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ABSTRACT 

Discovering disease-gene associations is an essential but 

challenging task in modern medicine. Within all the data-driven 

approaches targeting at this issue, literature-based knowledge 

discovery widely extends the discovering boundaries and 

uncovers implicit knowledge from unstructured textual data. 

However, most of the current literature-based methods require the 

involvement of specific expertise or prior knowledge. In this 

paper, we propose an adaptable and transferable methodology to 

1) identify crucially genetic factors for a specific disease and 2) 

predict emerging genetic associations for the disease. Specifically, 

biomedical entities including diseases, chemicals, genes and 

genetic variations are extracted from literature data, then a 

heterogenous co-occurrence network is constructed and a 

semantic adjacency matrix is generated using the idea of 

Word2Vec. Following this, key genes and genetic variats are 

identified through centrality measurement on the network; 

emerging disease-gene associations are captured via a link 

prediction approach enhanced by the semantic matrix. We applied 

the proposed methodology to a literature dataset containing 

54,219 scientific articles of atrial fibrillation (AF) to demonstrate 

its reliability. The results yielded a) crucial biomedical entities for 

AF highlighting five key gene groups and one potentially 

associated protein mutation; b) a list of emerging AF-genetic 

factors pairs that are worth in-depth exploration. 
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1 Introduction 

In modern medicine, deciphering disease-associated genes plays a 

vital role in the diagnosis, treatment and prevention of diseases. 

However, apart from the handful revealed molecular mechanisms 

and disease pathogenesis, there is still a substantial amount of 

disorders and abnormalities with their causes remaining 

underneath the tip of the iceberg, especially for the process and 

factors related to the inheritance and genetic basis. In the past few 

years, many efforts have been addressed on exploring the genetic 

basis of diseases. Although in the biomedical domain, genetic 

linkage analysis [1] and genome-wide association studies 

(GWAS) [2] are recognized as efficient and reliable methods in 

identifying disease-specific genes, the biggest challenge for those 

methods turns out to be the long list of gene candidates, resulting 

in the high economic costs, human efforts and trail risks for those 

experiments. 

In the past decades, researchers established various medical 

ontologies and curated molecular networks to analyze and infer 

molecular interactions for diseases based on accumulated 

experimental and clinical experience [3-8]; Though these curated 

knowledge bases provide structuralized data sources for genetic 

discovery, their usages still face limitations from 1) the 

monotonicity of node category and the restriction of inference 

within the knowledge base framework; 2) the time lag of 

including novel discoveries and 3) the enormous cost from 

establishment and maintenance. 

The explosively increasing biomedical literature and thriving text 

mining techniques provide a more open, real-time and economic 

pathway to solve those issues [9-11]. Most of the approaches 

using literature datasets still require certain pre-knowledge-based 

input for the target disease like its seed genes [12]. In this paper, 

we proposed an adaptable bibliometric methodology to infer 

disease-associated genetic factors by 1) excavating more 

categories (disease, chemical and four other genetic factors) of 

biomedical entity from the textual data; 2) utilizing the collected 

literature dataset to identify emerging genetic factors for the target 
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disease; 3) empowering our methodology purely data-driven and 

automatic without biomedical expertise or manual effort. 

Our proposed methodology includes 1) a heterogenous 

bibliometric network [13]: the network is constructed based on 

biomedical literature with its nodes representing biomedical 

entities (e.g., diseases, chemicals, and genetic factors) and edges 

referring to the sentence-level co-occurrence between the 

connected nodes; 2) a Bioentity2Vec model: Using the idea of 

Word2Vec [14], all the biomedical entities are represented by 

computable vectors, from which an adjacency matrix containing 

their pairwise semantic similarities is generated; 3) network 

analytics: centrality measurement [15] is exploited to identify 

crucial diseases, chemicals and genetic factors within the network; 

a semantic similarity-enhanced link prediction approach [16] is 

proposed to improve the performance of predicting emerging 

disease-gene associations. 

2 Methodology 

The research framework of the proposed method is given in 

Figure 1. 

