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Abstract

Deep Neural Networks have advanced
rapidly over the past several years. How-
ever, it still seems like a black art for many
people to make use of them efficiently.
The reason for this complexity is that ob-
taining a consistent and outstanding result
from a deep architecture requires optimiz-
ing many parameters known as hyperpa-
rameters. Hyperparameter tuning is an es-
sential task in deep learning, which can
make significant changes in network per-
formance. This paper is the essence of
over 3000 GPU hours on optimizing a net-
work for a text classification task on a wide
array of hyperparameters. We provide a
list of hyperparameters to tune in addition
to their tuning impact on the network per-
formance. The hope is that such a listing
will provide the interested researchers a
mean to prioritize their efforts and to mod-
ify their deep architecture for getting the
best performance with the least effort.

1 Introduction

The application of Deep Neural Networks (DNN)
such as Convolution Neural Networks (CNN) (Le-
Cun et al., 1989) or Recurrent Neural Networks
(RNN) (Rumelhart et al., 1986) and its variants
(e.g., Long Short Term Memory (LSTM) (Hochre-
iter and Schmidhuber, 1997) or Gated Recurrent
Unit (GRU) (Cho et al., 2014)) has accelerated
since the beginning of this decade partly due to
the abundance of data available for training. Since
past several years, DNNs have found their way in
many areas of Artificial Intelligence (AI) such as
image processing or Natural Language Process-
ing (NLP) and have yielded superior performance
in almost all of them. However, a DNN comes
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with a series of hyperparameters which need to
be tuned if one expects to obtain state-of-the-art
or even better results using them. Some of these
hyperparameters, such as the number of layers or
the number of neurons per layer, are bound di-
rectly to the deep neural architecture, while others
- such as drop-out rate - are independent of the ar-
chitecture. In addition to these hyperparameters,
there are other network choices such as the clas-
sifier type that affects the network performance to
a large extent. Our list of parameters to tune in-
cludes both of these hyperparameters and network
choices. Since none of these parameters, includ-
ing network choices and hyperparameters, can be
learned within the network directly, from now on,
we use the term hyperparameter to refer to both.

Recognizing the best choice of hyperparame-
ters is often a cumbersome process to a level that
some people consider it a ’black art” (Snoek et al.,
2012). Scarcity of proper research on the impact
of these parameters on the network performance
often leads to a waste of a lot of time, especially
for younger researchers with little experience. In
this paper, we adopt a state-of-the-art multi-label
classifier to investigate the impact of 12 categories
of hyperparameters on the task of multi-label text
classification. The task in multi-label text classifi-
cation is to assign one or more labels to each text.

Word embeddings types, word embeddings
sizes, word embeddings updating, character
embeddings, deep architectures (CNN, LSTM,
GRU), optimizers, gradient control, classifiers,
drop out, deep vs. wide networks, and pooling
are the settings studied in this work. To make the
experiment manageable, several groups of these
parameters are set on an individual grid to serve
as an ad-hoc grid search scheme for finding the
most promising hyperparameters by focusing on
the most promising optimized area.

We provide the readers with an insight into the
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impact of each hyperparameter on this specific
task. This study is performed by running over 400
different configurations in over 3000 GPU hours.
The contribution of this work is to provide a prior-
itized list of hyperparameters to optimize.

2 Related Work

Hyperparameter tuning is often performed using
grid search/brute force, where all possible com-
binations of the hyperparameters with all of their
values form a grid and an algorithm is trained
for each combination. However, this method be-
comes incomputable already for small numbers
of hyperparameters. For instance, in our study
with 12 categories of hyperparameters each with
four instances on average, we would have a grid
with several million nods, which would be highly
computationally expensive. To address this is-
sue Bergstra et al. (2013) proposed a method for
randomized parameter tuning and showed that for
each of their datasets there are only a few impact-
ful parameters on which more values should be
tried. However, due to the random mechanism
in this approach, each trial is independent of the
others. Hence, it does not learn anything from
other experiments. To address this problem Snoek
et al. (2012) proposed a Bayesian optimization
method using a statistical model for mapping hy-
perparameters to an objective function. However,
Bayesian optimization adds another layer of com-
plexity to the problem. Therefore, this method has
not gained much popularity since its proposal.

