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Abstract. A context-sensitive system is often employed in a dynamic
environment due to its adaptivity. To represent temporal properties over
an evolving system, we study an extension of Contextualised Descrip-
tion Logics (ConDLs) with linear temporal logic (LTL) operators, where
ConDL axioms are used in place of propositional variables. The re-
sulting language is interpreted over an in�nite sequence of nested DL-
interpretations. With EL, ALC, and SHOQ in consideration, we show
that the formalism is rather well-behaved in the sense that the satis�abil-
ity problem in most of the instances have the same complexity with un-
derlying ConDLs. This holds even in the presence of rigidity constraints
on the object level.

1 Introduction

Contextual knowledge can represent many aspects of a system, either for de-
scribing internal structures or adjusting behaviors with accordance to the outside
world. For instance, consider role-based paradigm where the contexts are de�ned
by the roles that are currently played by an object. In this setting, an object
can adapts its behaviour dynamically instead of getting a �xed behaviour. To
represent and reason over context-sensitive knowledge, description logics (DLs)
of context have been introduced. The notion of context can take many forms
in extension of DLs, e.g., as attributes [13,15]. Frequently, they are of the form
two-layered DLs, one for the contextual knowledge and another for the domain
knowledge [6,11,12].

On the other hand, a role-based system is often employed in a dynamic
environment due to its capability to adapt. Objects can adjust their behaviours
quickly by taking di�erent roles to accommodate a di�erent context. Temporal
logics are often employed to dynamic properties of an evolving system. These
properties can be positive, that should be satis�ed by the system, or negative,
that should not happen in any run of the system. Consider an example of a role-
based programming language that span a non-deterministic transition system.
This is a standard setting in classical formal veri�cation system where the states
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are de�ned over a set of propositional variables that are interpreted true. In our
role-based setting, the state will be adjusted with a proper semantics to describe
a context-sensitive world. A programmer might want to verify whether a critical
role is played by at least one object in any time point.

In this work, we present a family of logic-based language to represent tem-
poral properties over context-sensitive system. We consider the family of con-
textualized DLs (ConDLs) to describe context-sensitive knowledge [6]. While
previous approaches are quite expressive due to possibilities of describing direct
relation of object domains between two contexts, this leads to undecidability
in the admission of rigid names. ConDLs take a di�erent approach by restrict-
ing contextual view in top-down manner with a meta-level concept constructor
to collect all contexts that satisfy an object-level axiom. The practicability of
the language has been shown by utilizing ConDLs to reason over a role-based
modeling language [5,14]. For the temporal part, we utilize linear temporal logic
(LTL) which is interpreted over in�nite sequence of states. A similar approach
is studied in temporalizing DLs where temporal operators are allowed in front
of DL axioms [3,9]. With a similar argument in the complexity perspective, we
allow temporal operators only in front of ConDL axioms. The obtained language
is a family of three-dimensional description logics where temporal operators are
used to express properties over evolving contextual knowledge represented by
ConDL axioms.

An example of formula that can be expressed by this logic is

(Private v JHasMoney(Bob)K)U (Work v ¬JworksFor(Bob,CompanyX )K).

The axiom says that Bob has money in a private context until he is not working
for Company X anymore in a work context. However it is not possible to say
that in general if someone has money in private context, until that someone is
not working for some companies. We investigate the satis�ability problem in
this family of logic. Furthermore, it is very common in multi-dimensional DLs
to desire the ability of expressing rigidity. For example, the role human is rigid
since if something is a human, then it holds in any context or time. We say that
a concept or role is rigid if their interpretation are the same across dimensions of
the interpretation. Such constraints often make the reasoning problem harder.
In this work, we consider the setting where rigidity constraints occur only on
the object domain level and holds across all contexts and time points.

2 Basic Notions

2.1 The Contexualized Description Logics LM JLOK

For representing context-dependent knowledge, we consider ConDLs, a family
of DLs of context studied in [6]. First, we recall the syntax of considered DLs
and assume the reader familiar with their standard semantics. For a thorough
introduction to DLs (speci�cally ALC, EL and SHOQ), we refer to [1,2,4,10].



De�nition 1 (DLs Syntax). Let N = (NC,NR,NI) be a signature of disjoint
sets of concept names, role names and individual names, respectively. Let A ∈
NC, r ∈ NR, a ∈ NI, and n ≥ 0. A concept C is built according to the following
syntax rule

C,D ::= A | ¬C | C uD | ∃r.C | {a} | ≤n r.C | >

Let C, D be concepts, r ∈ NR and a, b ∈ NI. A general concept inclusion
(GCI) is of the form C v D. An assertion is of the form C(a) (concept as-
sertion), or r(a, b) (role assertion). A Boolean axiom formula B is a Boolean
combination of GCIs and assertions. A role inclusion axiom is of the form r v s
and a transitivity axiom is of the form trans(r). Moreover, r is a a subrole of
s ∈ NR (w.r.t R) if every model of NR is a model of r v s. An RBox axiom is
either a role inclusion axiom or a transitivity axiom. An RBox R is a �nite set
of RBox axioms. A Boolean knowledge base (KB) is a pair B = (B,R), where
B is a Boolean axiom formula and R is an RBox.

In the basic DL ALC, these concept constructors are allowed: ¬C, C u D
and ∃r.C. An expressive DL which allow all possible concept constructors and
axioms introduced above is called the DL SHOQ. In the lightweight DL EL, only
CuD, ∃r.C and > are allowed. In ALC and EL, RBox is empty. Furthermore, we
assume at-most restrictions contains only simple roles, i.e., it has no transitive
subroles, in SHQ and all its extensions to maintain the decidability.

The family of logic LM JLOK are two-sorted with a meta level signature M =
(MC,MR,MI) and an object level signature O = (OC,OR,OI). We callMC, MR and
MI the set of meta concept names, role names, and individual names respectively.
Analogously, OC, OR, OI is called the set of object concept names, role names,
and individual names respectively. All sets are assumed to be pairwise disjoint.