 

Figure 1: The Research Framework of the Heterogeneous 

Network Analytics Based Prediction Method 

2.1  Entity Extraction and Network Construction 

Four categories of biomedical entity are extracted from our 

literature dataset including: 1) disease: disease entity include 

disorders, symptoms, risk factors and complications related to the 

target disease; 2) chemical: chemical entity contains chemical 

elements, clinical drugs and other chemical compounds; 3) gene: 

the unit of hereditary information that occupies a fixed position 

(locus) on a chromosome; 4) Genetic Variant: genetic variants 

include DNA mutation, protein mutation and single nucleotide 

polymorphism (SNP): DNA mutation refers to the permanent 

change of a DNA sequence, protein mutation is the protein 

encoded by a gene with mutation and SNP [17] represents the 

normal variation of a single nucleotide in the gene sequence. 

Genes and genetic variants are the genetic factors we aim to 

predict in this study. 

Working under the hypothesis that sentence-level occurrence 

indicates a strong association between entity pairs, we treated the 

extracted entities as nodes and assigned edges aligning with their 

sentence-level co-occurrence. In this way all the entities and their 

co-occurring relationships are transferred into a heterogeneous 

network, with its nodes representing entities and edges 

representing sentence-level co-occurrence as the following 

adjacency matrix explains: 

𝐴𝑉𝑖
𝑚𝑉𝑗

𝑛 = {
𝐶𝐹(𝑉𝑖

𝑚 , 𝑉𝑗
𝑛) (𝑖𝑓 𝑉𝑖

𝑚 𝑎𝑛𝑑 𝑉𝑗
𝑛 𝑐𝑜 − 𝑜𝑐𝑐𝑢𝑟 𝑖𝑛 𝑎 𝑠𝑒𝑛𝑡𝑒𝑛𝑐𝑒)

0
#(1) 

 where 𝑉𝑖
𝑚 represents the 𝑚th node in the 𝑖th category, 

𝐶𝐹(𝑉𝑖
𝑚, 𝑉𝑗

𝑛) refers to the record frequency of sentence-level co-

occurrence of 𝑉𝑖
𝑚 and 𝑉𝑗

𝑛; 

The graph representation of the heterogeneous network is: 

𝐺 = (𝑉𝐾 , 𝐸𝐾(𝐾+1)
2

) #(2)  

where 𝑉 is the set of 𝐾 categories of entity nodes and 𝐸 

is the set of 𝐾(𝐾 + 1)/2  types of edges connecting different 

categories of nodes.  

2.2  Bioentity2Vec Modelling 

Enlightened by the idea of the Word2Vec model [14], we 

obtained the semantic similarities of biomedical entities from a 

context-based perspective. Word2vec is a well-accepted natural 

language model which can transfer word into vectors by 

projecting word its one-hot representation into a lower dimension 

and largely reserve their semantic meanings. In our case, 

biomedical entities are regarded as words and their consecutive 

sequences form our training corpus. We select the Skip-Gram as 

our training algorithm since it offer better fit on small datasets, the 

training process of Skip-Gram can be concluded as: given an 

entity 𝐸(𝑖) in a corpus, the probabilities of its nearby entities in a 

certain window size w will be calculated based on the probability 

of the given entity 𝐸(𝑖)  [18], the global objective of is 

maximizing the following value which calculates the average 

conditional probability for all the windows within the corpus: 

𝐿𝐹 =
1

𝑛
∑ ( ∑ log2 𝑃(𝐸(𝑖 + 𝑗)|𝐸(𝑖))

−𝑤≤𝑗≤𝑤,𝑖≠0

)

𝑛

𝑖=1

#(3)  

Through the Bioentity2Vec training, each entity would be 

represented as a fixed dimensional vector; we could then calculate 

the pairwise similarity of entities via cosine similarity and 

generate an adjacency similarity matrix 𝑆𝑉𝑖
𝑚𝑉𝑗

𝑛: 
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𝑆𝑉𝑖
𝑚𝑉𝑗

𝑛 = cos (𝑣𝑉𝑖
𝑚 , 𝑣𝑉𝑗

𝑛) =  
𝑣𝑉𝑖

𝑚 · 𝑣𝑉𝑗
𝑛

√𝑣𝑉𝑖
𝑚 · 𝑣𝑉𝑖

𝑚 · √𝑣𝑉𝑗
𝑛 · 𝑣𝑉𝑗

𝑛

#(4)
 

where 𝑣𝑉𝑖
𝑚 is the corresponding vector of entity node 𝑉𝑖

𝑚. 

