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Abstract

Paper covers the research of discrete analogs of convective and diffu-
sion transfer operators of the fourth order of accuracy in the case of
partial cell occupancy. According to the comparison of calculation re-
sults of substance transport problem based on schemes of the second
and fourth orders of accuracy, the accuracy was increased in 66.7 times
for diffusion problem, and in 48.7 times for diffusion-convection prob-
lem. A library of two-layer iterative methods was designed for solving
two-dimensional diffusion-convection problem based on schemes of high
order of accuracy. It has intended to solve the nine-diagonal grid equa-
tions on a multiprocessor computer system. A mathematical algorithm
was designed and numerically implemented for restoration the water
salinity field based on hydrographic information (water salinity at sep-
arate points or level isolines). The map of salinity of the Azov Sea was
obtained using the proposed solution method.

1 Introduction

One of the main problems of computational mathematics is the problem of solving systems of linear algebraic
equations. Direct and iterative methods are used to obtain an approximate solution of systems of equations.
One of the most successful method among the two-layer iterative methods is the alternately triangular method
(ATM) proposed by A.A. Samarsky [Sam89]. Later, the academician A.N. Konovalov developed an adaptive
version of ATM [Kon02]. The technique for increasing the convergence rate of ATM with a priori information
by refining the spectral estimates of the preconditioned operator are presented in [Suk84].
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Often in applied problems, for example, in mathematical modeling of hydrodynamics [Suk11, Ka17, Rue05],
heat and mass transfer [Suk18, Suk18’], geofiltration, population dynamics [Suk05], seismic exploration [Mur13]
and other processes, it is necessary to solve the equations of convection-diffusion type. In the case of implicit
schemes and schemes with weights, such problems lead to linear algebraic equations with a non-self-adjoint
operator. One of approaches to solving such problems is the Gaussian symmetry method. The disadvantage
of this method is the squared increase of the condition number of operator, which leads to a decrease the
convergence rate of iterative methods for solving grid equations. This fact contributed to the creation by the
author’s team the version of the modified iterative alternating triangular method of minimum corrections for
solving grid equations with non-self-adjoint operator [Suk12’].

The use of rapidly converging iterative method as well as the use of parallal computations [Che06, Iak05] and
the choice of difference schemes are effective ways to reduce the running time of the algorithm.

To increase the time step, we can use schemes with the optimal value of weight parameter [Suk14]. In addition,
we can use the splitting computational grids, but it leads to increasing the calculation time. To increase the
accuracy of calculations, it is possible to use schemes of higher order of accuracy [Pet13, Lad09] and schemes
that take into account the filling of cells [Suk15]. In the second case, the accuracy is increased due to a better
approximation of the boundary of computational domain.

Within the framework of this research, a library of iterative methods was designed to solve grid equations with
self-adjoint and non-self-adjoint operators, arising in the solution of applied problems, schemes of high order of
accuracy, taking into account the fullness of cells on a multiprocessor computing system.

2 Problem Statement

The substance transport problem can be represented by the diffusion-convection-reaction equation:

c′t + uc′x + vc′y = (µc′x)
′

x +
(
µc′y

)′
y

+ f

with boundary conditions:
c′n (x, y, t) = αnc+ βn,

where u,v are components of the velocity vector; µ is the turbulent exchange coefficient; f is a function, describing
the intensity and distribution of sources.

We introduced a uniform grid for numerical implementation of the discrete mathematical model:

wh = {tn = nτ, xi = ihx, yj = jhy; n = 0..Nt, i = 0..Nx, j = 0..Ny; Ntτ = T, Nxhx = lx, Nyhy = ly} ,

where τ is a time step; hx, hyare spatial steps; Nt is an upper boundary on time; Nx, Ny are space boundaries.

