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Abstract

The article has been devoted to the problem of improvement real nu-
merical modeling accuracy for the viscous fluid flow between two coaxial
half-cylinders on rectangular grids taking into account the filling of cells
are used to solve this problem. Approximation of the problem with re-
spect to time is performed on the basis of splitting schemes for physical
processes. The simulation was performed on a sequence of condensing
computed grids of sizes 11 × 21, 21 × 41, 41 × 81, and 81 × 161
nodes for the areas of smooth and piecewise rectangular boundaries.
The grids taking into account the filling of cells are used to improve
the smoothness of the solution. In the case of piecewise rectangular ap-
proximation the numerical solution error reaches 70%. The grids taking
into account the filling of cells reduce the numerical solution error to
6% for the test problem. The test problem shows that using the grid
condenced in each spatial direction by 8 times does not lead to increas-
ing the accuracy solutions whereas the solutions accuracy obtained on
the basis proposed approach has significant advantage in accuracy.

1 Introduction

Difference schemes taking into account the degree the filling of cells for solving two-dimensional problems of
wave hydrodynamics with dynamically varied geometry of the computational domain were proposed in [Suk12].
The solutions obtained on the basis of these schemes are devoid of defects associated with graded approximation
of the boundary. Tree-dimensional mathematical model of the movement of the water medium in the Azov
Sea was developed on the basis of these schemes [Suk13], the total water depth was 14.2 meters, free surface
elevation may be reach 4 meters or more. During calculating the storm surge that occurred in September 2014,
in Taganrog bay of Azov sea (wind speed reached 40 m/s), the simulation error was 20 cm with a total over
travel of more than 4 meters, the model showed a time lag of about 15 minutes with a total storm interval of
about 1000 minutes [Suk18]. The σ-coordinate system is traditionally used in modeling the hydrodynamics of
shallow water bodies [Eze00, Mon73, Vas12]. The solutions obtained on these grids have a large error and poorly
describe the influence of the bottom relief on nowadays the structure of the currents. The optimal curvilinear
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grids that approximate the boundary ear used as an alternative to rectangular grids, which have low accuracy
in the case of direct piecewise rectangular approximation of the boundary [Mur16, Lan86].

When solving the problems of hydrodynamics, inaccuracies arise associated with a stepwise representation of
the interface between two media, which can reach 70% of the solution. This error has a high-frequency character.
The smoothness of the solution indicates the absence of these assimilations. This scheme has found its application
in solving the problems of hydrodynamics of shallow water bodies. The proposed original method is described.

The constructing problem of optimal three-dimensional computational grids remains open nowadays for the
3D regions of common configurations in computational fluid dynamics [Hir81]. Difference schemes accuracy
comparison has been discussed in this paper in cases of direct rectangular grids usage and additional involvement
of the cell filling function for the Taylor-Couette flow numerical modeling. The proposed method is likely close
to Volume Of Fluid (VOF) method [Bun06, Bel75].

2 Statement of the problem

In this work we study the viscous incompressible fluid motion in two-dimensional region between two infinitely
long coaxial circular cylinders. We introduce the Cartesian coordinate system xOy perpendicular to the axis of
the cylinders. The coordinate system origin coincides with the cylinders’ axis. In the section of the cylinder by
the plane x = 0 defines the field of velocity. It is required to determine the liquid motion. The initial equations
for the mathematical description of the fluid dynamics problem are [Bel87, Suk13’]:

– Navier-Stokes equation:

u
′

t + uu′x + vu′y = −P
′
x

ρ
+ (µu′x)′x + (µu′y)′y, (1)

v
′

t + uv′x + vv′y = −
P ′y
ρ

+ (µv′x)′x + (µv′y)′y; (2)

– the continuity equation for incompressible fluid:

u′x + v′y = 0. (3)

Equations (1)-(3) are considered under the following boundary conditions:
– the flows are defined on the input and output boundaries:

u(x, y, t) = U(x, y), v(x, y, t) = V (x, y), P ′n(x, y, t) = 0, (4)

