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Abstract. The proposed article describes an adaptive model for the synthesis of 
voice signals in a digital signal processor. The use of continuous fractions in a 
digital signal processor is suggested. The realization of continuous fractions 
with the help of multicellular structures is given. This procedure is used to im-
plement the model of the human vocal tract. 
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1 Introduction 

Modern voice signals recognition systems integrate technologies from such fields of 
modern science as signal processing, pattern recognition, natural language, and lin-
guistics. Such systems that are widely used in signal processing have created a real 
boom in digital signal processing (DSP). Previously, the field was dominated by vec-
tor-oriented processors and algebraic mathematical apparatus, while the current gen-
eration of DSP relies on sophisticated statistical models and uses complex software 
for practical implementation. Modern voice signals recognition models are able to 
understand the continuous input language for dictionaries, consisting of hundreds of 
thousands of words in operating environments. Linear predictive analysis of voice 
signals is historically the most important in voice analysis technologies. The basis of 
this is the filter source model, which is an ideal linear filter. 

2 Analytical Review of Literary and Other Sources 

Linear predictive coding is most commonly used in speech analysis and synthesis, or 
in transmitting or storing speech signals. For this purpose, ideal cell structures are 
typically used to model the human vocal tract. For the first time, these structures with 
reflection coefficients were formulated by Markel, Gray [1], and Makhoul [2]. The 
model in the state space of a non-ideal cell structure with two and four factors per 
section for digital signal processors was analyzed in [3]. The general system of voice 
synthesis given in [4] is presented in Fig. 1. 
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Fig. 1. Speech synthesis system 

In the general case, the problem of linear prediction is as follows [9-12]. Let us have a 
voice signal  ns , and let  
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be predicted magnitude. Inaccuracy of prediction in this case is given as follows: 
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We usually want to minimize the error to find the best, or optimal, values  k . De-
termine the short-term average error: 
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We can minimize the error l  for everyone pl 1  by differentiating E  and equat-
ing the result to zero 
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In the case of the covariance method, we will start by slightly redefining the terms 
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This equation is also known as linear prediction equation (Yule-Volcker equation). 
 k  are called linear prediction coefficients, or predictor coefficients. When calculat-
ing the equations for all values l , we can write them in a matrix form 

Cc   
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To solve this equation, you need to find the inverted matrix: 

1 Cc  

This method is called the covariance method. Note that the covariance matrix is 
symmetric. The fastest way to find the solution to this equation is the Holetsky 
method (the covariance matrix is divided into lower and upper triangular matrices). 
Using a slightly different approach to minimize the error, we can find a solution to the 
linear prediction equation using the autocorrelation method 
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The matrix of the system is symmetrical and all diagonal elements are equal, which 
means that the inverted matrix always exists and the solutions of the system are in the 
left half plane. 

Autoregressive modeling using least squares prediction, or linear prediction, forms 
the basis of a wide range goals of signal processing and communication systems, that 
include adaptive filtering and control, modeling of speech and coding systems, adap-
tive channel alignment, parametric spectrum estimation, and identification systems. 

To implement linear prediction of data or model goals, it is necessary to determine 
the values of linear prediction coefficients, as well as the order. Some commonly used 



practice model selection methods include the Akayke information criterion method, 
the Schwarz minimum description length method, and the Risenan prediction of least 
squares principle. In the original form, the first two criteria include a clear balance 
between the similarity of model input and the notion of fine for model complexity. 
Intuitively in the information criterion method, the primary purpose is to minimize the 
number of bits that will be required to describe the data [13-18]. When it is already 
possible to model the data parametrically and then encode the blocks, use the ap-
proach of allocating blocks of similar data, and then the model is fined with the addi-
tional number of bits required to encode its parameters [19-24]. 

However, the voice model based on cosine Fourier transform for language synthe-
sis has better properties and use, less sensitivity to quantization effects and, as a re-
sult, produces more natural synthesized language [25-29]. The parameters of this 
model are the coefficients of cosine Fourier transform. This model is based on the 
cosine decomposition of the logarithmic short-term voice range, and the synthesis is 
implemented by approximate inverse Fourier cosine transformations using continuous 
chain fractions [30-32]. This approach is parametric and is not based on any simplify-
ing assumptions about the voice model, because the poles as well as the zeros of the 
voice model are justified [33-44]. 

3 The Voice Model Based on a Cosine Fourier Transform 

Suppose that we have the logarithmic range  TjeS ln  of the voice data segment 

  ns , where Т – is the sampling interval, 
T

f s
1  - the sampling frequency, and   

- the angular frequency. This function can be expressed using the true Fourier cosine 
conversion coefficients Фур’є  nc  
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The complex coefficients of the cosine Fourier transform of a discrete system with 
minimum phase stability are random and may be related to the following relations 
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where FN  - the dimension of the applied FFT. A digital filter whose logarithmic 

correspondence approximates a function  TjeS ln  is determined by the transfer 

function system 
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where 20 0 FNN  . The coefficient 0ce  is equal to the value of the RMS of the 
cosine Fourier transform model for the multiple signal. In our experiments on the 
voice model we used kHzfs 8 , 512FN , the voice segment length is 25 ms with 
12 ms overlap and 250 N . 