The most effective and straightforward method
for hyperparameter tuning is still ad-hoc grid
search (Hutter et al., 2015) where the researcher
manually tries the most correlated parameters on
the same grid to gradually and iteratively find the
most impactful set of hyperparameters with the
best values.

3 Multi-Label Classification

Multi-label text classification is the task of as-
signing one or more labels to each text. News
classification is an example of such a task. For
this task, we adopted a state-of-the-art architecture
for multi-label classification (Aghaebrahimian and
Cieliebak, 2019). The schema of the model is il-
lustrated in Figure 1.

The architecture consists of two channels of bi-
GRU deep structures with an attention mechanism
and a dense sigmoid layer on the top. The illus-
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Figure 1: The system architecture

trated schema is the optimized network which cre-
ated the best results for the task. One channel is
devoted to the most informative words given each
class, which are extracted using the x? method.
The other channel is used for input tokens. For
more information about the architecture, please re-
fer to Aghaebrahimian and Cieliebak (2019).

The dataset used for this experiment is a pro-
prietary dataset with roughly 60K articles with a
total number of 28 labels. The dataset contains
about 250K different words and assigns 2.5 labels
to each article on average. It is randomly divided
into 80%,10%, and 10% parts for training, validat-
ing, and testing accordingly.

The textual data is preprocessed by removing
non-alphanumeric values and replacing numeric
values with a unique symbol. The resulting strings
are tokenized and truncated to 3k tokens. Shorter
texts are padded with O to fixate all the texts to the
same length.

Two measures are used for evaluation. F1 (Mi-
cro) is used as a measure of performance. It is
computed by calculating F1 scores for each arti-
cle and averaging them over all articles in the test
data. The second metric, Epochs, is reported as
a measure of time required for the network with
a specific setting to converge. The early stopping
method is used as criterion for convergence, which
is recognized when after three consecutive epochs
no decrease in validation loss is observed. All
models are trained in batches with 64 instances in
each.

4 Experimental results

There are 12 categories of hyperparameters which
are tuned in this study. Some of the hyperparam-



eters, such as the deep architecture or the classi-
fier type, are network choices while others, such
as the embeddings type or the dropout rate, are
variables pertaining to different parts of the net-
work. The results of hyperparameter optimization
on each criterion are reported in the following sub-
sections.

All parameters except the parameter under in-
vestigation in each experiment are kept constant.
All other parameters that are not part of this study,
such as the seed number or batch size, are also kept
constant throughout all the experiments.

4.1 Word Embeddings Grid

In this grid, we tune the word embeddings type,
the size, and the method of updating. Low di-
mensional dense word vectors known as word em-
beddings have been proven to be highly effective
in representing words, and often lead to signifi-
cantly better performance (Collobert et al., 2011).
Depending on the method used for their training,
they can provide different levels of syntactic and
semantic information about each word. Many fac-
tors can affect the quality of word embeddings,
including the data on which they were trained,
their number of dimension, their domain, and pre-
processing steps involved in the training. We in-
vestigated five widely studied pre-trained word
embeddings including Word2Vec (Mikolov et al.,
2013) trained on Google News dataset with 100
billion tokens, Glove (Pennington et al., 2014)
with three variants (one trained on Wikipedia with
64 billion tokens and two others trained on the
Common Crawl, one on 42 and the other on 840
billion tokens), FastText (Bojanowski et al., 2016),
dependency_based (Levy and Goldberg, 2014),
and ELMo (Peters et al., 2018). As shown in Ta-
ble 1, the Glove embeddings trained on the Com-
mon Crawl yields significantly better results com-
pared to other embeddings except for Elmo. Elmo
and Glove-840 yield roughly similar results. How-
ever, due to the much larger word vector size in
Elmo, it is much more computationally expensive
and takes much longer time to converge.

