PHISE'06 771

Classification and Ontological Aspects in
Software Engineering

Maria del Pilar Romayand Carlos E. Cuesta

! Departamento de Sistemas Informaticos
Escuela Politécnica Superior, Universidad Europea de Madrid
Villaviciosa de Odon, 28670 Madrid (Spain)
pilar.romay@gmail.com
2 Grupo Kybele, Departamento de Lenguajes y Sistemas Informaticos
Escuela Sup. Cc. Experim. y Tecnologia, Universidad Rey Juan Carlos
Méstoles, 28933 Madrid (Spain)
carlos.cuesta@urjc.es

Abstract. The organization of objects into classes and categories is an essential
task in the process of forming concepts. Within computer science, this classifica-
tion activity must be supported by a well-founded representation system; among
the alternativespntologiesappear as a particularly suitable choice. Classification
has therefore an ontological nature, as it both defines a system of categories, in
the philosophical sense, and is founded by some ontology, in the computational
sense. However, there is an implicit duality; classes are both conceived within an
ontological hierarchy and expressed as a linguistic structure. These often conflict.
Our proposal is to tackle this problem by definining two orthogonal dimensions,
namely anontologicalone and ametalingisticone, to separate these perspec-
tives. But once dimensions have been defined, some other proposals appear. For
instance, different ontological hierarchies are perceived from different viewpoints
and domains; aubjectivedimension is therefore provided to include them. Simi-
larly, the evolution of elements though the software lifecycle suggests to classify
the outcomes of different phases; then a time-avea@utionarydimension is

also defined. These four coordinates provide a precise and flexible classification
framework. We suggest that recent advances in Software Engineering, particu-
larly model-driven approaches, require the definition of such a framework.

1 Introduction

The Software Engineering discipline has the commitment to find out how to build soft-
ware in a systematic way. This goal must be achieved by using several different meth-
ods, techniques and concepts. Many of these are not strictly new, but have their origins
deeply rooted in other fields of knowledge, including Philosophy. For example, consider
two closely related but different notions, namelgssificationand ontology Coming

from a long philosophical tradition, their adoption in Computer Science is still relatively
recent; yet they have an increasing importance within the field. This paper discusses the
interdisciplinary nature of these two concepts, and its consequences.

* Author is partially funded by Project MCYT-TIC2003-07804-CO5-0ly NAMICA -PRISMA).



772 Philisophiocal Foundations on Information Systems Engineering

Ontology as the representation of a reality, has a fundamental role in reasoning,
and therefore in automatic reasoning. To be able to reason about this reality, it is first
necessary to describe it. This means to represent it in the formodelswhich sepa-
rate relevant information, thus making easier to interpret it. These models are composed
of conceptsabstractions obtained by grouping individual objects tliassesor cate-
gories where common features are shared. These concepts are in turn organized into
complex structures, which provide the ontological frame of reference where to define
every separate subjectiveewpointabout the original reality.

Therefore representation implies a categorization process. The process itself con-
sists of classifying knowledge to provide a certain conception of the world, and hence
the generic name afassification Classifying provides (and requires) the ability to rea-
son about categories; whether automated or not, this reasoning is still an information
processing activity. Again, this must be preceded by a modeling activity, in which a
suitable representation is built. In summary, they bear a mutual dependency.

During the last decade, Software Engineering has been supported by classification
techniques. The most important problem to solve is the classification of software ele-
ments, that is, the identification and definition of conceptual classes or categories, and
the organization of those elements within these categories. In a Software Engineer-
ing context, this would make possible to group the many by-products of the software
development process. Classification manages this kind of data, covering application
themselves, their models and every autonomous fragment, but also the associated doc-
umentation and even a lot of process-specific information.

In the following sections, we discuss the role of classification within Software Engi-
neering. Then we explore the concept of ontology with regard to this problem, and the
current form it adopts in Computer Science. Supported by this context, we suggest that
a classification system which simultaneously comprises several orthogonal dimensions
would better suit the needs of Software Engineering. We delve further into this proposal
by considering four such dimensions, which cover a significant part of the spectrum. We
finish by briefly discussing the expressive power of this approach.