De�nition 2 (LM JLOK Syntax). Let α be an LO-axiom over the object level
signature O and E ∈ MC, s ∈ MR and e ∈ MI meta level names. An LM JLOK-
meta level concept description G over M and O (m-concept for short) is the
smallest set that contains E for all E ∈ MC (basic meta concept), JαK for all
LO-axioms α (referring meta concept), and all complex concepts that can be built
with the concept constructors allowed in LM .

Let G and H be m-concepts. An LM JLOK-Boolean meta level formula C over
M and O (m-formula for short) is built according to the following syntax rule

C ::= G v H | G(e) | s(e, f) | C ∧ C′ | ¬C.

An m-assertion is either of the form G(e) (m-concept assertion) or s(e, f) (m-
role assertion). Furthermore we call an m-formula of the form G v H an m-GCI.
An m-axiom is either an m-GCI, an m-assertion, an RBox axiom over M or an
RBox axiom over O. A Boolean knowledge base over M and O (m-KB) is a tuple
C = (C,RM ,RO) where C is an m-formula, RM is an RBox over M and RO is
an RBox over O.



The semantics of LM JLOK is de�ned in terms of nested interpretations. The
structure consists of a single meta level interpretation over M (called context)
where each meta domain element is associated with an object level interpretation
over O. Moreover, all object level interpretations have the same domain.

An example of m-axiom that says Bob works for Company X in a work
context is Work v JworksFor(Bob,CompanyX )K. A referring meta concept
encompasses contexts in which the object-level axiom inside it holds. In the
example, JworksFor(Bob,CompanyX )K is interpreted as the set of all contexts
that satis�es worksFor(Bob,CompanyX ).

De�nition 3 (Nested Interpretation). A nested interpretation I (over M
and O) is a tuple of the form I := (C, ·I, ∆, {Ic}c∈C), where (C, ·I) is an M-
interpretation, and Ic := (∆, ·Ic) is an O-interpretation for each c ∈ C. Further-
more, we have that aIc = aId for all c, d ∈ C (rigid object individual assumption).

De�nition 4 (LM JLOK Semantics). Let I = (C, ·I, ∆, {Ic}c∈C) be a nested

interpretation. The extension of the mapping ·I to complex m-concepts is ex-
tended to referring meta concepts as follows : JαKI := {c ∈ C | Ic |= α}.

Let C be an m-formula. Satisfaction of C in I, written as I |= C (I is a model
of C), is de�ned by induction on the structure of C as follows:

I |= s(e, f) i� (eI, fI) ∈ sI I |= ¬ψ i� I 6|= ψ I |= G(e) i� eI ∈ GI

I |= G v H i� GI ⊆ HI I |= ψ1 ∧ ψ2 i� I |= ψ1 and I |= ψ2

Moreover, I is a model of RM (written I |= RM) if (C, ·I) is a model of RM,
and I is a model of RO (written I |= RO) if for all c ∈ C, Ic is a model of RO.
Finally, I is a model of m-KB C = (C,RM,RO) (written I |= C) if I is a model
of C, RM and RO. We say C is consistent if it has a model.

2.2 Temporalizing Contextualized Description Logics

We introduce a family of temporalized DLs of context, denoted as LM JLOK-LTL.
It is clear that an LM JLOK-LTL formula is an LTL formula where propositional
variables are replaced by LM JLOK m-axioms.

De�nition 5 (LM JLOK-LTL Syntax). Let RM be an RBox over M and RO

be an RBox over O. The set of LM JLOK-LTL formulae w.r.t. RM and RO is the
smallest set satisfying:

� if γ is an m-axiom w.r.t. RM and RO then γ is an LM JLOK-LTL formula
w.r.t. RM and RO;

� if φ and ψ are LM JLOK-LTL formulae, then φ ∧ ψ, φ ∨ ψ, ¬φ, φUψ, and
Xφ are LM JLOK-LTL formulae w.r.t. RM and RO.

A temporal context knowledge base (t-KB) is a tuple D = (φ,RM,RO) where RM

is an RBox over M, RO is an RBox over O, and φ is an LM JLOK-LTL formula
w.r.t. RM and RO.



The semantics of LM JLOK-LTL is based on LM JLOK-LTL-structures, se-
quences of nested interpretations. Constant domain assumption is respected on
both meta and object level. We also consider rigid object concept and role names
which are interpreted as the same across time-points and contexts.

De�nition 6 (LM JLOK-LTL Semantics). An LM JLOK-LTL-structure is a se-

quence T = (I(i))i≥0 of nested-interpretations I(i) = (C, ·I(i)

, ∆, {I(i)c }c∈C) obey-
ing the rigid individual assumption such that

� cI
(i)

= cI
(j)

for all meta level individual names c and all i, j ≥ 0, and

� aI
(i)
c = aI

(j)
d for all object level individual names a, i, j ≥ 0, and c, d ∈ C.

Given an LM JLOK-LTL formula φ, an LM JLOK-LTL-structure T = (I(i))i≥0
and a time-point i ≥ 0, validity of φ in T at time i, written T, i |= φ is de�ned
inductively:

T, i |= γ i� I(i) |= γ for an m-axiom γ

T, i |= φ ∧ ψ i� T, i |= φ and T, i |= ψ

T, i |= ¬φ i� T, i 6|= φ

T, i |= Xφ i� T, i+ 1 |= φ

T, i |= φUψ i� there is k ≥ i such that

T, k |= ψ and T, j |= φ for all j, i ≤ j < k

Furthermore if (1) Ii |= RM for every i ≥ 0 (written T |= RM), (2) I(i)c |= RO

for every i ≥ 0 and c ∈ C (written T |= RO), and (3) T, 0 |= φ, then we call T is
a model of φ w.r.t. RM and RO. We say that T is a model of D = (φ,RM,RO)
(written T |= D) if T is a model of φ w.r.t. RM and RO. Finally we say D is
consistent if it has a model.