2.3  Network Analytics 

2.3.1 Centrality Measurement 

Centralities are a set of measurements evaluating nodes’ position 

and importance within the network [15]. In our study, degree 

centrality, closeness centrality and betweenness centrality are 

employed to identify the crucial nodes in our heterogeneous 

network; the three centralities respectively reflects the node’s 

capacity of aggregating, disseminating and transferring 

information within the network, besides they have also been 

proved to be efficient in identifying key roles in biomedical entity 

networks [19]. The explanations of three centralities are as 

follows: 

Degree Centrality (DC): the degree centrality measures the 

target node’s direct influence to other nodes by calculating the 

proportion of degrees that the target node possesses. An entity 

with high degree centrality indicates that it directly interacts with 

a large number of other entities, the degree centrality is calculated 

as: 

𝐷𝐶(𝑉𝑖
𝑚) =

∑ ∑ 𝐴𝑉𝑖
𝑚𝑉𝑗

𝑛
|𝑉𝑗|

𝑛=1
𝐾
𝑗=1

|𝑉𝐾| − 1
#(5)  

where |𝑉𝐾| is the number of all K categories of nodes in 

the network and |𝑉𝑗| represents the node number in the 𝑗 th 

category; 

Closeness Centrality (CC): this closeness centrality calculates 

the target node’s topological distance to all the other nodes in the 

network, the higher closeness centrality indicates the entity’s 

stronger capacity to reach all the other nodes within the network, 

the closeness centrality is calculated as: 

𝐶𝐶(𝑉𝑖
𝑚) =

|𝑉𝐾| − 1

∑ ∑ 𝑑𝑉𝑖
𝑚𝑉𝑗

𝑛
|𝑉𝑗|

𝑛=1
𝐾
𝑗=1

#(6)  

 where 𝑑𝑉𝑖
𝑚𝑉𝑗

𝑛 is the topological distance from node 𝑉𝑖
𝑚 

to node 𝑉𝑗
𝑛; 

Betweenness Centrality (BC): the betweenness centrality of a 

target node is the ratio of shortest paths between other node pairs 

that pass through the target node, it indicates the node’s potential 

to bridge other nodes in the network. In our network, a higher 

betweenness centrality reflects that the entity is highly likely to be 

an important connector or transmitter:  

𝐵𝐶(𝑉𝑖
𝑚) =

2 ∑ ∑ ∑
𝜎(𝑉𝑥

𝑎𝑉𝑦
𝑏)

𝑉𝑖
𝑚

𝜎(𝑉𝑥
𝑎𝑉𝑦

𝑏)

|𝑉𝑦|

𝑏=1

|𝑉𝑥|
𝑎=1

𝐾
𝑥,𝑦=1

(|𝑉𝐾| − 1)(|𝑉𝐾| − 2)
 (𝑉𝑖

𝑚 ≠ 𝑉𝑥
𝑎 ≠ 𝑉𝑦

𝑏)#(7)
 

 

 where 𝜎(𝑉𝑥
𝑎𝑉𝑦

𝑏) is the number of all the shortest paths 

from node 𝑉𝑥
𝑎 to 𝑉𝑦

𝑏 and 𝜎(𝑉𝑥
𝑎𝑉𝑦

𝑏)𝑉𝑖
𝑚 is the number of paths that 

pass through node 𝑉𝑖
𝑚 among all of them. 

To further comprehensively measure the entities’ importance 

using the three centralities, non-dominated sorting is used to 

combine the three centrality rankings for each entity category. 

Non-dominated sorting is a multiple-objective optimization 

method which re-rank the multi-dimensional scalable individuals 

by dominating relationships of one individual against another, 

after non-dominated sorting the individuals will be divided into 

several consecutive Pareto fronts according to their domination 

counts [20]. The pseudo-code of non-dominated sorting is 

presented in Figure 2. 

 

Figure 2: The pseudo-code for non-dominated sorting 

2.3.2 Semantic Similarity-Enhanced Link Prediction  

Link prediction is an approach used to fulfil the incomplete 

network or in predicting future emerging links in networks [21]. 

Based on our previous pilot studies, resource allocation (RA) is 

the best-performing algorithm among all neighbor-based 

comparisons [16], it assumes that every single node in a network 

has a unit of resources and the common neighbor of two nodes 

plays the role of the transmitter, evenly distributing the unit of 

resource to its connected nodes. The resource allocation index of 

any two unconnected nodes is the summarization of those 

resources allocated by all their common neighbors, which 

indicates the potential link strength between the two nodes. The 

higher this index value is, the greater is the possibility of a link 

emerging between them.  