2 The Classification Problem in Software Engineering

To understand a complex reality, the first step is to organize the information, identify-
ing properties which make us able to group elements into classes of common features.
But the notion ofclasshas been used in many ways, within the context of Software
Engineering. The best known of them is related to the object-oriented paradigm, where
the class is usually used as the basic modeling element for software. This has still the
connotation of being located at the implementation level, but in fact the organization
process can be considered at a higher level of abstraction.

Therefore there are not only programming-level classes, but the rich spectrum of
software elements created during the development process. These are valuable elements
which should be uniquely identified, so that they could be reused in another develop-
ment process, or perhaps retrieved to later evolve into a new software element.

In Software Engineering, the nature of the elements to be classified is quite differ-
ent from that of elements in other fields, such as Biology or Biblioteconomics. When



PHISE'06 773

classifying software elements, part of the relevant information is related to the target
environment, the so-called application domain. But these are intertwined with other
structural, functional and behavioural aspects. In short, the nature of software proper-
ties is complex, as they blend together several concerns.

For this reason, different classification systems have been proposed. These propos-
als vary as different kinds of properties are selected to be used in different representation
schemes. The choice is made according to their intended purpose, which includes topics
such as domain analysis, information retrieval, quality evaluation systems, support for
reuse within CASE tools, and many others.

The classification problem comprises two activities; the building of a sufficiently
wide category system, which should be able to accommodate software elements from
any conceivable domain, and the definition of a flexible organization process, which
should be able to find the right category for every such element. Therefore, software
classification is an ontologic problem, using the term in the broad sense. But within
the specific context of knowledge representation, the ontological approach is just an
option, one strategy which could help in tackling the problem. In the next section we
will briefly discuss the consequences of adopting an ontological approach.

2.1 Classification Systems in Software Engineering

The more ancient classification systems were related to Biology. The primitive man
began by finding similarities between objects in the world, particularly plants and an-
imals; and with time he learned how to abstract their differences and group them in
classes or categories, which made later possible to infer less apparent similarities. Clas-
sification would gradually evolve towards a formal systertexdnomy where names

of beigns are organized. Theophrastus, an Aristotle’s disciple, wrote the first taxonomy
in History, a compilation about Botanics.

The modern age of classification is considered to have started two millennia later,
again in Botanics, with the works of Linnaeus. However the most important innova-
tions in this direction come from Biblioteconomics. Consider that according to their
contents, many books could fit in several categories, and there are also several organi-
zation strategies. But even more important, these are applied on liegisyersrather
than physical books themselves. Software classification is somewhat similar: it's not a
question of organizing elements, but theietadata

In the context of Biblioteconomics, Ranganathan is considered as the pioneer to
propose the idea to simultaneously use different dimensions to classify, which was a
substantial advance in the field. That kind of model has already surpassed the limits of
this discipline, extending its influence to many other fields of knowledge. For instance,
these systems have been used in Software Engineering to support software classifica-
tion, within the context of Systematic Software Reuse.

Among these library-inspired systems, probably the best known one fatke
based approach. Facets were introduced into software classification by Prieto-Diaz [15],
and they define which is probably the most evolved technique in the field. This approach
has been widely tested and studied; it is included also as a part of many other propos-
als, which complement it by providing adequate specification standards and retrieval
methods, together with several facet-definition mechanisms [11].



774 Philisophiocal Foundations on Information Systems Engineering

Apart from facets, many other classification techniques have been considered within
Software Engineering, in the context of software reuse and reverse engineering. They
use a wide range of approaches and are supported by many foundations, including cat-
egory theory, clustering systems, and diverse methods and heuristics from the fields of
Artificial Intelligence and Natural Language Processing.