We say that an LM JLOK-LTL-structure T = (I(i))i≥0 respects rigid object
concept names (object role names) i� for any rigid object concept name A (object

role name r), we have that AI
(i)
c = AI

(j)
d (rI

(i)
c = rI

(j)
d ) holds for all i, j ∈

{0, 1, ...} and all c, d ∈ C. We denote the set of all rigid object concept and role
names with ORC and ORR, respectively. We say that the OC \ ORC are �exible
(object) concept names and OR \ ORR are �exible (object) role names.

Let D = (φ,RM,RO) be an t-KB: we say D is satis�able w.r.t. rigid names
i� there is an LM JLOK-LTL-structure T respecting rigid object role names s.t. T
is a model of D. Analogously satis�able w.r.t. rigid concepts for respecting rigid
object concept names, and simply satis�able without rigid names in considera-
tion. Notice that rigid concepts can be simulated by rigid roles, therefore there
are only three cases.

3 Deciding Satis�ability in LMJLOK-LTL

Table 1 summarizes the result of our investigation of the complexity of the
satis�ability problem in LM JLOK-LTL. We use LSHOQALC to denote DLs between
ALC and SHOQ.



Table 1. Complexity of the satis�ability problem in LM JLOK-LTL (all are tight).

without rigid names w.r.t. rigid concepts w.r.t. rigid names

LM

LO
EL LSHOQ

ALC EL LSHOQ
ALC EL LSHOQ

ALC

EL PSpace ExpTime NExpTime NExpTime NExpTime 2-ExpTime

LSHOQ
ALC ExpTime ExpTime NExpTime NExpTime NExpTime 2-ExpTime

We follow a similar idea of checking satis�ability of DL-LTL formulae and
ConDL knowledge base. However, a naive approach to check temporal satis�a-
bility and the contextual admissibility, i.e., collective satis�ability of guessed set
of possible m-axiom combinations yields a triple exponential time algorithm. We
show a double exponential time algorithm for this problem, and hence the same
complexity with satis�ability problem in both SHOQ-LTL and SHOQJSHOQK
w.r.t. rigid names. The idea is as follows: we guess the combinations of possi-
ble m-axioms that are satis�able with appropriate sets of O-axioms for each
m-axiom combination. Then, we check the satis�ability of temporal abstraction
with respect of guessed m-axioms. Then, we check the admissibility of the meta-
level by checking the existence ofM-interpretations with an appropriate referring
meta concepts abstraction that are guessed. Finally, we have to check guessed O-
axiom combinations if they are also admissible, i.e., there are O-interpretations
that satisfy them.

3.1 General Procedure

In the following, let D = (φ,RM,RO) be an t-KB to be tested. Let Axm(φ)
be the set of all m-axioms occuring in φ. Let p be a bijection mapping every
occuring m-axiom γ in φ to a propositional variable pγ . We assume that pγ does
not occur in φ and we de�ne Pφ := {pγ | γ ∈ Axm(φ)}. Let SX ⊆ 2Pφ which
represents consistent m-axioms combinations.

De�nition 7 (Temporal Abstraction). Let RM be an RBox over M, RO be
an RBox over O, φ be an LM JLOK-LTL formula w.r.t. R, and function p :
Axm(φ)→ Pφ be a bijection where p(γ) = pγ .

� The propositional LTL-formula φp is obtained from φ by replacing every
occurrence of an m-axiom γ by pγ . We call φp the propositional abstraction
of φ w.r.t. p.

� Given an LM JLOK-LTL-structure T = (I(i))i≥0, we obtain the LTL-structure
Tp = (w(i))i≥0 where w(i) := {pγ | γ ∈ Axm(φ) and I(i) |= γ} for every
i ≥ 0. We call Tp the propositional abstraction of T w.r.t. p.

Lemma 1. Let T be an LM JLOK-LTL-structure w.r.t. RM and RO. Then, T is
a model of φ w.r.t. RM and RO i� Tp is a model of φp.



However, we have to check the existence of each m-axiom combination which
induces wi since it is possible that there is no model for such combination. We
ensure each world represents one of possible combinations of the guessed set SX .
Given a set SX ⊆ 2Pφ and a propositional LTL formula φp, we de�ne

φpSX := φp ∧ G
( ∨
X∈SX

(
∧
pγ∈X

pγ ∧
∧

pγ∈Pφ\X

¬pγ)
)

Furthermore, we denote the right part of the outer conjunction as φSX . Then, we
denote the satis�ability of an temporal abstraction in the notion of t-satis�ability.

De�nition 8 (t-satis�ability). Let φ be an LM JLOK-LTL formula and SX ⊆
2Pφ . We say that φp is t-satis�able w.r.t. SX if φpSX has a model.

Then, we check the existence of nested interpretations sequence that induces
SX . Furthermore, we ensure that they respect rigid names for both meta and
object levels.

De�nition 9 (c-admissibility). We say that SX = {X1, . . . , Xn} such that
SX ⊆ 2Pφ is c-admissible w.r.t. RM and RO if there exist nested interpretations

I(1) = (C, ·I(1)

, ∆, {I(1)c }c∈C), . . . ,I(n) = (C, ·I(n)

, ∆, {I(n)c }c∈C) such that for

any i, j such that 0 ≤ i ≤ j ≤ n: (1) cI
(i)

= cI
(j)

holds for every c ∈ MI; (2)

aI
(i)
c = aI

(j)
d holds for every a ∈ OI and all c, d ∈ C; (3) AI(i)c = AI

(j)
d holds for

every A ∈ ORC and all c, d ∈ C; (4) rI(i)c = rI
(j)
d holds for every r ∈ ORR and all

c, d ∈ C; (5) every I(i), 1 ≤ i ≤ n is a model of the Boolean m-KB

CXi := (
∧

pγ∈Xi

γ ∧
∧

pγ∈Pφ\Xi

¬γ,RM,RO)

We have two de�ned properties to be tested in order to check the satis�ability
of an LM JLOK−LTL formula. This is a similar idea with DL-LTL satis�ability
checking, but we check the existence of appropriate nested interpretations instead
of DL interpretations.