Discrete analogues of convective uc′x and diffusive (µc′x)
′

xtransfer operators of the second order of approxima-
tion error in the case of partially filled cells can be written as:

(q0)i, j uc
′
x ' (q1)i, j ui+1/2, j

ci+1, j − ci, j
2hx

+ (q2)i, j ui−1/2, j
ci, j − ci−1, j

2hx
, (1)

(q0)i, j (µc′x)
′

x ' (q1)i, j µi+1/2, j
ci+1, j − ci, j

h2x
− (q2)i, j µi−1/2,j

ci, j − ci−1, j
h2x

− (2)

−
∣∣∣(q1)i, j − (q2)i, j

∣∣∣µi, j αxci, j + βx
hx

,

where qi are coefficients, describing the fullness of control domain [Suk15].

3 Schemes of High Order of Accuracy for Convective and Diffusive Transfer Op-
erators

Expressions (1)-(2) can be considered in the case if (q1)i, j = (q2)i, j = 1. To increase the approximation order of
equations (1)-(2), it’s necessary to research the following difference schemes:

- the discrete analogue of the convective transport operator in absence of influence of domain boundary:

uc′x ' ui+1/2, j
ci+1, j − ci, j

2hx
+ ui−1/2, j

ci, j − ci−1, j
2hx

, (3)
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- the discrete analogue of the diffusive transport operator in absence of influence of domain boundary:

(µc′x)
′

x ' µi+1/2, j
ci+1, j − ci, j

h2x
− µi−1/2,j

ci, j − ci−1, j
h2x

, (4)

The approximation error of expression (3) will take the following form:

ui+1/2, j
ci+1, j − ci, j

2hx
+ ui−1/2, j

ci, j − ci−1, j
2hx

=

= ui, j (ci, j)
′
+

(ci, j)
′
(ui, j)

′′

4
h2x +

ui, j (ci, j)
′′′

6
h2x +

(ui, j)
′
(ci, j)

′′

4
h2x +O

(
h4x

)
.

Therefore, for approximation the convective transport operator uc′ by difference scheme of the fourth order of
accuracy we have to approximate the operator uc′− c′u′′h2/4−uc′′′h2/6−u′c′′h2/4 by the scheme of the second
order of accuracy.

The approximation of the convective transport operator uc′ by difference scheme of the fourth order of accuracy
has the form:

(q0)i L (c) = − (q1)i
ui+1/2

12h

(q1)i+1

(q0)i+1

ci+2 −
(
− (q1)i

ui+1/2

12h

(
2 +

(q1)i
(q0)i

)
+ (5)

+ (q2)i
ui−1/2

12h

(q1)i
(q0)i

+ (q1)i

(
−
ui+1/2

2h
+ k

(1)
i + k

(2)
i

))
ci+1 +

(
− (q1)i

ui+1/2

12h

(
2 +

(q2)i+1

(q0)i+1

)
+

+ (q2)i
ui−1/2

12h

(
2 +

(q1)i−1
(q0)i−1

)
+ (q2)i

ui−1/2

2h
− (q1)i

ui+1/2

2h
− ((q2)i − (q1)i) k

(1)
i + ((q2)i + (q1)i) k

(2)
i

)
ci+

−
(
− (q1)i

ui+1/2

12h

(q2)i
(q0)i

+ (q2)i
ui−1/2

12h

(
2 +

(q2)i
(q0)i

)
+ (q2)i

(ui−1/2
2h

+ k
(2)
i − k

(1)
i

))
ci−1−

−
(
− (q2)i

ui−1/2

12h

(q2)i−1
(q0)i−1

)
ci−2,

where k
(1)
i =

(
(q1)i
(q0)i

(ui+1 − ui,)−
(q2)i
(q0)i

(ui − ui−1)
)
/ (8h), k

(2)
i =

(q1)i
(q0)i

ui+1−ui

8h +
(q2)i
(q0)i

ui−ui−1

8h .

The approximation error of expression (4) will take the following form:

µi+1/2, j
ci+1, j − ci, j

h2x
− µi−1/2,j

ci, j − ci−1, j
h2x

=
(
µi, j (ci, j)

′)′
+ µi, j (ci, j)

(IV ) h
2
x

12
+

+ (µi, j)
′′

(ci, j)
′′ h2x

4
+ (µi, j)

′
(ci, j)

′′′ h2x
6

+ (µi, j)
′′′

(ci, j)
′ h2x

6
+O

(
h4x

)
.