Classification systems can be divided in two different groups, nacogiirolled vo-
cabularysystems, such as facet-based techniquesnanetontrolled vocabulargys-
tems. Some controlled vocabulary proposals have been highly criticised because, con-
trary to what was expected, they have not achieved better results than non-controlled
vocabulary techniques [12]. In fact, this only happens when a classification system has
been conceived from the restricted point of view of a single designer, which may not co-
incide with the point of view of some other users. More adequate classification systems
could be designed by studying the domain in advance, and by including both coinci-
dences and variation points in the description. That’s the purpose of some of the most
popular techniques of Domain Engineering nowadays [8].

However the use of domain analysis techniques during classification systems’ de-
sign is not enough to avoid the problem of having different viewpoints of the same
domain, and they do not consider the evolution of components either. Therefore it is
necessary to define a framework where the different perspectives and dimensions which
appear when classifying information —particularly software-related information— can be
acommodated. In this paper we propose such a framework, where classification is con-
ceived as unfolding on different dimensions, where ontological, meta-linguistic, subjec-
tive and evolutionary concerns are evaluated. This framework must be shaped such that
knowledge about both elements to classify and their environment can be represented.
Then it can be used to reason about these elements, or to adapt the classification system
to this changing environment.

3 Ontology in Software Engineering

A correct representation of information is of utmost importance to achieve an adequate
classification. For this reason, many approaches to software classification use complex
knowledge representation techniques, related to and originated in the context of Artifi-
cial Intelligence Ontologiesare considered among the most expressive and powerful of
these. As they are themselves conceived as a system of categories, they are particularly
useful for classification purposes.

Ontologies, in the specific computational sense, have evolved recently to a very
expressive and generic linguistic form, supported by Description Logics [3], which in-
cludes even behavioural aspects. Also, the concept of ontology itself has become more
general, somewhat approaching to its original philosophical meaning.

3.1 Defining Ontology in the Context of Philosophy

Ontology is usually defined as the theorydat is the branch of Metaphysics which
reasons aboubeing In classic terms, it deals with essence and existence, with ob-
jects themselves and their relationships; in short, watidity. Building on this, Mario



PHISE'06 775

Bunge [4] defines Ontology as the branch of Philosophy with studies the prevailing
aspects of reality, such as existence, change, time, hazard, mind or life.

An immediate consequence of the study of “being and the object itself” is the effort
to build up a system which supports analysis and abstraction of properties. That kind of
system takes usually the form of some category structure and a theory of universals. For
this reason, ontology is often related to the design of category systems, to the extent that
the word has acquired this additional meaning. That's the context where we are able to
state, perhaps abusing the language, ¢tastsifications an ontologic activity.

But now we must distinguistihe ontology froman ontology; that isgeneralOntol-
ogy fromspecialOntology. The first term refers to the discipline itself; when it defines
a system of categories, they are those of existence itself, such as object, state or change.
The second term refers to the ontologic perspectiva pért of reality, and it encom-
passes the categories of a branch of knowledge, such as Physics or Biology.

For the same reason, there is a classic confusion between Ontology and two related
branchesMereologyandEpistemologyThe former one is the study of the relationship
between parts and the whole, and it is related to the definition of classes and sets. Today
Mereology is understood as an independent discipline, and not as a subset of Ontology.
The second on is, by definition, the theorywdfiat is knownthe branch of Philosophy
which deals withknowledge It studies both the cognitive process and the conceptual
structures that the mind builds to grasp the reality. The similarity between Ontology
and Epistemology is due to the fact that both of them are devoted to define category
structures, and they are also strongly related. Ontologic structures intend to describe
the reality, while epistemologic ones describe just the way we understand this reality.
They should be identical a priori, but there is no way to state that correspondence, as we
actually only know what is known. This problem is even more apparent in the context
of Computer Science, and in particular within Artificial Intelligence, where we usually
asume that what we know is all that exists (closed-world axiom).

A crucial moment in the History of the discipline is the establishment of the branch
known asFormal Ontology which can be traced to the early works of Edmund Husserl
and, particularly, to Stanislaw Eeiewski [16]. Formal Ontology can be briefly defined
as the result of combining the intuitive method of classic Ontology with the symbolic
method of modern Logic, to finally identify both as two perspectives of the same sci-
ence. This definition is due to Nino Cocchiarella [4].