Lemma 2. Let D = (φ,RM,RO) be a t-KB, then D is satis�able w.r.t. rigid
names i� there exists a set SX ⊆ 2Pφ such that φp is t-satis�able w.r.t. SX , and
SX is c-admissible w.r.t. RM and RO.

In fact, this result is enough to give us a procedure to decide satis�ability in
LM JLOK-LTL. One can use a similar approach in DL-LTL [3] for ALC-LTL by
guessing an appropriate set SX , then do the checking for two separate satis�a-
bility problems. However, consider the c-admissibility checking of SX . A naive
approach is to build an m-KB

CSX :=
( ∧
Xi∈SX

( ∧
pγ∈Xi

γ(i) ∧
∧

pγ∈Pφ\Xi

¬γ(i)
)
,
⋃

Xi∈SX

R(i)
M ,

⋃
Xi∈SX

R(i)
O

)



with an appropriate renaming technique and then do the consistency checking.
Since checking the m-KB C satis�ability can be done in time doubly exponential
in the size of the C and the size of C is exponential in the size of D, this yields
a 3-ExpTime decision procedure.

To this end, we split again the c-admissibility into two subproblems. Instead
of checking the c-admissibility as a whole, we separate the satis�ability of meta
level abstraction and object level admissibility. We guess a mapping y : SX 7→
2Eφ that denotes possible O-axioms in referring meta concepts that are consistent
together. For convenience, we say that we guess S = {(X1,Y1), ..., (Xn,Yn)} that
built in such way, where Xi ∈ SX and Yi = y(Xi) for each 1 ≤ i ≤ n.

We recall the approach in [6], by introducing abstraction on the context level.
This is done by introducing a fresh concept name Eα to collect all contexts that
are in JαK. We de�ne AxO(φ) be the set of all object axioms α such that JαK
occurring in φ. Let f be a bijection mapping every occurring referring meta
concept JαK in φ to a meta concept name Eα. We assume that Eα does not
occur in φ and we de�ne Eφ := {Eα | JαK ∈ AxO(φ)}.

De�nition 10 (Context Level Abstraction). Let C = (C,RM,RO) be an
LM JLOK-KB and function f : AxO(φ)→ Eφ be a bijection where f(α) = Eα.

� The outer abstraction of C is the KB Cf = (Cf ,RM) over M, where Cf is
obtained from C by replacing every occurrence of a referring meta concept
JαK by Eα.

� Given an LM JLOK-structure I = (C, ·I, ∆, {Ic}c∈C), the contextual abstrac-

tion of I, denoted by If is the M-interpretation If = (C, ·If ) where
• for every x ∈ (MC \ Eφ) ∪MR ∪MI, we have xI

f

= xI, and

• for every Eα ∈ Eφ, we have EIf

α = JαKI.

Similar with the temporal abstraction, we state the connection between a
nested interpretation and its abstraction in the following lemma. The complete
proof can be found in [7].

Lemma 3. Let I = (C, ·I, ∆, {Ic}c∈C) be a nested interpretation such that I |=
RO. Then, I is a model of C i� If is a model of Cf .

As in the temporal case, some combinations of referring meta concepts are
not compatible due to the O-axioms that they represent. We recall the notion of
weakly respect to restrict the nested-interpretations with allowed combinations
of O-axioms.

De�nition 11 (Weakly Respect). Let U ⊆ NC and let V ⊆ 2U . The N-
interpretation I = (∆I , ·I) weakly respects (U ,V) if V ⊆ Z where Z := {Y ⊆
U | there exists d ∈ ∆I with d ∈ (CU,V)} and CU,V :=

d
A∈Y Au

d
A∈U\Y ¬A. It

respects (U ,V) if V = Z.

In [6], the notion of outer consistency was introduced to express the exis-
tence of the abstracted LM -interpretation over M. However, we have to extend
this notion since we have many abstracted LM -KB over M to be checked for
satis�ability. Furthermore, we recall a lemma from [6] to be used in the proof.



De�nition 12 (Outer Consistency).We say that Cf is outer consistent w.r.t.
Y ⊆ 2Eφ if there exists a model of Cf that weakly respects (Eφ,Y). Furthermore,
we say that S is conjointly outer consistent i� there exist J (1), ...,J (n) such that
for each i, 1 ≤ i ≤ n we have that J (i) is a model of Cf

Xi
that weakly respects

(Eφ,Yi).

Lemma 4. For every M-interpretation H = (Γ, ·H) the following two statements
are equivalent: (1) there exists a model J of C with J f = H; (2) H is a model
of Cf and the set {Xd | d ∈ Γ} is admissible, where Xd := {A ∈ Eφ | d ∈ AH}.

The existence of rigid object names does not matter for checking outer consis-
tency since the next procedure will make verify it. Thus, it is possible to check if
the consistency of each Cf

Xi
(w.r.t. (Eφ,Y)) separately. The next step is to check

whether it is possible all of LO-axiom combinations over O in guessed referring
meta concept are satis�able w.r.t. object-level rigid names. We check them, as a
KB over O that represent such combinations. We recall the notion of object-level
admissibility from [6,7], and extend it to our setting.