A weighted version of this algorithm was also introduced for 

applications in weighted networks [22], assuming that the co-

occurring frequency and semantic similarity of connected node 

pairs could enhance the predicting accuracy, we incorporated the 

cosine similarities matrix generated from the Bioentity2Vec 

model before to modify this algorithm, the modified resource 

allocation index is calculated as: 

𝑅𝑉𝑖
𝑚𝑉𝑗

𝑛 = ∑
𝐶𝐹(𝑉𝑖

𝑚, 𝑉𝑡)|𝑆𝑉𝑖
𝑚𝑉𝑡| +  𝐶𝐹(𝑉𝑡, 𝑉𝑗

𝑛) |𝑆𝑉𝑡𝑉𝑗
𝑛|

∑ 𝐶𝐹(𝑉𝑘 , 𝑉𝑡)𝑆(𝑆𝑉𝑘,𝑉𝑡 )𝑉𝑘∈𝛤(𝑉𝑡)
𝑉𝑡∈𝛤(𝑉𝑖

𝑚)∩𝛤(𝑉𝑗
𝑛)

#(8) 

𝐷𝐶(𝑉𝑖
𝑚) ≥ 𝐷𝐶(𝑉𝑖

𝑛) 𝑎𝑛𝑑 𝐶𝐶(𝑉𝑖
𝑚) ≥ 𝐶𝐶(𝑉𝑖

𝑛) 𝑎𝑛𝑑 𝐵𝐶(𝑉𝑖
𝑚)

≥ 𝐵𝐶(𝑉𝑖
𝑛) 𝑎𝑛𝑑 

(𝐷𝐶(𝑉𝑖
𝑚) = 𝐷𝐶(𝑉𝑖

𝑛) 𝑎𝑛𝑑 𝐷𝐶(𝑉𝑖
𝑚) = 𝐷𝐶(𝑉𝑖

𝑛) 𝑎𝑛𝑑 𝐷𝐶(𝑉𝑖
𝑚)

= 𝐷𝐶(𝑉𝑖
𝑛)) == 𝐹𝑎𝑙𝑠𝑒: 

for 𝑉𝑖 in 𝑉𝐾: 

for node 𝑉𝑖
𝑚 in 𝑉𝑖: 

    𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑉𝑖
𝑚] = 0 # Initialize the Domination Counts 

        for node 𝑉𝑖
𝑛 in category 𝑖 (𝑚 ≠ 𝑛): 

 if  

     𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛[𝑉𝑖
𝑚] += 1 

Resort all the nodes in 𝑉𝑖 by descending 𝐷𝑜𝑚𝑖𝑛𝑎𝑡𝑖𝑜𝑛 counts 

Output: 𝐾 Sorting results for 𝐾 categories 
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where 𝛤(𝑉𝑖
𝑚) denotes the set of neighbor nodes of 𝑉𝑖

𝑚 

and 𝐶𝐹(𝑉𝑖
𝑚, 𝑉𝑡) is the co-occurring frequency of 𝑉𝑖

𝑚 and 𝑉𝑡 , 𝑆𝑉𝑖
𝑚𝑉𝑡  

denotes the semantic similarity of 𝑉𝑖
𝑚 and 𝑉𝑡. 

Using the genetic factors that haven’t co-occurred with the target 

disease before as our input, we could generate another final output 

through our link prediction approach: a ranking list of genetic 

factors with their corresponding predicting scores. The highly 

ranked ones are worth being validated by further biomedical 

experiments. 

3 Case Study 

Atrial fibrillation (AF) is the most common form of cardiac 

arrhythmia. The progress of AF is closely related to atrial size and 

the extent of atrial fibrosis, both of which are affected by genetic 

factors. Though several gene groups and mutations have been 

linked to AF, clinical evidence and mechanistic explanations are 

still far from being enough to integrate the knowledge of genetic 

risk factors into clinical practice [23]. Ongoing research is 

investigating discovered genes and seeking new gene associations. 

For these reasons, the choice of atrial fibrillation as our research 

topic here is both an appropriate and worthwhile undertaking.  