From a pragmatic point of view, a formal ontology is often described as a cate-
gory system with a logic support. We should emphasize that they are both necessary.
Too often ontology has been identified just with the category system, as the traditional
philosophical approach seems to suggest. But this is a mistake, and sometimes it has
appeared too when transferring these ideas to Computer Science.

From this point of view, an ontology is sometimes identified to a taxonomic hier-
archy of classes. Then it is described as a structure defining classes, which are related
by inclusion or subsumption abstractions. This approach is inadequate, as an ontology
needs not to be constrained to adopt such a form. The only actual requirement is that it
must be able to constrain the range of possible interpretations [5].

There is a clear relationship between a formal ontology, as described, and the current
concept of ontology within Computer Science, which justifies the use of the term. A



776 Philisophiocal Foundations on Information Systems Engineering

computing system could be conceived as a logic reasoning system, governed by well-
defined rules of behaviour, which operates on a certain information base. When this
base is shaped as a structured representation of the world, it is describing the reality, as
the system conceives it. When this representation is coherent, the logic engine of the
system can be used to reason about reality. Therefore, the information base is serving as
the fragment of reality supporting a logic theory, and from this point of view it can be
considered as an ontology, in the broad sense. In summary, we could define an ontology,
in Computer Science, as a certain representation of reality, structured in categories, and
supported by a logic system able to reason about it.

3.2 The Role of Ontologies in Computer Science

The best-known and most widely cited definition of ontology, within the Computing
field, is Tom Griber’s [5], originally developed in the context of Artificial Intelligence.
But nowadays the scope of this definition has been extended to cover every area of
Computer Science. Actually, it has influenced not only theoretical approaches, but even
the most informal understanding of the concept. According to him, an ontology is the
specification of a conceptualization. This definition is quite satisfactory, as it summa-
rizes several aspects of the concept in a short sentence. This sentence can be understood
at different levels. Informally, it can be read as a generic definition, which is both co-
herent with the traditional philosophic intuition and formal ontology principles. But a
more specific reading provides also a precise description of the concept within Artificial
Intelligence and Computer Science.

Even the choice of terms has proven to be quite fortunate. On the one hand, the ref-
erence tespecificationclearly states the fundamental limitation of the concept within
an information system: the ontology must be articulated using a language. On the other
hand, it also explains why the notion is relevant in the Computing context. Just consider
that several agents could have differeohceptualizationsthat is, diverging percep-
tions of the world and different knowledge bases.

However this definition has been challenged by some authors, and in particular by
Nicola Guarino [4], which rejects the specific use of the term “conceptualization”. He
states that Gruber is borrowing the term from Genesereth and Nilsson’s work, where
it is conceived to mean an extensional set of relationships outlining a certain situation.
But the intuitive meaning of the word is much wider, as it refers to the psychologi-
cal process of creating a set of concepts. Guarino suggests that Griber’s definition is
commonly accepted because most people assumes this term is used in the wider sense.
The difference is subtle anyway, and in general terms we can simply ignore Guarino’s
objection, as it doesn’t really affect the way the notion is used.

One could argue that those intended ontologies are actually epistemologies, as they
are not describing the reality itself, but the knowledge base of a reasoning agent: the
way it perceives, knows and conceives this reality. However the use of the term is not
just a consequence of the traditional metaphysical confusion between them, but it has
also something to do with the very essence of information systems. From their point of
view, information is the only matter; it defines a virtual world in which only what can
be described exists. Therefore an ontology is not just representing knowledge, but the
only reality the system can manage.



PHISE'06 777

Curiously enough, this is also the philosphical distinction between formal ontol-
ogy and material ontology [4]. The first one does not consider the actual relationships
between objects in the material world, but those between the corresponding concepts
inside a formal structure. The mapping between this conceptual structure and the reality
is the subject of the second one. But in a computational system, only the first one mat-
ters; what it needs to represent is just the conceptual network used by an information
system, and supported by a formal category structure.