Each pre-trained embedding comes with a spe-
cific vector size. The Glove embeddings are
available in 50, 100, 200, and 300-dimensional
word vectors. Elmo provides 1024 dimensional
vectors, and other embeddings all are with 300-
dimensional word vectors. The results for size
tuning are reported in Table 2. Except for the

‘Word embedding type Epochs Results
‘Word2Vec (Mikolov et al., 2013) 26 81.9 %
Glove-6 (Pennington et al., 2014) 25 81.7 %
Glove-42 (Pennington et al., 2014) 26 82.9 %
Glove-840 (Pennington et al., 2014) 29 84.5 %
FastText (Bojanowski et al., 2016) 24 79.2 %
Dependency (Levy and Goldberg, 2014) 22 81.4 %
ELMo (Peters et al., 2018) 32 84.6 %

Table 1: Embedding type tuning results. Embed-
ding types, sizes, and update methods are on the
same grid (26 configurations).

50-dimensional vectors, which is sub-optimal, all
other dimensions yield superior results with an un-
noticeable difference in the number of Epochs.

Word embedding size Epochs Results
50 22 81.8 %
100 25 82.9 %
200 27 83.6 %
300 29 84.3 %
1024 32 84.6 %

Table 2: Embedding size tuning results. Embed-
ding types, sizes, and update methods are on the
same grid search (26 configurations).

Word embeddings provide a mean of transfer
learning, which means word vectors are initially
learned using a large dataset containing several
billion tokens and are fine-tuned on a smaller
dataset for doing their specific task afterwards.
This mechanism can be controlled by having word
vectors frozen or fine-tuned through training. De-
pending on the size of the dataset on which word
embeddings are being refined, updating them can
improve the performance. However, as observed
in Table 3 fine-tuning the word vectors yielded no
significant improvement over original pre-trained
ones since the dataset was not large enough.

Word embedding updating Epochs Results
Disabled 29 84.3 %
Enabled 31 84.5 %

Table 3: Embedding update method tuning results.
Embedding types, sizes, and update methods are
on the same grid search (26 configurations).

4.2 Character embedding

Word-level features are not the only features used
in text analytics. Character-level features are
also reported to improve model performance es-
pecially in tasks such as Named Entity Recogni-
tion (NER) (Akbik et al., 2018) or Part Of Speech
(POS) (Anastasiev et al., 2018) tagging, where
knowing the function of individual characters such
as prefixes, suffixes, or even infixes are beneficial.



We used two different character encoding mecha-
nisms, one CNN-based (Ma and Hovy, 2016) and
the other LSTM-based (Lample et al., 2016), to
investigate the impact of character-level features
on the network performance. As we expected,
using character-level features had no added value
in the label classification task where labels were
bound to words and their syntactic and semantic
attributes rather than to their characters.

Character embeddings and the best of embed-
dings grid were tuned on the same grid. It means
that in this grid, we disregard the sub-optimal set-
tings in the embeddings grid and only focus on the
winning setting. Given the winning setting, we
tune the character embedding settings to investi-
gate the impact of character embeddings (Table 4).

Character embedding Epochs Results
Disabled 29 84.3 %
Enabled-CNN (Ma and Hovy, 2016) 31 84.7 %
Enabled-LSTM (Lample et al., 2016) 36 84.8 %

Table 4: Character embedding tuning results.
Character embeddings and the best of embeddings
are in the same grid search (14 configurations).

4.3 Deep architectures

The choice of deep architecture either as a Con-
volution Neural Network (CNN) (LeCun et al.,
1989) or as a variant of Recurrent Neural Net-
works (RNN) such as Long Short Term Memory
(LSTM) (Hochreiter and Schmidhuber, 1997) or
Gated Recurrent Unit (GRU) (Cho et al., 2014)
can have a huge effect on the performance of a
model.

The deep architecture type, the number of deep
layers, and the number of units in each layer, as
well as the optimizers, are highly dependent on
each other. Therefore, we optimize all of them on
the same grid with 270 different configurations.