– the frictionless and slip conditions are set on the lateral surfaces (in the case |τ | = 0, that is, without
friction):

P ′n(x, y, t) = 0, un(x, y, t) = 0, ρµu′y(x, y, t) = −τx(t), ρµv′x(x, y, t) = −τy(t) (5)

or sticking condition:
P ′n(x, y, t) = 0, u(x, y, t) = 0, v(x, y, t) = 0, (6)

where u = {u, v} is the water medium velocity vector; (x, y) is Cartesian coordinates, t is time, P is pressure;
µ is the turbulent exchange coefficient; ρ is the liquid density; n is the normal vector; τx, τy are the tangential
stress components at the bottom of the liquid.

The wind stress according to the Van Dorn law, is calculated by the formulas [Mon73]:

τ ≡ {τx, τy} = ρCp (|u|)u |u| . (7)

3 Discrete model of hydrodynamics

The computational domain inscribed in a rectangle. For numerical realization of the discrete mathematical model
of the formulated wave hydrodynamics problem, uniform grid is introduced:

wh =
{
tn = nτ, xi = ihx, yj = jhy; n = 0, ... , Nt, i = 0, ... , Nx, j = 0, ... , Ny;

Ntτ = T, Nxhx = lx, Nyhy = ly} ,

where τ is the time step, hx, hy are steps in space, Nt is the step number on the time coordinate, Nx, Ny are
spacing steps on the spatial coordinates x and y, respectively.
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We use the splitting schemes for physical processes [Sam89, Sam95]. In this case, the solution of the problem
(1)-(3) reduces to solving the following system of equations:

un+σ − un

τ
+ uu′x + vu′y = (µu′x)′x + (µu′y)′y, (8)

vn+σ − vn

τ
+ uv′x + vv′y = (µv′x)′x + (µv′y)′y, (9)

P ′′xx + P ′′yy =
ρ

τ

((
un+σ

)′
x

+
(
vn+σ

)′
y

)
, (10)

un+1 − un+σ

τ
= −P

′
x

ρ
,
vn+1 − vn+σ

τ
= −

P ′y
ρ
. (11)

The calculated cells are rectangles, which may be filled, partially filled, or empty. The cell centers and nodes
are separated apart hx/2and hy/2 on the coordinates x and y, respectively. Fig. 1 (a) shows that the velocity
field and pressure are calculated at the tops of the cells. The cells’ vertices (i, j) are nodes (i, j), (i − 1, j),
(i, j − 1), (i− 1, j − 1).

Figure 1: The cell location of the relative to the adjacent nodes and the arrangement of nodes relative to cells

Let us introduce grid value oi, j for the notation of the cell filling. The filling of cells means the value of cell
part volume (area) which has been filled with a liquid medium. Fig. 1 (b) shows that in the neighborhood of
the node are cells (i, j), (i+ 1, j), (i, j + 1), (i+ 1, j + 1).

We introduce the coefficients k0, k1, k2, k3, k4, describing the filling of regions located in the neighborhood
of the cell. The value k0 characterizes the filling of the region Ω0: x ∈ (xi−1, xi+1), y ∈ (yj−1, yj+1), k1 –
Ω1: x ∈ (xi, xi+1), y ∈ (yj−1, yj+1), k2 – Ω2: x ∈ (xi−1, xi), y ∈ (yj−1, yj+1), k3 – Ω3: x ∈ (xi−1, xi+1),
y ∈ (yj , yj+1), k4 – Ω4: x ∈ (xi−1, xi+1), y ∈ (yj−1, yj). The filled parts of the regions Ωm is called Dm, where
m = 0, ..., 4. The coefficients km can be calculated from the formulas:

(km)i, j =
SDm

SΩm

, (k0)i, j =
oi, j + oi+1, j + oi+1, j+1 + oi, j+1

4
, (k1)i, j =

oi+1, j + oi+1, j+1

2
,

(k2)i, j =
oi, j + oi, j+1

2
, (k3)i, j =

oi+1, j+1 + oi, j+1

2
, (k4)i, j =

oi, j + oi+1, j

2
.