4 Dimensions for Classification

To organize the information in classes is a difficult task, as we are not usually able to
identify a single classification framework. This framework should be defined by select-
ing relevant properties in the elements to classify, but this is far from trivial. There are
many variables to consider, such as the different natures of those elements, the alternate
views of the same reality, or the relationships between seemingly independent aspects.
Most of the existing classification systems decide to adopt a rigid scheme, in which
each and every element must be uniquely classified.

Though this strategy seems to solve the problem, in fact it just moves the complexity
into the organization process. Instead we propose the adoption of a different approach,
in which every such factor is made explicit agiemensiona separatgiewpointto ac-
commodate separaperspectivescomposing a general classification framework. This
way, we are not trying to create an unified scheme, but to harmonize many different
schemes. Using this strategy, at least four different, core dimensions are almost imme-
diately identified. We devote the rest of this document to briefly discuss them.

First, we must provide a dimension to encapsulate the traditional approach, which
uses a suitable representation system to define the relevant categories and their hier-
archies; these set up oontological dimensionBut here, a different though related
perspective appears too. The need for a representation system is just the general need
to articulate the information in some kind of language. But this language has an inner
structure itself, comprising several levels of abstraction, which could affect and even
distort the representation. This might influence the classification process, and therefore
ameta-linguistic dimensiors required to accommodate this effect. There is always an
implicit tension between ontological hierarchy and linguistic abstraction [2]; by main-
taining them separate as diverging axis, this tension is somehow relieved.

Initially, this onto-linguistic binomial defines a static scheme; but our aim is to
model a world in constant change. In fact, not only the world, but the model itself
evolves in time: a temporal dimension is therefore required. Milestones in this dimen-
sion describe different stages in the model’s evolution. Then, this axis receives the name
of evolutionary dimensigras its essence is related to change, more than to time.

Finally, the fourth dimension is related to the point of view which the model is being
described from. One lesson which Philosophy (and even Physics) can teach Software
Engineering is that any description of a reality depends on the observer, inasmuch as it
depends on the reality itself. Within software development, modeling has been mostly
focused on the object, and only occasionally the subject is considered. Every observer
can provide a different perspective or viewpoint; this means teabgective dimension



778 Philisophiocal Foundations on Information Systems Engineering

is required to accommodate them all. However, once this feature has been provided, it
can be used to distinguish among not only observers, but their intentions. A different
perspective can be provided by the same observer with a different concern. Therefore a
subjectcan refer both to a viewpoint or an aspect.

By considering those dimensions in a classification system would provide it with
enhanced flexibility for scheme specification and category definition. Of course, the
classification and recovery process itself becomes also more complex.

4.1 Ontological Dimension

Classification is essentially an ontological activity — and therefore the ontological ap-
proach has been widely used. In fact, when only this dimension is considered, the re-
sult is comparable to tradiditonal classification systems. This has nothing to do with
choosing ontologies as the representation language; our endeavour is just to classify an
element within an explicit or implicit category system, according to its meaning.

Though this is not always obvious, philosophical discussions about ontology are
often still relevant in Computer Science. For instance, Roberto Poli made the following
remarks [14] about formal ontology, which can be directly transferred to the computing
context. Moreover, they could be used to support the main thesis in this paper, which
has been conceived from a Software Engineering perspective.

— An ontologyis not a catalogue neither a taxonomy, but a general framework or
structure in which catalogues and taxonomies could be organized.

— An ontologyis notan epistemology, as it is not reduced to study knowledge. While
the former deals with the objective side of reality (“objects”), the latter describes
the subjective side (“subjects”).

— Nothing precludes the existences#veralontologies, in plural.

The first point remarks the generic nature of an ontology, which is not just a tax-
onomy but something more complex, at a higher level of abstraction. The second point
intends to clarify a classic confusion, specifying the essential difference between an on-
tology and a knowledge representation system. Besides it exposes the basic distinction
between objective and subjective viewpoints, the same one can find in recent extensions
to modeling concepts [6, 7]. Finally, the third point excludes the requirement of having
a single knowledge structure, and even implies the need to reconcile several ontologies,
which need not be orthogonal.