Therefore, for approximation the diffusive transport operator (µc′)
′

by difference scheme of the fourth order

of accuracy we have to approximate the operator (µc′)
′
− µc(IV )h2/12 − µ′′c′′h2/4 − µ′c′′′h2/6 − µ′′′c′h2/6 by

the scheme of the second order of accuracy.

The diffusive transport operator (µc′)
′
by difference scheme of the fourth order of accuracy can be written as:

(q0)i L (c) = −Aici +B1,ici+1 +B2,ici−1 +B3,ici+2 +B4,ici−2. (6)

B1,i = (q1)i
µi+1/2

h2
+ (q1)i

µi+1

12h2

(
(q1)i
(q0)i

+ 2

)
+ (q2)i

µi−1
12h2

(q1)i
(q0)i

− (q1)i k
(3)
i − (q1)i

µ′′i+1 − µ′′i
12

,

B2,i = (q2)i
µi−1/2

h2
+ (q1)i

µi+1

12h2
(q2)i
(q0)i

+ (q2)i
µi−1
12h2

(
(q2)i
(q0)i

+ 2

)
− (q2)i k

(3)
i − (q2)i

µ′′i − µ′′i−1
12

,

B3,i = − (q1)i
µi+1

12h2
(q1)i+1

(q0)i+1

, B4,i = − (q2)i
µi−1
12h2

(q2)i−1
(q0)i−1

,

Ai = (q1)i
µi+1/2

h2
+ (q2)i

µi−1/2

h2
− ((q1)i + (q2)i) k

(3)
i + (q1)i

µi+1

12h2

(
(q2)i+1

(q0)i+1

+ 2

)
+
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+ (q2)i
µi−1
12h2

(
(q1)i−1
(q0)i−1

+ 2

)
− (q2)i

µ′′i − µ′′i−1
12

− (q1)i
µ′′i+1 − µ′′i

12
+ (q2)i

µi−1
12h2

(q1)i
(q0)i

+

+ (q1)i
µi+1

12h2
(q2)i
(q0)i

− (q1)i
µi+1

12h2
(q1)i+1

(q0)i+1

− (q2)i
µi−1
12h2

(q2)i−1
(q0)i−1

,

where k
(3)
i =

(q1)i
(q0)i

µi+1−µi

4h2 − (q2)i
(q0)i

µi−µi−1

4h2 , µ′′i =
(

(q1)i
(q0)i

ci+1 − 2ci +
(q2)i
(q0)i

ci−1

)
/h2.

4 Comparison of Calculation Results of Substance Transport Problem Based on
Schemes of the Second and Fourth Orders of Accuracy

The field, describing the error of calculations obtained as the difference between the analytical and numerical
solution of substance transport problem, is given in Fig. 1. The initial distribution was determined by the
function:

C (x, y) =

{
sin (π (x− 10)) cos (π (y − 10)) , {x, y} ∈ D, D : {x ∈ [10, 20] , y ∈ [10, 20]} .
0, {x, y} /∈ D,

Simulation was performed on the grid by dimension of 100x100 computational nodes. Simulation parameters:
the dimensions of the computational domain lx=100 m, ly=100 m, and the time step is ht=0.001 s; the time
period is 100 s; the horizontal component is 4 m/s, vertical – 3 m/s; the coefficient of turbulent exchange is 2
m2/s.

Figure 1: Computational accuracy of substances: overhand – for diffusion problem; below – for diffusion-
convection problem (schemes of the second order of accuracy on the left, the fourth – on the right

According to the comparison of results of numerical experiments based on schemes of the second and fourth
orders of accuracy (see Fig. 1), the accuracy was increased in 66.7 times for solution the diffusion problem, and
in 48.7 times – for solution the diffusion problem-convection.