De�nition 13 (Object Level Admissibility). Let Yi ⊆ 2Eφ . We say that
Yi = {Y(i,1), . . . , Y(i,k)} o-admissible if there exists O-interpretations I(i,1) =

(∆, ·I(i,1)), . . . , I(i,k) = (∆, ·I(i,k)) such that: (1) xI
(i,j)

= xI
(i,j′)

for all x ∈
ORC ∪ORR ∪OI and for all j and j′ and (2) every I(i,j), 1 ≤ j ≤ k is a model of
the LO-KB BY(i,j)

= (BY(i,j)
,RO) over O where

BY(i,j)
:=

∧
AJαK∈Y(i,j)

α ∧
∧

AJαK∈Eφ\Y(i,j)

¬α

We say that SY = {Y1, ...,Yn} is conjointly o-admissible if every Yi, 1 ≤
i ≤ n is admissible and xI

(i,j)

= xI
(i′,j′)

for all x ∈ ORC ∪ ORR ∪ OI for any
(i, j), (i′, j′) ∈ IndS where IndS = {(i, j) | Xi ∈ SX and Yj ∈ Yi}.

Then, we have two properties that determine c-admissibility of SX , shown
by the following lemma.

Lemma 5. SX is c-admissible i� there exists a mapping y : SX 7→ 2Eφ and
SY = {y(Xi) | Xi ∈ SX )} such that (1) S is conjointly outer consistent; and (2)
SY is conjointly o-admissible.

3.2 Satis�ability in expressive LM JLOK-LTL

In this subsection, we consider cases where both LM and LO are between ALC
and SHOQ. We show that these cases are well-behaved in the sense that have
same complexity as consistency problem in underlying ConDLs.

Theorem 1. The consistency problem in LM JLOK-LTL w.r.t. rigid names is
2-ExpTime-complete for if both LM and LO are between ALC and SHOQ.



Proof. We begin with showing the hardness for ALCJALCK case. It is easy to
see that an ALCJALCK-LTL t-KB is an ALCJALCK m-KB. Since ALCJALCK
consistency problem w.r.t. rigid names is already 2-ExpTime-hard [6], we have
that ALCJALCK-LTL (and more expressive LM JLOK-LTL) consistency checking
w.r.t. rigid names is 2-ExpTime-hard.

We prove the upper bound for SHOQJSHOQK case. Let D = (φ,RM,RO)
be an SHOQJSHOQK-LTL t-KB. We enumerate all possible sets SX ⊆ 2Pφ

which can be done in double exponential time in the size of φ, hence D. For each
Xi ∈ SX , we enumerate Yi ⊆ 2Pφ to build S, which can be done, again, in double
exponential time. In overall, we need double exponential time to guess a proper
set S. Then, we check t-satis�ability of φp w.r.t. SX . As argued in [3], this can
be done in time exponential in the size of φ (and hence D) by constructing an
appropriate Büchi automaton.

The next procedure is checking c-admissibility of S. First part is checking
whether S is conjointly outer consistent. It is easy to see that there are ex-
ponentially many pair (Xi,Yi) to be checked. Furthermore, the size of Cf

Xi
is

polynomial in the size of D, while Yi are at most exponential in the size of D.
Exploiting Lemma 15 in [6], checking each of them can be done in exponen-
tial time. In overall, checking meta-level outer consistency can be done in time
exponential in the size of φ.

The last property to be checked is o-admissibility. We have exponentially
many Y(i,j) and each of them induces an SHOQ-formula of size polynomial.

Hence, the overall size of BO
S is exponential in the size of D. Since checking the

satis�ability of an ALC-KB can be done in exponential time of the size of the
input, this yields a 2-ExpTime procedure. In overall we have two procedures
that can be done in time doubly exponential to check c-admissibility of S.

We adjust the approach to be in NExpTime in the presence of only rigid
concepts. The idea is to guess rigid concept membership for named individuals.
On the other hand, the case without rigid names does not su�er from exponential
blow up from CSX since we can check each possible Xi separately.

Theorem 2. The consistency problem in LM JLOK-LTL w.r.t rigid concepts is
NExpTime-complete for if both LM and LO are between ALC and SHOQ.

Theorem 3. The consistency problem in LM JLOK-LTL without rigid names is
ExpTime-complete for if both LM and LO are between ALC and SHOQ.

4 Using Lightweight EL

In this section, we consider the case where at least one of LM and LO are EL.

4.1 The case of LM JELK-LTL and ELJLOK-LTL

We consider the case where at least one of underlying DLs is EL. First, we
consider the case where rigid concepts and role names are present.



Theorem 4. Satis�ability in LM JELK-LTL w.r.t. rigid names is NExpTime-
complete if LM is between ALC and SHOQ.

Proof. (Sketch) The hardness follows immediately fromNExpTime-completeness
of the consistency problem in ALCJELK [6]. To show the upper bound, we
consider the SHOQJELK case. Most of the approach is similar to the case of
SHOQJSHOQK-LTL, except in checking o-admisibility. The fact that BO

S is a
conjunction of EL-literals that can be decided in polynomial time yields an ex-
ponential time algorithm for checking o-admissibility instead of 2-ExpTime as
in SHOQJSHOQK-LTL case.

We have several other cases that are easy consequences of existing result in
this work and previous studies in ConDLs.

Theorem 5. Satis�ability in ELJLOK-LTL w.r.t. rigid names is 2-ExpTime-
complete if LM is between ALC and SHOQ.

Theorem 6. Satis�ability in LM JELK-LTL and ELJLOK-LTL w.r.t. rigid con-
cepts is NExpTime-complete if LM and LO are between ALC and SHOQ.

Theorem 7. Satis�ability in LM JELK-LTL and ELJLOK-LTL without rigid names
is ExpTime-complete if LM and LO are between ALC and SHOQ.