In fact, this is also our basic argument when proposing to considebjectivedi-
mension. This will be used to develop several ontological hierarchies, which then will
be synchronized by weavingprocess, just like in other areas within Software Engi-
neering. Therefore, the same element might be classified using concepts from different
ontologies, corresponding to many perspectives or domains. Actually there’s no need to
combine them to define an unified structure; the only requirement is to ensure that their
contents are not strictly contradictory.

This is somehow similar to the Husserlian approach to ontology, which is found
among the origins of phenomenology. Husserl conceives the existence of a reality,
which is differently perceived by different subjects. Htigentionalontology is there-
fore the objective substrate which is shared by different subjective acts of conscience. In



PHISE'06 779

Computer Science terms, there are several (subjective) knowledge-based systems trying
to describe the same reality. We are not actually able to know this reality, but we must
assume some kind of consistency between those systems, though not always apparent,
which reflects the common reality they are trying to describe.

4.2 Meta-Linguistic Dimension

Besides influencing classification systems, ontological aspects pervade modeling envi-
ronments. There is a common conflict in both cases: though classification intends to
define an abstract system of categories, this system must be described using a concrete
language. The implicit tension between ontological and linguistic concerns is even more
apparent in visual languages, like thoséJirL.

The nature of the problem is revealed adual classificationconflict [1]. Every
software element can be classified in two different hierarchies, according to either its
internal meaning —ontological viewpoint— or the role it is assigned by the language’s
syntax —metalinguistic viewpoint—. Both perspectives are relevant for software classifi-
cation. For instance [2], the term “dog” designates, from an ontological point of view,

a certain animal species; but from a meta-linguistic perspective, it could refer to a cer-
tain class in the object-oriented model of our chosen language. This information is also
pertinent to achieve an accurate classification.

Though it could seem less important, the linguistic representation of a software
element is actually essential to classify it. The same term could refer to an object, a
class or a metaclass in different contexts. Sometimes this helps to distinguish either an
analysis-phase or a design-phase artifact. Each one implies a different linguistic role;
and depending on it, the term could even be assigned to a different ontology.

Even when some modeling languages, lkeaL itself, provide the facilities to de-
fine linguistic families, like theMoOF, or elements with variant levels of abstraction,
like stereotypeshose are not enough to adequately define an ontology [2]. This means
that an ontological relationship cannot be deduced from the corresponding linguistic
representation; there is not a direct mapping between them.

Some authors, including Atkinson and Kihne [1, 2], have suggested the separation
of these viewpoints in two dimensions, which respectively defineraalogicalhier-
archy and ametalinguistichierarchy. This makes possible to hold all the relevant in-
formation, while at the same time avoids the need to combine both perspectives. Every
software element is thus classified under two different categories, but these are located
in orthogonal dimensions. In summary, every element has now two “coordinates”.

This approach is both simpler and more flexible than the fusion of hierarchies.
Moreover, it can be generalized; it needs not to be restricted to just two dimensions.
An extended approach would make possible to dessdveraldifferent ontologies in
separate dimensions —now related to domain-level concerns and temporal roles— within
the same multi-dimensional classification system.

4.3 Subjective Dimension

Once that multiple dimensions are being considered, the separation between ontological
and metalinguistic concerns doesn’t seem enough. For instance, when the classification



780 Philisophiocal Foundations on Information Systems Engineering

process comprises several different domains, the simplest approach is to describe each
one in a separate ontology, instead of combining them all in a single structure. This
defines an orthogonal domain-oriented axis,ghjective dimensignvhich partitions

the classification scheme according to different contexts or themes; but it can also be
used to describe different viewpoints. The common thread is that every such coordinate
locates, all in all, a different perspective.

The same element could play different roles depending on the way it is used, or
could be conceived from a different point of view, which depends on the observer. For
instance, the same tree is the home for an eagle, and just wood for a logger [6]. In short,
the same concept could have a different relationship to diffesebfects Therefore,
it could be classified under a different category from each perspective. That was the
central idea of Harrison’s subject-orientation [6].