5 Parallel Implementation of Diffusion-Donvection Problem Solution

A library of two-layer iterative methods for solution the nine-diagonal grid equations was designed for solution
the two-dimensional diffusion-convection problem based on the schemes of high order of accuracy. This library
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Figure 2: Values of substance concentration at initial and final time moments

for solution the systems of linear algebraic equations (SLAE) include the following methods: the Jacobi method;
the method of minimal corrections; the method of steepest descent; the Seidel method; the method of upper
relaxation; the adaptive MATM of variation type.

Dependences of the number of iterations, required to solve the model problem on the time variable step, are
given in the Table 1.

Table 1: Dependences of amount iteration for SLAE solution by iteration methods from the time step
Time step Number of iterations

Jacobi
method

Minimal
correction
method

Method of
steepest
descent

Zeidel
method

Upper relax-
ation method

MATM

0.001 6 6 6 5 43 5
0.005 8 8 8 8 43 6
0.01 10 10 10 8 45 6
0.05 23 23 23 15 56 10
0.1 37 36 37 22 61 12
0.5 138 134 138 70 60 27
1 256 247 256 126 60 28
5 1138 1077 1138 558 131 50
10 2233 2110 2233 1073 246 72
50 10160 9523 10160 4774 1074 158
100 19966 18625 19966 9320 2096 218
500 99651 92789 99651 46383 10399 1281
1000 199295 185529 199295 92739 20781 4382

The idea of parallel algorithm of iterative methods with preconditioners of triangular type [Suk12’] (Zeidel
method, upper relaxation method, alternative triangular method) on a system with distributed memory is as
follows: at the first step, each processor receives a subdomain, obtained by partition of the source domain
into parts in one or more coordinate directions with an intersection of two nodes in each direction. Then, the
SLAE solution with the upper-triangular operator is carried out, as a result of which the vector of solutions is
calculated at the next iteration. The order of traversal of grid nodes in calculations and data exchanges in the
case of decomposition in one spatial direction are shown in Fig. 3 and denoted by arrows. On the next step the
residual vector and its uniform norm (the maximum modulo element) is calculated. In this case, each processor
determines the maximum modulo element of the residual vector and transfers its value to all other processors.
After data exchanges, processors calculate the maximum element in which the norm of the residual vector will
be stored. If the norm of the residual vector is greater than the specified error, then the return to the calculation
of the residual is performed.

At calculation the value of the solution vector, only the first processor does not require additional information
and can process its part of the region independently of other calculators; other processors are waiting for data
transfer from the previous one.

Data transfer for one element is not optimal, because there’re time costs associated with the organization of
transfers. It can be minimized by increasing the size of data package; but it increases the delay time of the start
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Figure 3: Scheme for calculation the values of solution vector on the next time layer

of processors. Thus, the problem of calculation (selection) the optimal amount of transferred data package occur.

Values of acceleration and efficiency of parallel implementation of the software, designed to solve the two-
dimensional diffusion-convection problem on the basis of high order accuracy schemes, are given in the Table 2.
The grid equations were solved by the modified alternating-triangular method. The computational grid consist of
2000x2000 nodes. Parallel implementation of the developed algorithms was based on Message Passing Interface
(MPI) technologies. The peak performance of the multiprocessor computer system (MCS) is 18.8 TFlops. As
computing nodes 128 one-type16-core HP ProLiant BL685c Blade-servers were used, each of which is equipped
with four 4-core processors AMD Opteron 8356 2.3 GHz and 32GB RAM.

Table 2:
Number of
processors

Time, s. Acceleration Efficiency

1 1447.415 1 1
2 734.728 1.97 0.985
4 387.009 3.74 0.935
8 199.643 7.25 0.906
16 109.653 13.2 0.825
32 62.659 23.1 0.722
64 36.643 39.5 0.617

According to the table 2, the parallel algorithm of the modified alternating-triangular method can be applied to
solve real problems, and the use of parallel technologies makes a significant contribution to reduce the calculation
time.

6 Use the High Order Accuracy Schemes for Reconstruction the Salinity Field
and Comparison of Interpolation Results With Other Algorithms

One of the urgent problems that arise at mathematical modeling of hydrodynamics of shallow waters [Suk18’]
is the problem of hydrographic information processing. Typically, the salinity is specified at separate points or
level isolines (see Fig. 4).