The boundary conditions for the first subproblem of wave hydrodynamics (8), (9) take form:

u′x(x, y, t) = αu, xu+ βu, x, v
′
x(x, y, t) = αv, xv + βv, x,

u′y(x, y, t) = αu, yu+ βu, y, v
′
y(x, y, t) = αv, yv + βv, y. (12)

We integrate equation (8) over the region D0 and use the property of linearity of the integral, as a result of
which we obtain:∫∫

D0

un+σ − un

τ
dxdy +

∫∫
D0

uu′xdxdy +

∫∫
D0

vu′ydxdy =

∫∫
D0

(µu′x)′xdxdy +

∫∫
D0

(ηu′y)′ydxdy. (13)
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After calculating separately each of the integrals we obtain:∫∫
D0

un+σ − un

τ
dxdy ' (k0)i, j

∫∫
Ω0

un+σ − un

τ
dxdy = (k0)i, j

un+σ
i, j − uni, j

τ
hxhy. (14)

The second integral in expression (13) may be written in the form:∫∫
D0

uu′xdxdy =

∫∫
D1

uu′xdxdy +

∫∫
D2

uu′xdxdy ' (k1)i, j

∫∫
Ω1

uu′xdxdy + (k2)i, j

∫∫
Ω2

uu′xdxdy.

Calculating the integrals over the regions Ω1 and Ω2, we obtain∫∫
D0

uu′xdxdy =
(k1)i, j ui+1/2, jhy (ui+1, j − ui, j) + (k2)i, j ui−1/2, jhy (ui, j − ui−1, j)

2
. (15)

We calculate the integral on the right-hand side of expression (13):∫∫
D0

(µu′x)′xdxdy =

∫∫
D1

(µu′x)′xdxdy +

∫∫
D2

(µu′x)′xdxdy.

In the last equality, let us assume that SD1 > SD2 , where we select from the region D1 fragment D1, 2, adjacent
to the regionD2, and SD2

= SD1, 2
(Fig. 3).∫∫

D0

(µu′x)′xdxdy =

∫∫
D1/D1, 2

(µu′x)′xdxdy +

∫∫
D1, 2∪D2

(µu′x)′xdxdy '

'
(

(k1)i, j − (k2)i, j

)∫∫
Ω1

(µu′x)′xdxdy + (k2)i, j

∫∫
Ω0

(µu′x)′xdxdy.

As a result, we get:∫∫
D0

(µu′x)′xdxdy '
(

(k1)i, j µi+1/2, j
ui+1, j − ui, j

hx
− (k2)i, j µi−1/2,j

ui, j − ui−1, j

hx
−

(
(k1)i, j − (k2)i, j

)
µi, j (αu, xui, j + βu, x)

)
hy. (16)

In case, if SD2 > SD1 , the result will be similar. Substituting into equation (13), the expressions (14) - (16),
we readily obtain:

(k0)i, j
un+σ
i, j − uni, j

τ
hxhy+

(
(k1)i, j ui+1/2, jhy (ui+1, j − ui, j) + (k2)i, j ui−1/2, jhy (ui, j − ui−1, j)

)/
2+

+
(

(k3)i, j vi, j+1/2hx (ui, j+1 − ui, j) + (k4)i, j vi, j−1/2hx (ui, j − ui, j−1)
)/

2 =

=

(
(k1)i, j µi+1/2, j

ui+1, j − ui, j
hx

− (k2)i, j µi−1/2,j
ui, j − ui−1, j

hx
− (17)

(
(k1)i, j − (k2)i, j

)
µi, j (αu, xui, j + βu, x)

)
hy +

(
(k3)i, j ηi, j+1/2

ui, j+1 − ui, j
hy

−

− (k4)i, j ηi,j−1/2
ui, j − ui, j−1

hy
−
(

(k3)i, j − (k4)i, j

)
ηi, j (αu, yui, j + βu, y)

)
hx.

