a transactional API. At any time only one transaction can be outstand-
ing. After starting a transaction the user can insert and delete any number of
tuples from input relations. When attempting to commit a transaction all up-
dates are applied atomically and changes to all output relations are produced.
Users register an upcall to be notified of these changes.

The DDlog API is implemented in Rust, with bindings available for other
languages, currently C and Java.

The command-line interface. For every DDlog program the compiler generates
a library that exports the transactional API, which can be invoked from Rust
or other languages. The compiler also generates a command-line interface pro-
gram (CLI) that allows users to interact with the DDlog program directly via
a command line or a script. The CLI allows users to start transactions, insert
or delete tuples in input relations, commit transactions, dump the contents of
relations, and get statistics about resource consumption. The CLI is also used
for regression testing and debugging.

4 Applications

Controller for Virtual Networks. The most significant DDlog program we have
written so far is a reimplementation of OVN [21] — a production-grade virtual
network controller used to implement the network substrate for cloud manage-
ment systems.

OVN translates a set of network management policies into OpenFlow rules
that have to be installed on the virtual switches in the network. The logic is very
complicated, comprising tens of input, output and intermediate relations.

The original program was written in C, and is not fully incremental. The
DDlog implementation has about 6000 lines of code, about the same size as the
original code base, but it is fully incremental. With the exception of a small
number of library functions imported from C, we were able to implement the
entire OVN logic in DDlog. This would not be feasible with a more traditional
dialect of Datalog that does not support types and expressions.
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Firewall management. We have re-implemented a proprietary network manage-
ment application in DDlog. The application manages a firewall in a network of
switches and virtual machines (VMs). The firewall is driven by a centralized pol-
icy; when the policy changes, the local rules have to be updated in all network
devices. The core of this program is a graph reachability problem in a directed
graph, which is a recursive query written in a few lines of DDlog.

We compare the performance of the DDlog implementation (blue lines) with a
production-ready hand-written incremental Java program, which has been heav-
ily optimized (pink lines). The Java program has several thousands lines of code.
The graphs are synthetic network topologies; the average node degree is 2.

Figure 8 shows execution time and memory consumption of the two imple-
mentations. On the X axis we always have the graph size in nodes, and on the Y
axis performance. You will note that the DDlog program performs several times
better than the hand-optimized Java implementation.
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Fig. 8. DDlog performance as a function of the graph size. (1) the time taken to execute
the non-incremental reachability computation (inserting all nodes and edges in a single
transaction); (2) the peak memory consumption; (3) the time to insert an additional
12% edges into the graph, and (4) the time to delete 3% of the edges.
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5 Related work

A survey of Datalog engines can be found in [13]. Here we focus on incremental
evaluation; a survey of incremental evaluation is [9]. Notable algorithms include
Delete-Rederive [10], FOIES [6]. Saha [24] provides an algorithm for tabled logic
programs. The Backward-Forward algorithm [19] improves DRed under some cir-
cumstances. IncA [25,26] is a Datalog dialect for incremental program analysis;
it introduces the DRed[, algorithm. Another class of algorithms use provenance
to perform incremental computation [12]. Several recent paper describe systems
that use incremental evaluation for relational computation models: [2, 27].

The only other incremental Datalog engine that we are aware of is a LogiQL [§],
a commercial product of LogicBlox [3]. Unfortunately there is no published data
about the performance of the LogicBlox incremental engine.

DDlog is built on top of Differential Dataflow [14]; several declarative in-
cremental query engines generalizing Datalog were built on top of Differential
Dataflo [20, 17]. Some of the DDlog features were inspired by .Net LINQ [18§].

6 Conclusion and future work

DDlog is a young project. The language is evolving quickly, driven by the use
cases. We place paramount importance on language usability; this is why we
have enhanced Datalog with many non-traditional constructs. Our goal is to
reduce as much as possible the need to transition between multiple languages
when writing large projects.

Our ongoing work on DDlog focuses on continuous improvement of its perfor-
mance and memory utilization, as well as use-case-driven evolution of its syntax,
features, and libraries. We welcome any contributions or users!
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