It follows from (3) that the system of transfer functions  zS~  is the product of tran-
scendental transfer functions 
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The corresponding impulse feature is given 
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This means that the system of transfer functions  zS~  has the following form (Fig. 2) 
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Fig. 2. Voice model of cosine Fourier transform 
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To implement a transfer function  zHn  using a digital filter, it is necessary to find an 
approximation  zHn , that can be practically implemented. One option for approxi-
mating an exponential function in (4) is continuous chain fractions [4]. Another pos-
sibility of implementing an exponential function approximation is to use a Pade ap-
proximation. Then the system of transfer functions in a practical voice model based 
on a cosine Fourier transform will look like 
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4 Decomposition Approximation Using Continuous Chain 
Fractions 

The exponential function expressed by a decomposition into a continuous fraction can 
be represented as the following decomposition [5], [6], [7]: 
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where the parameter is n
nzcx  2 . The accuracy of the approximation of the voice 

model depends not only on the number of cosine Fourier transform coefficients in (3), 
but also on the number of members of a continuous fraction in (8), that is, on the 
length of a continuous fraction to be determined with s . A finite chain fraction for a 
function xe  can also be expressed by a set of real functions that approximate an ex-
ponential function with increasing accuracy 
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These functions are known as Pade approximations of an exponential function. It is 
recommended to use an odd number of elements of a continuous fraction in (8). This 
leads to an approximation of an exponential function by a rational function with equal 
degrees of polynomials in the numerator and denominator in (9). These are the ap-
proximations chosen 
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where z is the variable z-transformation and n
nzcx  2 . In the general case, to 

achieve a better approximation, we can use decompositions of rational functions by 
taking more suitable fractions. 
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5 Structure of adaptive synthesis 

As noted above, the approximation error for xe  is determined by the number of ele-
ments of a continuous fraction to decompose an exponential function into a continu-
ous fraction. This error further depends on the magnitudes of the modules of the true 
Fourier cosine transform coefficients nc . On the basis of a statistical analysis of the 
Fourier cosine coefficients for the description of the voice model of a male loud-
speaker, the following estimation was made in relation to the stability of the system 
and the well-defined safety limit for transfer functions  zHn  in equation (5). From 
the above it follows that the functions  zHn  can be approximated as follows: 

 
 
 zHn

zHn

zHn

1

2

3

~25,,7,6

~5,4

~3,2,1









 

It is more effective in relation to the total error of approximation and in relation to 
saving the number of arithmetic operations required for the practical implementation 
of voice modeling to use the adaptive structure of a continuous fraction. The number 
of corresponding cells (Fig. 3) can be selected according to the magnitudes of the 
cosine Fourier transform coefficients. The following adaptive empirical rule can be 
used: 

for  3.0nc   two cells - match  zH1
~ , 

for  5.0nc  four cells - match  zH2
~ , 



for  1nc   six cells - match  zH3
~ , 

for  1nc   eight cells - match  zH4
~ . 

For example, the voice model of the stationary part (24 ms) of the “е” vowel sound is 
used 

 491.00 c - logarithm of the value of the difference signal 

 700.01 c  354.02 c  026.03 c  205.04 c  

159.05 c  027.06 c  310.07 c  3.0258 c  

Using the empirical rule indicated, the voice model of the cosine Fourier transform is 
presented in Fig. 3 can be built: 
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Fig. 3. Voice model of cosine Fourier transform of the stationary part of the vowel “е”:   np  

is activated signal;  ns  is synthesized voice signal 

In the practical implementation of transcendental transfer functions  zHn  the follow-
ing numerical results were obtained: 

Table 1. The value of the transcendental transfer function   1

1


 zezH  

п  zHn  - exact values  zHn  - approximate values 

1 1.00000000000000 0.99993896484375 
2 1.00000000000000 0.99993896484375 
3 0.50000000000000 0.49999648242188 
4 0.16666666666667 0.16666549414062 
5 0.08333333333333 0.06092749023438 
6 0.00138888888889 0.00003051757812 



п  zHn  - exact values  zHn  - approximate values 

7 0.00019841269841 0.00030517578125 
8 0.00002480158730 -0.0012207031250 
9 0.00000271636432 -0.00003051757812 

We will also present our numerical results in the following diagram (Fig. 4). 
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Fig. 4. The value of the transcendental transfer function   1
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6 Conclusions 

Voice modeling based on cosine Fourier transform is in fact related to spectral syn-
thesis of voice signals, and is not based on any simplifying a priori considerations 
about the language reproduction system. It also contains information about the range 
of the activated voice path. 

The voice modeling procedure based on Fourier cosine transforms requires more 
arithmetic operations than approaches based on linear predictive coding, but the struc-
ture of the digital filter can be optimized. 

Continuous fractions offer an interesting tool not only in language synthesis. A 
high-order approximation of algebraic transcendental functions can be used in bio-
logical and industrial modeling systems. The direct implementation of continuous 
fractions further enables the implementation of multi-chamber structures. 
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