If we divide the obtained expression by the area of the cell hxhywe are coming to:

(k0)i, j
un+σ
i, j − uni, j

τ
+ (k1)i, j ui+1/2, j

ui+1, j − ui, j
2hx

+ (k2)i, j ui−1/2, j
ui, j − ui−1, j

2hx
+

+ (k3)i, j vi, j+1/2
ui, j+1 − ui, j

2hy
+ (k4)i, j vi, j−1/2

ui, j − ui, j−1

2hy
= (k1)i, j µi+1/2, j

ui+1, j − ui, j
h2
x

−
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− (k2)i, j µi−1/2,j
ui, j − ui−1, j

h2
x

−
(

(k1)i, j − (k2)i, j

)
µi, j

αu, xui, j + βu, x
hx

+ (18)

+ (k3)i, j ηi, j+1/2
ui, j+1 − ui, j

h2
y

− (k4)i, j ηi,j−1/2
ui, j − ui, j−1

h2
y

−
(

(k3)i, j − (k4)i, j

)
ηi, j

αu, yui, j + βu, y
hy

.

In a similar way, one can obtain discrete analogs for equations (9)-(12). In order to simplify the recording of
equations, a mask of the boundary condition mi,j is introduced. The parameter mi,j takes the value 1 if the node
(i, j) belongs to the boundary nodes set located in the border region where slip occurs with friction, otherwise
mi,j = 0. The discrete model of the hydrodynamic problem may be represented by the following grid equations
[Kon02]:

– for the component of the velocity vector ui, j under slip condition:

(k0)i, j
un+σ
i, j − uni, j

τ
+ (k1)i, j u

n
i+1/2, j

u
n+σ/2
i+1, j − u

n+σ/2
i, j

2hx
+ (k2)i, j u

n
i−1/2, j

u
n+σ/2
i, j − un+σ/2

i−1, j

2hx
+

+ (k3)i, j v
n
i, j+1/2

u
n+σ/2
i, j+1 − u

n+σ/2
i, j

2hy
+ (k4)i, j v

n
i, j−1/2

u
n+σ/2
i, j − un+σ/2

i, j−1

2hy
=

= (k1)i, j µi+1/2, j

u
n+σ/2
i+1, j − u

n+σ/2
i, j

h2
x

− (k2)i, j µi−1/2,j

u
n+σ/2
i, j − un+σ/2

i−1, j

h2
x

+

+ (k3)i, j µi, j+1/2

u
n+σ/2
i, j+1 − u

n+σ/2
i, j

h2
y

− (k4)i, j µi,j−1/2

u
n+σ/2
i, j − un+σ/2

i, j−1

h2
y

−
∣∣∣(k3)i, j − (k4)i, j

∣∣∣ τx
ρhy

mi, j ;

under sticking condition:

un+σ
i, j − (k0)i, j u

n
i, j

τ
+ (k1,2)i, j u

n
i+1/2, j

u
n+σ/2
i+1, j − u

n+σ/2
i, j

2hx
+ (k1,2)i, j u

n
i−1/2, j

u
n+σ/2
i, j − un+σ/2

i−1, j

2hx
+

+ (k3,4)i, j v
n
i, j+1/2

u
n+σ/2
i, j+1 − u

n+σ/2
i, j

2hy
+ (k3,4)i, j v

n
i, j−1/2

u
n+σ/2
i, j − un+σ/2

i, j−1

2hy
=

= (k1,2)i, j µi+1/2, j

u
n+σ/2
i+1, j − u

n+σ/2
i, j

h2
x

− (k1,2)i, j µi−1/2,j

u
n+σ/2
i, j − un+σ/2

i−1, j

h2
x

+

+ (k3,4)i, j µi, j+1/2

u
n+σ/2
i, j+1 − u

n+σ/2
i, j

h2
y

− (k3,4)i, j µi,j−1/2

u
n+σ/2
i, j − un+σ/2

i, j−1

h2
y

,

(k1,2)i, j = min
{

(k1)i, j , (k2)i, j

}
, (k3,4)i, j = min

{
(k3)i, j , (k4)i, j

}
;

for the velocity vector vi, j component under slip conditions:

(k0)i, j
vn+σ
i, j − vni, j

τ
+ (k1)i, j u

n
i+1/2, j

v
n+σ/2
i+1, j − v

n+σ/2
i, j

2hx
+ (k2)i, j u

n
i−1/2, j

v
n+σ/2
i, j − vn+σ/2

i−1, j

2hx
+

+ (k3)i, j v
n
i, j+1/2

v
n+σ/2
i, j+1 − v

n+σ/2
i, j

2hy
+ (k4)i, j v

n
i, j−1/2

v
n+σ/2
i, j − vn+σ/2

i, j−1

2hy
=

= (k1)i, j µi+1/2, j

v
n+σ/2
i+1, j − v

n+σ/2
i, j

h2
x

− (k2)i, j µi−1/2,j

v
n+σ/2
i, j − vn+σ/2

i−1, j

h2
x

+

+ (k3)i, j µi, j+1/2

v
n+σ/2
i, j+1 − v

n+σ/2
i, j

h2
y

− (k4)i, j µi,j−1/2

v
n+σ/2
i, j − vn+σ/2

i, j−1

h2
y

−
∣∣∣(k1)i, j − (k2)i, j

∣∣∣ τy
ρhx

mi, j ;

under sticking condition:

vn+σ
i, j − (k0)i, j v

n
i, j

τ
+ (k1,2)i, j u

n
i+1/2, j

v
n+σ/2
i+1, j − v

n+σ/2
i, j

2hx
+ (k1,2)i, j u

n
i−1/2, j

v
n+σ/2
i, j − vn+σ/2

i−1, j

2hx
+

5



+ (k3,4)i, j v
n
i, j+1/2

v
n+σ/2
i, j+1 − v

n+σ/2
i, j

2hy
+ (k3,4)i, j v

n
i, j−1/2

v
n+σ/2
i, j − vn+σ/2

i, j−1

2hy
=

= (k1,2)i, j µi+1/2, j

v
n+σ/2
i+1, j − v

n+σ/2
i, j

h2
x

− (k1,2)i, j µi−1/2,j

v
n+σ/2
i, j − vn+σ/2

i−1, j

h2
x

+

+ (k3,4)i, j µi, j+1/2

v
n+σ/2
i, j+1 − v

n+σ/2
i, j

h2
y

− (k3,4)i, j µi,j−1/2

v
n+σ/2
i, j − vn+σ/2

i, j−1

h2
y

;

– for calculation the pressure field:

(k1)i, j
Pi+1, j − Pi, j

h2
x

− (k2)i, j
Pi, j − Pi−1, j

h2
x

+ (k3)i, j
Pi, j+1 − Pi, j

h2
y

− (k4)i, j
Pi, j − Pi, j−1

h2
y

=

=
ρ

τ

(
(k1)i, j u

n+σ
i+1/2, j − (k2)i, j u

n+σ
i−1/2, j

hx
+

(k2)i, j − (k1)i, j
hx

Ui,j+

+
(k3)i, j v

n+σ
i, j+1/2 − (k4)i, j v

n+σ
i, j−1/2

hy
+

(k4)i, j − (k3)i, j
hy

Vi,j

)
;

– equations to refine the velocity field by pressure:

(k0)i, j
un+1
i,j − u

n+σ
i,j

τ
= −

(
(k1)i, j

Pn+1
i+1, j − P

n+1
i, j

2hxρ
+ (k2)i, j

Pn+1
i, j − P

n+1
i−1, j

2hxρ

)
,

(k0)i, j
vn+1
i,j − v

n+σ
i,j

τ
= −

(
(k3)i, j

Pn+1
i, j+1 − P

n+1
i, j

2hyρ
+ (k4)i, j

Pn+1
i, j − P

n+1
i, j−1

2hyρ

)
.

It is shown that the order of approximation of the system of equations is O
(
τ + h2

x + h2
y

)
. The sufficient

condition for the stability of the scheme for the method of pressure correction is determined on the basis of the
grid maximum principle [Suk12’] with spacing values restrictions: hx <

∣∣ 2µ
u

∣∣, hy < ∣∣ 2µ
v

∣∣ or Re ≤ 2N , where
Re = u · l/µ is the Reynolds number, u is the velocity of the aquatic environment, l is the characteristic size of
the region, µ is the turbulent exchange coefficient.