Indeed, a subject’s target is another subject’s context: the same notion, approached
from two points of view. As a consequence, multiple ontologies appear. Though they
are essentially hierarchic and independently conceived, some of their concepts seem to
coincide by chance. In fact, often they should have more than one point in common, as
logically they would use several related terms, even under different perspectives.

The interest and true complexity of this approach is revealed when such points of
contact appear between thaseriori orthogonal hierarchies; that is, the same concept
is conceived from several viewpoints, or a software element must be classified under
several categories. This makes possible to define partial mappings between those hier-
archies, which define a sort of heterarchy.

On the other hand, this could be conceived just as an organization problem, related
to the location of a concrete software element. Our first approach suggests to use a
feature-oriented organization [8], whef@aturesare the properties which describe a
software element, and simultaneously, which are considered relevant for some perspec-
tive. In fact, every subject (or viewpoint) is outlined by the set of features it defines, and
which in turn define the subject itself.

In the end, a classification system is composed of several ontologic hierarchies with
many join points instead of trying to define an universal ontology, which would be
impossible to manage. This approach tries to provide the best ontology in every domain,
to later consider their contact points. The final purpose is to automatically deduce the
relationship between these ontologies, starting from those join points.

This approach could seem cumbersome and perhaps unrealistic when transferred to
Computing, but actually it is beign applied with growing success in Software Engineer-
ing, both in early phases of development such as requirements and architecture, and at
the implementation level with so-called “aspect-oriented” technologies.

Among these, thenultidimensional separation of concerbg Ossheret al. [13]
stands out for it bears a certain resemblance to our approach. This is the heir to subject-
orientation [6], and the most important among symmetric models of aspects [7]. There
are also asymmetric models, like exemplified by AOP [9]. Though their original con-
ception is different, these provide a similar technological platform, which could also be
used to implement our approach. Nevertheless, both models use the same basic notion,
that of aweavingprocess. This is the automatic processing of relationships between



PHISE'06 781

“aspects” from their join points. This is essentially a dependency resolution, but allows
us to maintain separate models, diferring their combination.

In summary, our approach intends to use this background to realize some kind of
semi-automatic dependency resolution between ontologies. This requires that our repre-
sentation language is precise, accurate and expressive enough; for this reason, we have
selected certain advanced Description Logics [3] asdhmal foundation for ontology
description. Their weaving is supported, in turn, by Category Theory techniques.

4.4 Evolutionary Dimension

Probably ought to the taxonomic nature of traditional classification schemas, inspired in
biologic and bibliographic metaphors, existing classification systems have been mostly
static. However this has nothing to do with the essentillyamicmature of software. In
particular when considered as a part of the software development process, the lifecycle
of any software element must be conceived as an evolution in time.

Software elements hold changing information. At a given moment, they could be a
part of a finished software project, or stay in some intermediate stage of the development
process. Their representation has been changing along time, and this includes a bunch
of process-oriented meta-information which could still be of interest in the future, even
at a different stage from some other software project.

Recent research remarks the relevance of such process-related information, which
describes in detail the evolution of software elements, and affects their organization
within a sensible classification system. This is even more important in the context of
model-driven development processes, just NkeA [10]. This approach requires a pre-
cise definition of every stage in the process itself, but also of their transformations.
These definitions are provided in the same modeling language considered for the rest of
the process, and therefore they are also keen to be classified and reused. This is in fact
one of the reasons to use such a complex approach.

But this evolutionary nature has only recently been considered, in some of the most
modern classification systems. They take the form of complex structures in which the
evolution of a software element cantoacedall through its lifecycle, by describing the
relationship between the different incarnations of this element at different stages of the
development process. Again, we propose to separate this additional information in an
evolutionary dimensiampart from being useful, this approach makes possible the in-
tegration of the classification system and the Software Engineering process, particularly
within any model-driven context.