3.1  Data Collection 

PubMed is a biomedical literature search engine which comprises 

more than 30 million citations from MEDLINE database, PMC 

citations and other online book resources. We used “atrial 

fibrillation” as the searching term in PubMed and refined the 

search results by restricting the fields “species” to “humans”, 

MeSH searching was adopted to promise precise AF-related 

search results and no restriction was applied to publication date. 

In all, 54,219 records were retrieved from the exact searching 

query: 

“("Atrial Fibrillation"[Mesh] AND Humans[Mesh])” 

 Search Date: 2020/04/28 

3.2  Entity Extraction and Network Construction 

We exploited the Pubtator [24], Medical Subject Headings 

(MeSH) 1 , NCBI Homo-Sapiens Gene Dictionary 2  and dbSNP 

database to extract biomedical entities from the collected literature 

dataset. Pubtator is a deep learning-based entity extraction tool 

developed by the National Library of Medicine (NLM), it can 

automatically extract categorized biomedical concepts from the 

free texts. MeSH is a medical thesaurus covering all the disease 

and chemical concepts, NCBI Homo-Sapiens Gene Dictionary is a 

gene dictionary of homo-sapiens species; dbSNP database 

embodies genetic variants within the human genome, the most of 

discovered DNA mutations, protein mutation and SNP can be 

                                                                 
1 More information could be found at https://www.ncbi.nlm.nih.gov/mesh/ 
2 More information could be found at https://www.ncbi.nlm.nih.gov/gene/ 

matched to a specific SNP ID. Generally, concepts cannot be 

mapped to these dictionaries would be excluded. 

Using Pubtator API and we extracted 577,809 raw biomedical 

concepts from the 54,219 records. With the aid of MeSH and 

NCBI gene dictionary, we cleaned noise concepts and 

consolidated all the synonyms, generating 6,318 identical 

biomedical entities; furtherly we excluded those entities that never 

co-occurred with others before (i.e., the isolated nodes that are not 

connected to any other nodes in the network) and ended up with 

5,838 nodes. The stepwise results are given in Table 1.   

Table 1: Stepwise Pre-processing Steps for Entity Extraction 

Category 
Raw 

Concepts 
Description Nodes 

Disease 440,610 Remove those diseases and 

chemicals that cannot map 

to MeSH, like 

“cardioembolic”, “JAGS”, 

“nonvitamin”, etc; 

Consolidation Based on 

MeSH 

2,040 

Chemical 104,072 2,004 

Gene 31,209 

Exclude genes that do not 

belong to homo-sapiens 

species; Consolidate gene 

aliases based on NCBI 

Homo-Sapiens Gene 

Dictionary 

1,413 

Genetic 

Variant 

223 #1 Remove genetic variants 

without a clear varying 

locus (cannot match to a 

SNP ID) and match the 

valid ones to their SNP IDs 

381 
770 #2 

925 #3 

Total 577,809  5,838 

Note: #1 DNA mutation; #2 Protein mutation; #3 SNP. 

Through the sentence-level co-occurrence analysis, we 

constructed the heterogeneous network with 5,838 nodes and 

48,988 edges.  
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3.3  Identification of Core Entities for AF 

To identify the crucial biomedical entities in the AF progress, we 

respectively calculated the degree, closeness and betweenness 

centralities for all the nodes in our heterogeneous network, the 

gene entities in the top 20 of each centrality ranking list are given 

in Table 2. 

Table 2: Top 20 Genes with Respectively the Highest Degree, 

Closeness and Betweenness Centrality 

 
Degree 

Centrality 

Closeness 

Centrality 

Betweenness 

Centrality 

1 CRP CRP KCNA5 

2 IL6 NPPB CRP 

3 NPPB ACE SCN5A 

4 F2 F2 F2 

5 ACE IL6 ACE 

6 AGT INS AGT 

7 F10 COX8A TBX5 

8 KCNA5 BID PITX2 

9 SCN5A VWF IL6 

10 FGB F10 SOX5 

11 INS AGT KCNQ1 

12 COX8A REN TRPM7 

13 TGFB1 FGB TRPC3 

14 MMP9 NPPA GJA5 

15 TNF CD59 HCN4 

16 VWF MMP9 F10 

17 GJA5 TNF TNNI3 

18 PITX2 SELP TRPM6 

19 SELP TGFB1 TRPM4 

20 REN TNNI3 GATA6 

From the observation of their centrality characteristics, we 

classified the gene nodes into 5 groups and analyzed their 

topological features and node composition with the aid of NCBI 

gene database3 and biomedical literature investigation: 