To solve the grid equations obtained, an adaptive modified alternating-triangular method of variational type
was applied, which is advanced variant of SSOR method.

4 Taylor-Couette flow

Let us consider the steady flow of fluid between two infinitely long coaxial circular cylinders

uu′x + vu′y = −ρ−1P ′x + µ∆u, uv′x + vv′y = −ρ−1P ′y + µ∆v, r1 ≤ r ≤ r2, r =
√
x2 + y2.

Suppose, on the internal side, the rotation speed is |u||r=r1 = u1, on the external side, the rotation speed is
|u||r=r2 = u2. The polar coordinate system was introduced to solve the problem (x = r cos θ, y = r sin θ)

ur
∂ur
∂r

+
uθ
r

∂ur
∂θ
− u2

θ

r
= −1

ρ

∂P

∂r
+ µ

(
∂

∂r

(
1

r

∂ (rur)

∂r

)
+

1

r2

∂2ur
∂θ2

− 2

r2

∂uθ
∂θ

)
,

ur
∂uθ
∂r

+
uθ
r

∂uθ
∂θ

+
uθur
r

= − 1

rρ

∂P

∂θ
+ µ

(
∂

∂r

(
1

r

∂ (ruθ)

∂r

)
+

1

r2

∂2uθ
∂θ2

+
2

r2

∂ur
∂θ

)
.

Taking into account that vr = 0, vθ = vθ (r) and P = P (r), we obtain:

1

ρ

∂P

∂r
=
u2
θ

r
,
∂

∂r

(
1

r

∂ (ruθ)

∂r

)
= 0.

The analytical solution of this system of equations is:

uθ (r) = A1r +A2/r, P (r) = P (r1) + ρ

∫ r

r1

(
u2
θ/r
)
dr.
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To compare the results of numerical calculations with the analytical solution, we take
r1 = 5 m, r2 = 10 m, u1 = 1 m/s, u2 = 0.5 m/s.
In this case, the analytical solution takes the form

uθ (r) = 5/r, P (r) = P (r1)− 12.5ρ/r2 + ρ/2.

The analytical solution in the Cartesian coordinate system takes the form

u (x, y) = − 5y

x2 + y2
, v (x, y) =

5x

x2 + y2
, P (x, y) = P (r1)− 12.5ρ

x2 + y2
+ ρ/2.

5 Results of numerical experiments

The problem of finding the numerical flow of a viscous fluid between two coaxial cylinders (x ≥ 0) is considered.
The inside cylinder radius is r1 = 5 m. The outside cylinder radius is r2 = 10 . The calculated domain is
inscribed in a rectangle with dimensions 10 × 20 m (0 ≤ x ≤ 10, −10 ≤ y ≤ 10). In the section of the cylinder
by the plane x = 0 sets the velocity field u (0, y) = −5/y m/s, v (0, y) = 0 m/s. In all other grid nodes, the
velocity field is calculated. On the inside and outside walls of the cylinder, the conditions for slip and non-flow
are specified.

Defects of numerical solutions are most clearly visible on coarse grids. We describe the parameters of a coarse
grid. The steps in the spatial directions are 1 m, the time step is 0.1 s, the mesh size is 21 × 11 knots, the length
of the counting interval is 10 s, the density is ρ = 1000 kg/m3, the turbulent exchange coefficient is µ = 1 m2/s.
Fig. 2 shows the contents of an array describing the degree of filling of cells in the case of using the grid of 21
× 11 nodes.

Figure 2: The values of the filling of cells for the grid of 21 × 11 nodes

Fig. 3 (a), (b) shows the numerical solution of the problem of fluid flow between two coaxial cylinders. The
color shows the flow of fluid |k0u|.

Fig. 3 (c) illustrates that the solution of the problem of fluid flow between two coaxial cylinders, obtained
on grids that take into account the filling of the cells, is sufficiently smooth. Fig. 3 (d) shows the solution with
defects associated with piecewise rectangular approximation of the interface between two media.