4.2 The case of ELJELK-LTL

The consistency of an ELJELK-KB is trivial if only conjunctions of m-axioms are
allowed. Obviously, such assumption is not relevant anymore since LTL provides
Boolean propositional operators. We consider beforehand the case of conjunc-
tions of ELJELK-literals, i.e., ELJELK m-axioms and negated ELJELK m-axioms.
In this setting, it is enough to consider satis�ability of ELJELK-LTL formula since
both RM and RO are always empty.

Claim. Satis�ability of conjunctions of ELJELK-literals without rigid names can
be checked in polynomial time.

Theorem 8. Satis�ability in ELJELK-LTL w.r.t. rigid names is NExpTime-
complete.

Proof. We show a reduction from EL-LTL to show the hardness. Note that al-
though an EL-LTL formula is an ELJELK-LTL formula without referring meta
concepts, it is not possible to directly consider rigid names since we do not have
rigid meta names. However, we can still reduce the problem by moving them
to the object level. Given an EL-LTL formula φ, we de�ne an ELJELK-LTL for-
mula φ′ by replacing any EL-axiom α in φ with {c} v JαK where c is a fresh
M-individual. Then, we can de�ne the rigid (object) concepts and role names
in ELJELK-LTL problem as rigid concept and role names in EL-LTL problem,
respectively. Then, it is easy to see that φ is satis�abile w.r.t. rigid names i� φ′

is satis�able w.r.t. rigid names.



We show the problem is in NExpTime for the upper bound. To check for the
satis�ability, we guess a set SX ⊆ 2Pφ and we check whether φp is t-satis�able
w.r.t. SX and SX is c-admissible. For t-satis�ability, we again may use the same
argumentation as in Theorem 3 can be done in time exponential. For checking
c-admissibility, we can build m-KB CSX and then check for the satis�ability. We
have that CSX is of exponential size in the size of φ and CSX is a conjunction of
ELJELK-literals. Using Claim 4.2, this yields an exponential time procedure for
checking c-admissibility. Thus, we have NExpTime upper bound in overall.

The case with rigid concept names is an easy consequence of existing result.
On the other hand, we exploit the same idea of checking satis�ability EL-LTL
for the case without rigid names since checking satis�ability of ELJELK-literals
conjunction can be done also in polynomial time.

Theorem 9. Satis�ability in ELJELK-LTL w.r.t. rigid concept is NExpTime-
complete and without rigid names is PSpace-complete.

5 Conclusion

We have introduced and investigated a family of languages to describe tempo-
ral properties over contextual knowledge. The formula of the language can be
constructed using LTL operators over ConDL axioms. The underlying DLs that
are used in particular are EL, ALC and SHOQ. We have shown that most of
considered members of the family are well-behaved in the sense that the satis�a-
bility problem in LM JLOK-LTL has the same complexity as consistency problem
in underlying ConDL LM JLOK, except for ELJELK-LTL cases.

For future work, we would like to investigate the use of resulting language
in the setting of system veri�cation. One of possible extensions is combining
this work with ConDL-based actions as formalized in [17]. We would like to
introduce a context-sensitive formal program based on ConDL-based actions.
Then, a ConDL-LTLformula can be used to verify whether a property is satis�ed
in a (possibly non-deterministic) transition system induced by the program.
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A Proof of Lemma 1

Proof. Let T = (I(i))i≥0 be an LM JLOK-LTL-structure such that T |= R and
Tp = (w(i))i≥0 its propositional abstraction w.r.t. p. We show that T, i |= φ i�
Tp, i |= φp for every i ≥ 0 by induction on the structure of φ. The base case is
where φ is an axiom. Then for every i ≥ 0, T, i |= φ i� I(i) |= φ i� pφ ∈ wi i�
w(i) |= φp i� Tp, i |= φp.

Then if φ is of the form:

¬φ1 for every i ≥ 0, T, i |= ¬φ1 i� T, i 6|= φ1 i� Tp, i 6|= φp1 i� Tp |= (¬φ1)p.
φ1 ∧ φ2 for every i ≥ 0, T, i |= φ1∧φ2 i� T, i |= φ1 and T, i |= φ2 i� Tp, i |= φp1

and Tp, i |= φp2 i� Tp, i |= (φ1 ∧ φ2)p.
Xφ1 for every i ≥ 0, T, i |= Xφ1 i� T, i + 1 |= φ1 i� Tp, i + 1 |= φp1 i�

Tp, i |= (Xφ1)
p.

φ1Uφ2 for every i ≥ 0, T, i |= φ1Uφ2 i� there exists k ≥ i such that T, k |=
φ2 and T, i |= φ1 for every j, where i ≤ j < k i� there exists k ≥ i
such that Tp, k |= φp2 and Tp, j |= φp1 for every j, where i ≤ j < k i�
Tp, i |= (φ1Uφ2)

p.

B Proof of Lemma 2

Proof. =⇒ Assume that there exists a model T = (I(i))i≥0 of D w.r.t. rigid
names, and Tp = (w(i))i≥0 its temporal abstraction. We de�ne the induced set
SX := {w(i) | i ≥ 0} which is �nite since SX ⊆ 2Pφ . First we show t-satis�ability,
i.e., there exists M = (wi)i≥0 such that M, 0 |= φpSX . We show that in fact
Tp, 0 |= φpSX . Due to Lemma 1, we have that Tp, 0 |= φp. Furthermore, due to

the construction we have that every w(i) satis�es one of disjunctions in φSX .
Next, we show that SX is c-admissible w.r.t. RM and RO. Since T obeys rigid
individual assumptions and respects rigid names, condition 9 - 9 are satis�ed.
Due to the construction of SX , we know that for every Xi, there exists w

(i), i ≥ 0
such that w(i) = {pγ | pγ ∈ Pφ and I(i) |= γ}. It is easy to see that I(i) |= CXi .