For the CNN model, we adapted Kim (2014)
model, and for RNN models, we used both vari-
ants LSTM and GRU as single and bidirectional
architectures. As seen in Table 5, although CNN
models converge faster than the RNNs, they can
not beat RNNs performance. Among all other
RNN models, bidirectional GRU yields signifi-
cantly better results.

Deep architectures Epochs Results
LSTM (Hochreiter and Schmidhuber, 1997) 30 78.2 %
Bi-LSTM 37 82.9 %
GRU (Cho et al., 2014) 21 79.8 %
Bi-GRU 29 84.3 %
CNN (single channel) (Kim, 2014) 18 81.7 %
CNN (double channel) (Kim, 2014) 23 82.5 %

Table 5: Deep architecture tuning results. Deep
architectures, Deep and wide networks and opti-
mizers are in the same grid (270 configurations).

4.4 Deep vs. wide networks

The application of more deep layers and more
units in each layer has been beneficial in some
tasks. Adding more layers helps in more complex
tasks to generate more layers of abstraction, while
adding more units to each layer contributes to gen-
erating more features. Still, adding extra layers in
depth and width without enough training data usu-
ally leads to overfitting. In all of our configura-
tions, we got the best performance by having 128
units for each layer and only one layer in depth
(Table 6).

Deep vs. wide network Epochs Results
Deep-1 29 84.3 %
Deep-2 26 83.7 %
Deep-3 18 74.6 %
Wide-64 30 82.9 %
Wide-128 29 84.3 %
Wide-256 25 83.5 %

Table 6: Deep and wide networks tuning. Deep
and wide networks, Deep architectures, and opti-
mizers are in the same grid (270 configurations).

4.5 Optimizer

The job of an optimizer is to minimize the loss
in the objective function. Gradient-based meth-
ods in general, and Stochastic Gradient Descent
(SGD) in particular, are one of the widely used
classes of optimizers for minimizing the objective
functions in machine learning. Due to high sen-
sitivity to learning rate in SGD, other variants of
optimizers such as Adagrad (Duchi et al., 2011),
RMSProp (Hinton, 2012), Adam (Kingma and Ba,
2015), and Nadam (Dozat, 2015) have been pro-
posed in recent years. In all our configurations, we
got the best performance using Adam. Nadam also
yields almost the same performance while con-
verging faster (Table 7).

4.6 Pooling

Either in a CNN after the convolutional filters or
in an RNN after the recurrent layers, pooling has
been proven as a useful tool for extracting the most



Optimizer Epochs Results

SGD 22 78.4 %

Adagrad (Duchi et al., 2011) 25 82.7 %

RMSProp (Hinton, 2012) 27 83.9 %

Adam (Kingma and Ba, 2015) 29 84.3 %

Nadam (Dozat, 2015) 24 84.2 %
Table 7: Optimizer tuning results. Optimizers,

Deep and wide networks, and Deep architectures
are in the same grid (270 configurations).

relevant features given each task. We investigated
three types of polling, namely average, max and
the concatenation of both with the best of opti-
mizer configurations on the same grid with 15 set-
tings. The results are reported in Table 8, which
shows that using both yields the best performance
for our task.

Pooling Epochs Results
Average 29 832 %
Max 29 83.5%
Both 29 84.2 %

Table 8: Pooling tuning results. Pooling and the
best of optimizers are in the same grid search (15
configurations).

4.7 Gradient control

The derivatives which are computed in backprop-
agation at training time in a DNN with many lay-
ers get smaller and smaller to the point of van-
ishing. This is particularly true for RNN’s which
have a large number of layers. This makes the
training difficult and time-consuming. There are
two widely practiced mechanism called gradient
clipping (Mikolov, 2012) and gradient normaliza-
tion (Pascanu et al., 2013) to address this issue
known as gradient vanishing. We set the gradient
control mechanism with the best of the deep ar-
chitectures from Sub-section 4.3 on the same grid
with 18 configurations. In all of these configura-
tions, we got better results using gradient normal-
ization (Table 9).

Gradient control Epochs Results
Disabled 28 82.9 %
Clipping (Mikolov, 2012) 31 83.1 %
Normalization (Pascanu et al., 2013) 29 84.2 %

Table 9: Gradient control tuning results. Gradient
control and the best of deep architectures are in the
same grid search (18 configurations).