Fig. 4 and 5 show the errors in the numerical solution of the problem of fluid flow between two coaxial
cylinders on grids taking into account the filling of the cells (in case of a smooth boundary) and on grids with
piecewise rectangular approximation of the boundary. For numerical investigation of the accuracy of the proposed
schemes, a solution is found on a sequence of condensing grids. Fig. 8 presents the numerical solution of the
initial problem of fluid flow between two coaxial cylinders on more detailed grids of sizes 21 × 41 and 41 × 81
knots.
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Figure 3: Numerical solution of the problem: a) in case of partial filling of cells, b) in case of piecewise rectangular
interface between two media

Figure 4: The dependence of the error from the radius: a) in case of smooth boundary, b) in case of step boundary

Fig. 6 shows the error values of the numerical solution of the fluid flow problem, depending on the radius
(circles indicate the error in case of a smooth boundary, circles indicate the error in the case of a step boundary).

Fig. 4, 6 show that the increase in the size of the calculated grids for the problem of flow of the aqueous
medium does not lead to an increase in the accuracy in case of piecewise rectangular approximation of the
boundary, but to a decrease in the linear dimensions of the border region where the solutions of the solution
associated with rough approximation of the boundary are manifested. It should also be noted that when using
grids taking into account the filling of cells, the error in the numerical solution of model hydrodynamic problems
caused by the approximation of the boundary does not exceed 6% of the solution of the problem.

Table 1 presents the error values of the numerical solution of the fluid flow problem between two coaxial
cylinders obtained from a sequence of condensing computed grids 11 × 21, 21 × 41, 41 × 81, and 81 × 161 nodes
in case of a smooth and stepped boundary.

Table 1: The error in the solution of the problem of fluid flow between two cylinders
Grid dimensions 11×21 21×41 41×81 81×161
The maximum error value in the case of a smooth
boundary, m / s

0.053 0.052 0.058 0.056

The average error value in the case of a smooth
boundary, m / s

0.023 0.012 0.006 0.003

The maximum error value in the case of a stepped
boundary, m / s

0.272 0.731 0.717 0.75

The average error value in the case of a stepped
boundary, m / s

0.165 0.132 0.069 0.056

The analysis of the error calculating results of the numerical solution of the problem of fluid flow between two
cylinders on the sequence of condensing grids presented in Table 1 allows us to conclude that the use of difference
schemes taking into account the filling of cells is effective. The grid splitting by 8 times in each of the spatial
directions does not lead to an increase in the accuracy that solutions obtained on grids taking into account the
filling of the cells possess.
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Figure 5: The numerical solution of the problem: a), c) in case of using partial filling of cells; b), d) in case
of stepped interface between two media; a), b) dimensions of the computational grid 21 × 41 knots; c), d)
dimensions of the computational grid 41 × 81 knots

Figure 6: The dependence of the error in the solution of the problem of fluid flow between two cylinders from
the radius on a grid of dimensions: a) 21 × 41 knots, b) 41 × 81 knots

6 Conclusion

The paper considers the problem of searching the numerical flow of a viscous fluid between two coaxial half-
cylinders. Analytic solution describing the Taylor-Couette flow is used as a standard to evaluate the accuracy of
the numerical solution of hydrodynamic problems. The simulation was performed on a sequence of condensing
computed grids of sizes 11 × 21, 21 × 41, 41 × 81, and 81 × 161 nodes in cases of smooth and piecewise
rectangular boundaries. To improve the solution smoothness the we used grids taking into account the filling of
the cells. When solving the hydrodynamics of shallow reservoirs, rectangular meshes are mainly used. This is
due to the large difference in step lengths in horizontal and vertical directions.

In the case of piecewise rectangular approximation the error of numerical solution reaches 70%. The grids
taking into account the filling of cells reduce the numerical solution error to 6%. It is shown that crushing the
grid by 8 times in each spatial direction does not lead to increasing the accuracy solutions whereas the solutions
accuracy obtained on grids taking into account the filling of cells significantly increases.
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