⇐= Assume there exists a set SX ⊆ 2Pφ , such that φp is t-satis�able
w.r.t. SX and SX is c-admissible w.r.t. RM and RO. Then, there exists an LTL-
structure M = (w(j))j≥0 such that M |= φpSX . We de�ne W = {w(i) | i ≥ 0}.
Since M is a model of φpSX , then W ⊆ SX , hence W is c-admissible w.r.t. RM

and RO. Then, there exists nested interpretations I(1), . . . ,I(n) that satis�es
c-admissibility properties of SX . We de�ne a function v : W 7→ {I1, . . . ,In}
such that v(w(i)) = I(j) where w(i) = X(j) ∈ SX . We construct LM JLOK-LTL-
structure TM := (v(w(i)))i≥0. SinceM = Tp andM |= φp, we have that TM |= φ
due to Lemma 1. Furthermore, TM |= RM and TM |= RO due to condition 9
in De�nition 9. Then, we have TM |= D. Finally, TM obeys rigid individual
assumptions and respect rigid names due to condition 9 - 9 in De�nition 9.



C Proof of Lemma 5

Proof. =⇒ Assume that SX is c-admissible. Let I(1), ...,I(n) be the nested
interpretations satisfy the properties. For each Xi, we de�ne Yi := {Yc | c ∈ C},
where Yc := {Eα ∈ Eφ | Ic |= α} to build S = {(X1,Yi), ..., (Xn,Yn)}.

First, we show that SX is conjointly outer consistent since (I(1))f , ..., (I(n))f

satisfy the properties. We show that for any i, (I(i))f ) is a model of Cf
Xi

and

(I(i)
f
) weakly respects (Eφ,Yi). The former one is trivial due to the Lemma 3

and rigidity properties of c-admissibility. The later is also an easy consequence
of the construction of Yi. Other properties are easy consequences of (1) - (3) in
De�nition 9.

Then, we show that SY is conjointly o-admissible. We show that any Yi,
1 ≤ i ≤ n is o-admissible. Due to the construction, for any Y(i,j), 1 ≤ j ≤ k
there exists c ∈ C such that Ic |= α for any α ∈ Y(i,j) and Ic 6|= α′ for any

α′ ∈ Eφ \ Y(i,j). Then, it is easy to see that I(i,j) |= CY(i,j)
. Finally, it is easy

to see that rigidity properties are transferred over from c-admissibility to o-
admissibility.
⇐= Assume that there exists S = {(X1,Y1), . . . , (Xn,Yn)} such that S is

conjointly outer consistent and SY is conjointly o-admissible. Due to Löwenheim-
Skolem theorem, we can safely assume that all I(1), · · · , I(n) have same domain
C. Furthermore, we can assume that individual names are interpreted the same.
Then, there exists a model I(i) of Cf

Xi
that weakly respects (Eφ,Yi).

D Proof of Theorem 2

Proof. We begin with showing the hardness for ALCJALCK case. Checking con-
sistency of an ALCJALCK m-KB with rigid concepts is already NExpTime-hard.
Thus, we have that checking the consistency of an ALCJALCK-LTL (and more
expressive LM JLOK-LTL) t-KB w.r.t. rigid concepts is NExpTime-hard.

For the upper bound, we again have to adjust the previous result to work
with our setting. Let D = (φ,RM,RO) be a SHOQJSHOQK-LTL t-KB. We
can do the checking t-satis�ability and c-admissibility as in the case w.r.t. rigid
names. This problem has been solved in reasoning over ALC-LTL formula, where
we build an appropriate Büchi automaton. The automaton can be checked in
exponential time in the size of φp, hence in the size of φ. The full construction
can be found in [3]. Thus, we need two exponential time procedures, and an
exponential time algorithm for deciding consistency.

We non-deterministically guess the set S which the size is at most exponential
in the size of D. We de�ne OφRC := {A1, . . . , Ar} as the set of rigid concept names

occurring in φ and OφI be the set of all individuals occurring in φ. We guess a

set Q ⊆ 2O
φ
RC , and a mapping r : OφI 7→ Q, which both can be done within

NExpTime. Then. we de�ne

B̂Y(i,j)
:= (BY(i,j)

∧
∧
a∈OφI

( l

A∈r(a)

A u
l

A∈OφRC\r(a)

¬A
)
(a),RO)



As argued in previous approaches [6,3], we have that SY is conjointly o-admissible

i� for all (i, j) ∈ IndSY , B̂Y(i,j)
has a model that respects (OφRC,Q). Since we have

that B̂Y(i,j)
is of size polynomial in the size of φ, and checking the consistency

of a SHOQ KB is in ExpTime, then this procedure can be done in exponential
time. In overall, we have NExpTime procedure for the case w.r.t. rigid concept
only.

E Proof of Theorem 3

Proof. Notice that checking consistency of ALCJALCK-KB without rigid names
is ExpTime-complete. It is easy to see that since any ALCJALCK m-KB is also
an ALCJALCK-LTL t-KB, ExpTime-hardness of the satis�ability problem is
carried over.

Next, we prove the upper bound by considering SHOQJSHOQK case. Let
D = (φ,RM,RO) be a SHOQJSHOQK-LTL t-KB. Instead of re�ning each pro-
cedure in the case of rigid names, we use a di�erent approach for checking c-
satis�ability. Instead of breaking down c-admissibility into two procedures, we
make use of the fact that SHOQJSHOQK satis�ability without rigid names is
in ExpTime. It is enough for us to have an appropriate SX = {X1, ..., Xn}. In-
stead of guessing SX , we compute a maximal set ŜX := {CX | X ∈ 2Pφ}. We can
enumerate all possible subsets of Pφ and for each of them we have an exponen-
tial time procedure for checking consistency of CX . This yields an exponential
time procedure to get ŜX . First, we recall that in other cases we have shown
that checking t-satis�ability is exponential of the size of D. Next, we have to
show that ŜX is indeed c-admissible. Since each CXi is consistent, there exists a
model for each them with countably in�nite domain. We can assume that they
have the same meta-level domain C and object-level domain ∆. Moreover, we
assume that M-individual names and O-individual names (for the same c ∈ C)
are interpreted the same. The conditions (9) and (9) are vacuously satis�ed since
there are no rigid names. Thus, we have that SX is c-admissible. In overall, we
get an ExpTime procedure for checking consistency of a SHOQJSHOQK-LTL
t-KB without rigid names.