1. High Degree & Closeness & Betweenness Centralities: 

These topological features reflect the dominating positions of 

                                                                 
3 More information could be found at https://www.ncbi.nlm.nih.gov/gene/ 

these nodes in the AF heterogeneous network. CRP, IL6, 

AGT, ACE, F2 and F10 are genes belong to this group; they 

are all early-discovered genes and have broad functioning 

ranges and massive interactions with other entities. 

Specifically, C-reactive protein (CRP) and interleukin 6 (IL6) 

are genes that function in inflammation reaction and the 

immune-related activities, with their encoding product’s 

levels associated with the prediction of a wide variety of 

cardiovascular events including AF; Angiotensin I 

converting enzyme (ACE) and angiotensinogen (AGT) are 

two chain functioning genes with the former encoding pre-

angiotensinogen which would be cleaved by the angiotensin I 

converting enzyme encoded by the later, the product 

angiotensin II from this process is a significant protein in 

controlling the blood pressure (BP) and fluid-electrolyte 

balance, so both BP related symptoms like hypertension and 

electrolyte adjustment chemicals are associated with the two 

genes; coagulation factor II (F2) and coagulation factor X 

(F10) are genes that encode major coagulation factors to 

intermediate blood clotting and hemorrhagic conditions 

related to AF. Conclusively, activities of genes in this group 

may not directly result in AF but their functions engage the 

most primary and foundational molecular mechanisms in the 

progress of AF. 

2. High Degree & Betweenness Centralities but low Close 

Centrality: From a graph theory perspective, we can interpret 

this group of gene nodes as the critical but localized 

controllers. This group of genes includes KCNA5 and 

SCN5A, both of which are also seed genes for AF with their 

associations with AF already revealed: KCNA5 and SCN5A 

respectively encode proteins for potassium and sodium 

voltage-gated channels, the loss or alternation of those 

channels’ function have a direct influence on the action 

potential and electrical activity of cardiomyocytes which 

may further lead to AF. For this group, gene nodes bridle the 

ion channel-related entities including symptoms and 

chemicals but one node majorly only covers one certain type 

of ion channel.  

3. High Degree & Close Centralities but low Betweenness 

Centrality: This group of gene nodes are inclined to be 

central nodes in their sub-components with high 

independence. NPPB, FGB, COX8A, VWF and INS are genes 

in this group, in which NPPB encodes the cardiac hormone 

with its blood concentration indicating the heart failure; FGB 

encodes the beta component of fibrinogen with whose 

deficiency or mutation leading to afibrinogenemia; COX8A 

encodes the terminal enzyme of the respiratory chain related 

to ATP synthesis and cardiomyopathy; VWF encodes a 

glycoprotein involved in hemostasis; INS is the gene in 

charge of insulin synthesis which is the critical chemical in 

diabetes. We could conclude that genes in this group are 

most directly associated with the most common AF risk 

factors or complications rather than AF itself.  

4. High Betweenness Centrality only: This group of genes 

including TBX5, SOX5 and PITX2 are less correlated to AF 
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compare with the aforementioned ones but the high 

betweenness centrality indicates their potential to connect AF 

with other entities. For example, TBX5 encodes transcription 

factor that is associated with heart developmental process 

and its mutation may result in a heart-affecting 

developmental disorder named Holt-Oram syndrome. 

5. High Closeness Centrality only: Topologically this group of 

gene it’s not the core nodes but still globally associated with 

the other AF entities. BID is the only gene in this group and 

it regulates cell’s apoptosis which is not a particular 

biological process for AF but generally correlated with other 

entities.  

Moreover, with applying non dominated sorting to all the node 

categories, we re-ranked the nodes for each category and 

generated Table 3 to further identify the other crucial entities. 