5 Conclusions

Traditional classification systems have either ignored the concerns in previous sections,
or considered them apart from each other. Our purpose, when defining them as dimen-
sions, is to make possible to gather them all in a single classification framework, such
that their information can be used altogether. We suggest that only that kind of joint
system provides the required expresiveness to introduce the benefits of classification in
the context of modern Software Engineering.



782 Philisophiocal Foundations on Information Systems Engineering

Consider that an adequate classification system must be evolutionary, at least partly;
it should be able to be extended as it is used. Of course, it should still have an ontological
nature, especially considering recent advances in ontology-based languages, which have
become even able to express behaviour. And the ability of combining several separate
contexts will be increasingly important, because software development itself is already
unfolding into many viewpoints and perspectives.

Such a classification system, when supported by a solid foundation, as provided by
Description Logic languages [3], would make possible to actually integrate classifica-
tion processes and ontological aspects into the Software Engineering mainstream.

References

1. Colin Atkinson and Thomas Kiihne. Rearchitecting the UML Infrastructé@M Transac-
tions on Modeling and Computer Simulatjdr2(4):290-321, 2002.

2. Colin Atkinson and Thomas Kiihne. Model-Driven Development: A Meta-Modeling Foun-
dation. IEEE Software20(5):36—41, September 2003.

3. Franz Baader, Deborah L. McGuinness, Daniele Nardi, and Peter F. Patel-Schneider, editors.
The Description Logic HandbookCambridge University Press, 2002.

4. Raul Corazzon. What is Ontology? Mntology. A Resource Guide for Philosophers
http://www.formalontology.it, February 2005.

5. Tom R. Gruber. A Translation Approach to Portable Ontologikaowledge Acquisition
5(2):199-220, 1993.

6. William Harrison, Harold Ossher, and Peri Tarr. Subject-Oriented Programming — A Critique
of Pure Objects. IiProc. 4" Conf. Object-Oriented Programming Systems, Languages and
Applications (OOPSLA'93)ACM Press, 1993.

7. William Harrison, Harold Ossher, and Peri Tarr. Asymmetrically vs. Symmetrically Orga-
nized Paradigms for Software Composition. Technical Report RC22685 (W0212-147), T.J.
Watson Center, IBM Research, December 2002.

8. K. Kang, Sholom Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-Oriented Domain
Analysis (FODA) Feasability Study. Technical Report CMU/SEI-90-TR-21, Software Engi-
neering Institute, Carnegie Mellon University, 1990.

9. Gregor Kiczales, John Lamping, Cristina V. Lopes, James Hugunin, Erik Hilsdale, and Chan-
drasekhar BoyapatiAspect-Oriented Programmind).S. Patent # 6.467.086, 2002.

10. Anneke Kleppe, Jos Warmer, and Wim BaBtDA Explained: The Model Driven Architec-
ture: Practice and PromiseAddison-Wesley, Boston, 2003.

11. Ali Mili, Rym Mili, and Roland T. Mittermeir. A Survey of Software Reuse Libraries. In
Annals of Software Engineeringolume 5, pages 349-414. Baltzer Science, 1998.

12. Hafedh Mili, Estelle Ah-Ki, Robert Godin, and Harold Mcheick. Another Nail to the Coffin
of Faceted Controlled-Vocabulary Component Classification and RetrievACM Sympo-
sium on Software Reusability (SSR’99ages 89-98, 1997.

13. Harold Ossher and Peri Tarr. Multi-Dimensional Separation of Concerns and the Hyperspace
Approach. InSoftware Architectures and Component Technology: the State of the Art in
Software DevelopmerkKluwer, 2000.

14. Roberto Poli. Ontology for Knowledge Organization. Kmowledge Organization and
Change pages 313-319. Indeks, 1996.

15. Ruben Prieto-Diaz. Implementing Facet Classification for Software R@asamunications
of the ACM 34(5):88-97, 1991.

16. J.T.J. Srzednicki, V.F. Rickey, and J. Czelakowski, edithesniewski’'s Systems: Ontology
and Mereology Kluwer/Ossolineum, 1984.