4.8 Classifier

The last layer in a classification model is consid-
ered as the most crucial layer since all the com-

puted features in this layer are projected to their
appropriate classes. Therefore the choice of this
layer has an essential impact on the network per-
formance. The choice of this layer is highly de-
pendent on the assumptions we make about the
task at hand. If the labels are independently dis-
tributed, the Sigmoid and the Softmax yield better
results, while if they are conditioned on their ad-
jacent labels (e.g., POS tagging) the Conditional
Random Field (CRF) (Lafferty et al., 2001) works
better. If we expect a multinomial distribution
over the labels, the Softmax is the best classifier
to choose while if we expect a Bernoulli distribu-
tion, the Sigmoid is the right choice. All of the
facts mentioned here come from the assumptions
behind each of these statistical functions.

We investigated the performance of these three
classifiers with the best of the deep architectures
from Sub-section 4.3 on the same grid with 18
configurations. As observed in the results pre-
sented in Table 10, the Sigmoid obtains statis-
tically significant better result compared to two
other functions. As expected, due to the indepen-
dence among the labels of different samples, the
CRF did not perform very well. Likewise, duo
to the freedom among labels in each sample, the
Softmax also performed poorly.

Classifier Epochs Results
Softmax 30 78.4 %
Sigmoid 29 84.2 %
CRF 31 77.1 %

Table 10: Classifier tuning results. The classifiers
and the best of deep architectures are in the same
grid search (18 configurations).

4.9 Drop out value

Deep neural networks tend to memorize or over-
fit, which is not a desirable behavior since we
are mostly interested in the ability of the net-
work to generalize. Drop out (Srivastava et al.,
2014) is an effective tool to enhance generalizabil-
ity. The first technique known as simple or naive
drop out was proposed as a mechanism which ran-
domly removes the connections between deep lay-
ers. Gal and Ghahramani (2016) proposed a new
mechanism for drop out called variational, which
improves the simple drop out by defining static
masks for removing the connections between deep
layers (‘interlayer’) as well as between the units
inside deep layers (‘intralayer’). We placed drop
out methods with the best of the deep architec-



tures from Sub-section 4.3 on the same grid with
90 configurations. The results are reported in Ta-
ble 11 and Table 12. As expected, the configu-
rations with both inter- and intralayer variational
method yields the best performance.

Drop out value Epochs Results
Disabled 24 80.2 %
Simple 0.2 26 832 %
Simple 0.5 27 83.8%
Simple 0.7 29 81.5%
Variational 32 84.2 %

Table 11: Simple drop out tuning results. The drop
out and the best of deep architectures are in the
same grid search (90 configurations).

Variational drop out method Epochs Results
Inter 31 83.5%
Intra 30 832 %
Both 32 84.2 %

Table 12: Variational drop out value tuning results

5 Conclusion

In this study, we investigated various settings for
a Deep Neural Network for multi-label classifica-
tion. Considering the characteristics of the dataset
and the task, we observed the following results:
Using Sigmoid in the last layer yields statistically
significant better results compared to CRF or Soft-
max. The Glove embedings (Pennington et al.,
2014) with more than 100-dimensional vector size
and without updating yields statistically signifi-
cant better results compared to other word vec-
tors. Compared to other deep architectures, bi-
GRU yields better results when it is used as a one-
depth layer with 128 units. Adam and Nadam ob-
tain roughly the same results, while Nadam con-
verges much faster. Pooling is better to be used as
the concatenation of both max and average-pooled
tensors, and it is better to use Normalization (Pas-
canu et al., 2013) as a mean of gradient control to
control gradient vanishing. It is also a good prac-
tice to use Variational drop out (Gal and Ghahra-
mani, 2016) both between layers and inside recur-
rent units to control over-fitting. Finally, we did
not observe any improvement by using character
embeddings.

The order in which these parameters are men-
tioned is the magnitude of their importance for the
final performance. Parameters with no mention
here did not have any noticeable impact on the sys-
tem results.
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