Table 3: Key Entities Identified from Centrality 

Measurements 

 Top 20 Results by Non-dominating Sorting 

Disease 

Atrial Fibrillation; Stroke; Heart Failure; 

Hypertension; Hemorrhage; Diabetes Mellitus; 

Fibrosis; Myocardial Infarction; Cerebral Infarction; 

Ischemia; Thromboembolism; Death; Thrombosis; 

Inflammation; Coronary Artery Disease; 

Tachycardia; Ventricular Fibrillation; Tachycardia, 

Supraventricular; Neoplasms; Atrioventricular 

Block 

Chemical 

Warfarin; Calcium; Amiodarone; Potassium; 

Digoxin; Ethanol; Verapamil; Sodium; Oxygen; 

Quinidine; Aspirin; Vitamin K; Glucose; 

Cholesterol; apixaban; Sotalol; Nitrogen; 

Magnesium; Heparin; Propafenone 

Gene 

CRP; F2; ACE; IL6; AGT; F10; SCN5A; NPPB; 

KCNA5; PITX2; FGB; GJA5; TNNI3; INS; TNF; 

TGFB1; VWF; KCNQ1; SERPINE1; AGTR1  

SNP 

rs2200733; rs6795970; rs2106261; rs2108622; 

rs3789678; rs13376333; rs17042171; rs1805127; 

rs7539020; rs11568023; rs10033464; rs3807989; 

rs7193343; rs3918242; rs3825214; rs16899974; 

rs699; rs7164883; rs6584555; rs10824026 

Apart from the genes which were evaluated before, we examined 

the reliabilities of other core entities respectively by looking 

through ClinVar [25] and SNPedia [26]; literature investigation 

was still used to provide supplementary evidence. 

The disease list presents the most common risk factors 

(Hypertension and Diabetes Mellitus), symptoms (Inflammation 

and Thrombosis), complications (Stroke and Heart Failure) and 

other correlating diseases (Hemorrhage, Fibrosis and Cerebral 

Infarction etc.) of AF, which are frequently reported in clinical 

cases. The chemical list highlights the regular treating drugs 

(Warfarin, Amiodarone, Digoxin, Verapamil, Quinidine, Aspirin, 

Apixaban, Sotalol, Heparin and Propafenone), the known 

pathological molecular mechanisms (Calcium, Sodium, Potassium 

and Magnesium channels) and risk factors (Ethanol and Glucose) 

of AF; Nitrogen and Oxygen are two other leading elements, 

resulting from the role of blood oxygen concentration as an 

indicating index and NOx as a risk factor in the progress of AF. 

To sum up, we regard the whole centrality measurement and non-

dominated sorting as a carding process for the AF-related 

biomedical entities, through which we not only captured the 

comprehensively critical biomedical entities but also gained clues 

on some potential AF-associated entities. 

3.4  Link Prediction Validation 

Before implementing the modified link prediction to our 

heterogeneous network, we performed a validating experiment on 

the rolled-back data to verify our algorithm’s usefulness on 

disease-gene association prediction. Two other link prediction 

algorithms were selected as our baselines: 

1. The original resource allocation (RA): the original version of 

resource allocation index mentioned before;  

2. the co-occurring frequency (CF) weighted version of 

resource allocation: this version of RA adopted the same 

assumption with RA but uses weight ratio instead of degree 

proportion to calculate the resource diffusion, in our study 

edge weight is by the entity’s co-occurring frequency; 

The validation experiment was designed as follows: We rolled 

back our dataset by a five-year gap and constructed a 

corresponding network (i.e., rolled-back network), and the newly 

researched 𝑘  AF-linked genes or SNPs in the latest five years 

were collected as true labels. Then, two baselines, as well as our 

modified version, were applied to the rolled-back network to 

predict emerging links. The predictive results are a mixed ranking 

list of genes and SNPs with their corresponding predictive scores. 

If a gene or SNP in true labels was correctly predicted in the top 𝑛  

(𝑛 is a selectable threshold according to predictive requirements, 

initially it was set as 𝑘 ) predicting list, it would count a true 

positive (TP), otherwise, it would constitute a false negative (FN). 

The outcomes are provided in Table 4. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
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Table 4: Recall Results for Validating Experiment  

Index 

Algorithms 

Unweighted Weighted 
Modified 

(Proposed) 

Top Recall 0.245 0.212 0.283 

Top 100 Recall 0.436 0.392 0.502 

Top 200 Recall 0.610 0.632 0.742 

From the results we can see that the modified link prediction 

approach method beat the other two baselines. This experiment 

fully proved the efficiency of our proposed method. Briefly, in the 

top 200 list, our algorithm successfully captured 74% of the 

correct genetic factors which would appear in the following five 

years, from an applying standpoint it largely reduces the necessary 

human workload by using the predictive shortlist to select 

candidate genetic factors.  