Using these maps for construction the computational grids is undesirable because of the error of calculations
related to the ”coarse” setting geometry of computational domain. Thus, for increasing the accuracy of calcu-
lations of hydrodynamic processes, it is necessary to approximate the function of two variables describing the
salinity field by more stable functions.

Formulation the problem of calculation the salinity field. To determine the salinity function, we use
the diffusion equation solution to which the Saint-Venant equation describing the transport of bottom materials
is reduced [Sid17]. The solution of the diffusion problem for a long time intervals is reduced to the solution of
the Laplace equation:

∆H = 0, (7)

where H is a water salinity.
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Figure 4: The original image of salinity isolines’ level in the Azov Sea

This approach has a significant disadvantage due to the lack of smoothness at points where the salinity field
values are specified. To resolve this problem, we can use the following equation:

∆2H = 0. (8)

The disadvantages of this approach include large outliers (deviation from the linear function). With the first
two approaches, we can get functions that do not have a direction, but each approach has disadvantages.

To determine a smooth salinity function, we can also apply the equation solution used to obtain schemes of
the high order of accuracy for the Laplace equation:

∆H − h2

12
∆2H = 0. (9)

Note that, the operator for the third problem can be written as a linear combination of operators for the first
and second problems.

The fundamental system of solutions for equation (7) is the following function:

H1(x) = 1, H2(x) = x, (10)

for equation (8):

H1(x) = 1, H2(x) = x,H3(x) = x2, H4(x) = x3, (11)

for equation (9):

H1(x) = 1, H2(x) = x,H3(x) = ch (kx) , H4(x) = sh (kx) , k =
√

12/h. (12)

In the first case, the interpolation is performed by segments of lines passing through neighboring points; in
the second case, the interpolation is based on cubic splines; in the third case – on function splines (12). The
algorithm for one-dimensional interpolation based on the function (12) is described below, and the proposed
approaches are compared.

Results of salinity field restoration. The proposed mathematical algorithm for determine the water
salinity field was numerically implemented. The salinity isolines were obtained using the recognition algorithm
(Fig. 5a) The salinity field was obtained using the describing above interpolation algorithm in a rectangle (Fig.
5b). The map of salinity of the Azov Sea was obtained by applying the boundaries of the region (Fig. 6).

Note that the proposed algorithm has a sufficient degree of smoothness at points of gluing functions and lower
emissions compared to the cubic function used in the calculations.
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Figure 5: a) Isolines of salinity of the Azov Sea; b) the result of interpolation by the proposed method

Figure 6: Restored salinity field of the Azov Sea

7 Conclusion

Schemes of high (fourth) order of accuracy for the convective and diffusive transfer operators, taking into account
the filling of the cells, were constructed. A library of two-layer iterative methods was designed and implemented
on MCS for solution the two-dimensional diffusion-convection problem based on the schemes of high order of
accuracy.

The comparison of calculation results of substance transport problem on the basis of schemes of the second
and fourth orders of accuracy was performed. According to the comparison of results of numerical experiments,
the accuracy was increased in 66.7 times for solution the diffusion problem, and in 48.7 times – for solution the
diffusion problem-convection. The algorithms description of parallel implementation of iterative methods with
preconditioners of triangular type and value of acceleration and efficiency of parallel variant of algorithm of the
modified alternative triangular method is given. A mathematical algorithm was proposed to restore the water
salinity field on the basis of hydrographic information (water salinity at separate points or level isolines), and its
numerical implementation was performed. The map of the salinity of the Azov Sea was obtained and based on
the proposed method for solving the problem. The developed algorithm has a sufficient degree of smoothness at
points of gluing functions and lower emissions in the one-dimensional case compared to the cubic function used
in calculations. Note that the proposed schemes were also used for development a software package designed
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to calculate the three-dimensional velocity flow fields in shallow waters [Suk11]. In the future, the developed
schemes will be software implemented for calculation the biological kinetic problems [Gus18] and transport of
bottom materials [Sid17].
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