F Proof of Theorem 4

Proof. First, we show the hardness for the case ALCJELK-LTL. Obviously, an
ALCJELK m-KB is an ALCJELK-LTL t-KB without temporal operators. Then,
NExpTime-hardness for consistency checking of ALCJELK-LTL immediately fol-
lows from NExpTime-completeness of the consistency problem in ALCJELK [6].

To show the upper bound, we consider the SHOQJELK case. Let D be an
SHOQJELK-LTL t-KB. We guess a set S = {(X1,Y1), . . . , (Xn,Yn)} that can be
done in exponential time. Then, we check t-satis�ability of φpSX that can be done
in ExpTime as shown in [3]. Checking whether S is conjointly outer consistent
is again in ExpTime since there are exponentially many Cf

Xi
to be checked and



each of them takes exponential time. In overall, conjointly outer consistency can
be tested in time exponentially of the size of D. Finally, notice that BO

S is a
conjunction of EL-literals. We recall that the satis�ability of conjunctions of EL-
literals can be decided in polynomial time. Since the size of BO

S is of exponential
size in the size of φ, checking o-admissibility can be done in exponential time in
the size of φ, and hence B. This yields the NExpTime upperbound for checking
satis�ability in ALCJELK-LTL w.r.t. rigid names.

G Proof of Theorem 5

Proof. Obviously, the 2-ExpTime-hardness directly follows from 2-ExpTime-
completeness of the consistency problem in ELJALCK. Due to Theorem 1 and
the fact that ELJSHOQK-LTL is a fragment of SHOQJSHOQK-LTL, we can
use the same procedure to yield the upper bound.

H Proof of Theorem 6

Proof. Obviously, theNExpTime-hardness forALCJELK-LTL and ELJALCK-LTL
are immediate consequences of NExpTime-hardness of the consistency prob-
lem with only rigid concepts in ALCJELK and ELJALCK, respectively. The up-
per bound are consequences of Theorem 3 since both SHOQJELK-LTL and
ELJSHOQK-LTL are fragments of SHOQJSHOQK-LTL.

I Proof of Theorem 7

Proof. The ExpTime-hardness forALCJELK-LTL and ELJALCK-LTL follows im-
mediately from the fact that the consistency problem without rigid names in
ALCJELK and ELJALCK are ExpTime-hard already. The ExpTime upper bound
are consequences of Theorem 2 since both SHOQJELK-LTL and ELJSHOQK-LTL
are fragments of SHOQJSHOQK-LTL.

J Proof of Claim in Section 4.2

Proof. Due to Lemma 2, checking the satis�ability of an ELJELK m-formula C
can be done by checking the existence of a set S := {X1, . . . , Xk} ⊆ 2EC such
that Cf is consistent w.r.t. S and BXi is consistent for any 1 ≤ i ≤ k. It is not
necessary to construct S explicitly. We recall that Xi represents a combination
of referring meta concepts which a domain element can be member of.

We consider again checking the consistency of Cf . Note that the abstraction
Cf is a conjunction of EL-literals. As shown in [7,8], checking the satis�ability
of EL-literals can be done in polynomial time by reducing it to the consistency
problem of ELO⊥. We can modify this approach to solve our problem. We recall
that the algorithm in [1] compute a mapping S from Cφ to Cφ ∪ {⊥} where



Cφ is the set that contains top concept, all concepts names used in φ and all
subconcepts of the form {a} (nominal) appearing in φ and a similar mapping R
to represent ∃r.C. Intuitively, the mapping S represents the subsumption relation
in the following sense: D ∈ S(C) implies C v D. We can compute this mapping
using the algorithm that can be done in polynomial time. Afterwards, we check
whether for every C such that there exists {a} ∈ S(C) for some individual a,

Bφ
C is consistent where

Bφ
C :=

∧
Eα∈S(C)

α ∧
∧

Eα∈Eφ\S(C)

¬α

we the combination of referring meta concepts in S(C) are consistent. There is
no need to check the one without nominal since such concept can be empty. Note
that any Bφ

C is a conjunction of EL-literals. Since there are at most polynomial
number of C to be checked and each combination can be checked in polyno-
mial time, this yields a polynomial time procedure to check the consistency of
conjunction of ELJELK-literals.

K Proof Theorem 9

Proof. Case w.r.t. rigid concepts : Since EL-LTL with rigid concept names is
NExpTime-hard, we can use the same reduction as in Theorem 8. Furthermore,
there are only rigid concept names to be copied to corresponding ELJELK-LTL
problem. The upper bound is immediately follows from the case of rigid (concept
and role) names.

Case without rigid names : By Lemma 2, checking the satis�ability of an
ELJELK-LTL formula φ can be done by checking the existence of a set S :=
{X1, . . . , Xk} ⊆ 2EC such that φf is consistent w.r.t. SX and SX is c-admissible.
We employ the same idea of deciding EL-LTL without rigid names [7,8]. Instead
of guessing or building the set SX , we can check the induced Xi of the world
wi on the �y. As argued in [8], we can exploit the periodic model property
of φp [16]. With a similar construction, we can build a modi�ed Mφp for our
objective. Instead of checking induced conjunction of EL-literals for each world,
we check conjunction of ELJELK-literals. However, by Claim 4.2, this can be
done in polynomial time, i.e., the same complexity of checking EL-literals. Thus,
we have shown a PSpace algorithm that check satis�ability of an ELJELK-LTL
formula.
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