3.5 AF-related Genetic Factors Prediction 

We applied our proposed method to the heterogeneous network 

and obtained a list of disease-gene pairs listed in Table 5. Then we 

empirically searched evidence from literature to validate our 

predication and found that the top 10 could all be linked according 

to literature review. The predicted SNPs are attracting more 

attention in the latest research of AF [27] and the other genes are 

also more frequently studied in the given literature. For example, 

rs337711 (ranked 2 in our list), is a genetic variation in KCNN2 

engaging with the potassium voltage-gated channels and has 

influence on the action potential and electrical activity of 

cardiomyocytes related to AF [23]. The association of rs11264280 

(ranked 3 in our list) is reported to be contract from two separate 

experiments [27, 28]. One of PKP2 (ranked 5 in our list) 

mutations was reported to has a potential influence on atrial size 

and  another deletion mutation was reported to be related to the 

occurrence of lone AF [29, 30]. Warfarin, a commonly prescribed 

anticoagulant for nonvalvular AF, is facing a medication shift 

because of the adverse effect of valvular calcification due to gene 

MGP (ranked 9 in our list) [31]. The combination of TFF3 

(ranked 10 in our list) and P3NP has the potential to be a 

biomarker of atrial fibrillation [32]. 

 

 

 

 

 

Table 5: Predicting Results for AF-related Genetic Factors 

 
Candidate genetic 

factors 
Predicting Score 

Literature 

Evidence 

1 Gene | BGLAP 3.13 [33] 

2 SNP | rs337711 2.13 [34, 35] 

3 SNP | rs11264280 2.13 [27, 28] 

4 Gene | HP 2.11 [36] 

5 Gene | PKP2 2.05 [29, 30] 

6 Gene | DUOX2 1.91 [37] 

7 Gene | OLR1 1.88 [38] 

8 Gene | VIM 1.87 [39] 

9 Gene | MGP 1.84 [31] 

10 Gene | TFF3 1.83 [32, 40] 

4 Discussion 

Identifying disease-gene associations is a critical part of modern 

medicine. Increasing evidence reveals the strong links between 

genetics and human health, predicting those associations that will 

provide effective decision support for medical and clinical 

researchers. Compared to the earlier published version, we 

involved more categories of biomedical entities and centrality 

measurement approach to modify the research framework, 

through which we respectively added genetic variants into our 

predicting scope and identified critical genetic factors that 

function in the pathogenesis of the target disease.  

This paper proposed a hybrid method for predicting the 

associations between diseases and genes from the standpoint of 

bibliometrics, based on the co-occurrence and semantic 

similarities of genetic factors and diseases. The advantages of our 

method are that we made use of text data in the latest published 

papers and took semantic relationships into consideration. By 

designing a cross-validation experiment, we compared our hybrid 

method with other classical ones and found that our method shows 

better performance. Furthermore, the predicted relationships are 

identified in the latest studies, proving the credibility and validity 

of our proposed method. 

Apart from this case study on gene-related atrial fibrillation, the 

proposed method is expected to be applied to a broad range of 

investigations on discovering the relationships between genes and 

specific diseases. Such efforts could be expected to provide 

extensive and objective insights from global scientific articles to 

support decision making in related medical research and clinical 

practices, such as helping researchers identify unknown 

relationships between specific genes and diseases and propose 

effective treatments from globally published research, studies, and 

cases.  
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There are also several limitations of this paper that may require 

further investigation in future studies: 1) Although we exploited 

the developed Pubtator as our biomedical entity extraction tool, 

there exist inevitably some false positives in the entity extraction 

process beyond our control, how to avoid the impact of using 

those toolkits is one of our concerns in the future; 2) we 

emphasized on the completeness of collecting strong association 

by adopting co-occurrence analysis, but this process would 

include some negative associations like “A is not associated with 

B”, in the future studies, sentiment analysis would be a promising 

approach to reduce the false positives. 3) Limited expertise is 

employed here to validate and explain our predicting results. In 

the future study, we plan to establish a cardiovascular specialist 

panel to provide expert instructions and interpretations of our 

outcomes. 
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