
Latent Weights Generating for Few Shot Learning Using
Information Theory

Yiwei Zhang and Zongyang Li 1

Abstract. Few shot image classification aims at learning a classi-
fier from limited labeled data. Generating the classification weights
has been applied in many metalearning approaches for few shot im-
age classification due to its simplicity and effectiveness. However,
fixed classification weights for different query samples within one
task might be sub-optimal, due to the few shot challenge, and it is
difficult to generate the exact and universal classification weights for
all the diverse query samples from very few training samples. In this
work, we introduce latent weights generating using information the-
ory (LWGIT) for few shot learning which addresses current issues by
generating different classification weights for different query sam-
ples by letting each of query samples attends to the whole support
set. The experiment results demonstrate the effectiveness of LWGIT,
thereby contributing to exceed the performances of the existing state-
of-the-art models.

1 Introduction
While deep learning methods achieve great success in domains such
as computer vision [1], natural language processing [2], reinforce-
ment learning [3], their hunger for large amount of labeled data lim-
its the application scenarios where only a few data are available for
training. Humans, in contrast, are able to learn from limited data,
which is desirable for deep learning methods. Few shot learning is
thus proposed to enable deep models to learn from very few sam-
ples.

Meta learning is by far the most popular and promising approach
for few shot problems [4]. In meta learning approaches, the model
extracts high level knowledge across different tasks so that it can
adapt itself quickly to a new-coming task [5]. There are several kinds
of meta learning methods for few shot learning, such as gradient-
based [4] and metric-based [6]. Weights generation, among these dif-
ferent methods, has shown effectiveness with simple formulation [7].
In general, weights generation methods learn to generate the classifi-
cation weights for different tasks conditioned on the limited labeled
data.

However, fixed classification weights for different query samples
within one task might be sub-optimal, due to the few shot challenge,
and it is difficult to generate the exact and universal classification
weights for all the diverse query samples from very few training sam-
ples.

To addresses current issues, we propose latent weights generat-
ing using information theory (LWGIT) for few shot learning in this
work.The contribution is as followed:

• To overcome issues mentioned above, we propose the LWGIT
which generates different classification weights for different query

1 Kings college London, United Kingdom, email: yiwei.1.zhang@kcl.ac.uk

samples by letting each of query samples attends to the whole sup-
port set.

• To guarantee the generated weights adaptive to different query
sample, we re-formulate the problem to maximize the lower bound
of mutual information between generated weights and query as
well as support data.

• The experiment results demonstrate the effectiveness of LWGIT,
thereby contributing to exceed the performances of the existing
state-of-the-art models.

The remaining of this paper is organized as follows. Section 2 in-
cludes the related work. Section 3 introduces our proposed latent
weights generating using information theory method. In section 4,
we evaluate our proposed models and report experimental results on
extensive realworld datasets. Section 5 concludes this work.

2 Related Work

2.1 Few Shot Learning

Learning from few labeled training data has received growing atten-
tions recently. Most successful existing methods apply meta learning
to solve this problem and can be divided into several categories. In
the gradient-based approaches, an optimal initialization for all tasks
is learned [4]. Ravi Larochelle [8] learned a meta-learner LSTM di-
rectly to optimize the given fewshot classification task. Sun et al. [9]
learned the transformation for activations of each layer by gradients
to better suit the current task.

In the metric-based methods, a similarity metric between query
and support samples is learned [10]. Spatial information or local im-
age descriptors are also considered in some works to compute richer
similarities [11].

Generating the classification weights directly has been explored
by some works. Gidaris [12] generated classification weights as lin-
ear combinations of weights for base and novel classes. Similarly,
Qiao et al. [13] generated the classification weights from activations
of a trained feature extractor. Graph neural network denoising au-
toencoders are used in [7]. Munkhdalai [14] proposed to generate
fast weights from the loss gradient for each task. All these methods
do not consider generating different weights for different query ex-
amples, nor maximizing the mutual information.

There are some other methods for few-shot classification. Gener-
ative models are used to generate or hallucinate more data in [15]
used the closed-form solutions directly for few shot classification.
Liu et al. [16] integrated label propagation on a transductive graph to
predict the query class label.

Cathal
Copyright ©2020 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0)

2.2 Attention mechanism

Attention mechanism shows great success in computer vision [17]
and natural language processing [18]. It is effective in modeling the
interaction between queries and key-value pairs from certain context.
Based on the fact that keys and queries point to the same entities
or not, people refer to attention as self attention or cross attention.
In this work, we use both types of attention to encode the task and
query-task information.

3 Latent weights generating using information
theory

3.1 Background

Suppose that a sequence of tasks {T1, . . . , TNt} are sampled from an
environment which is a probability distribution E on tasks. In each
task Ti ∼ E , we have a few examples {xi,j ,yi,j}n

tr

j=1 to constitute
the training set DtrTi and the rest as the test set DteTi .

Given a base learner f with θ as parameters, the optimal parame-
ters θTi are learned to make accurate predictions, i.e., fθTi (xi,j)→
yi,j . The effectiveness of such a base learner on DtrTi is evaluated by
the loss function L

(
fθτi ,D

tr
Ti

)
, which equals the mean square error

for regression problems:∑
(xi,j ,yi,j)∈Dtr

Ti

‖fθTi
(xi,j)− yi,j‖22 (1)

or the cross entropy loss :

−
∑

(xi,j ,yi,j)∈Dtr
Ti

log p
(
yi,j |xi,j , fθTi

)
(2)

for classification problems.
The goal of meta-learning is to learn from previous tasks a well-

generalized meta-learner M(·) which can facilitate the training of
the base learner in a future task with a few examples. In fulfillment of
this, meta-learning involves two stages, i.e., meta-training and meta-
testing.

During meta- training, the parameters of the base learner for all
tasks, i.e., {θTi}

Nt
i=1, and the meta-learner M(·) are optimized al-

ternatingly. In virtue of M, the parameters {θTi}
Nt
i=1 are learned to

minimize the expected empirical loss over training sets of all Nt his-
torical tasks:

min
{θTi}

Nt
i=1

Nt∑
i=1

L
(
M
(
fθTi

)
,DtrTi

)
(3)

In turn, a well-generalized M can be obtained by minimizing the ex-
pected empirical loss over test sets:

min
M

Nt∑
i=1

L
(
M
(
fθTi

)
,DteTi

)
(4)

When it comes to the metatesting phase, provided with a future task
Tt, the learning effectiveness and efficiency are improved by apply-
ing the meta-learner M and solving

min
θτt
L
(
M (fθτt) ,D

tr
Tt
)

(5)

3.2 Problem formulation
Following many popular meta-learning methods for few shot classi-
fication, we formulate the problem under episodic training paradigm
[4]. One N-way K-shot task sampled from an unknown task distribu-
tion P (T) includes support set and query set:

T = (S,Q) (6)

where S =
{(

xcn;k,ycn;k
)
|k = 1, . . . ,K;n = 1, . . . , N

}
,Q ={(

x̂1, . . . , x̂[Q]

)}
Support set S contains NK labeled samples. Query

set Q includes x̂ and we need to predict label ŷ for x̂ based on S.
During meta-training, the meta-loss is estimated on Q to optimize
the model. During metatesting, the performance of meta-learning
method is evaluated on Q, provided the labeled S. The classes used in
meta-training and meta-testing are disjoint so that the meta-learned
model needs to learn the knowledge transferable across tasks and
adapt itself quickly to novel tasks.

Our proposed approach follows the general framework to gener-
ate the classification weights [13]. In this framework, there is a fea-
ture extractor to output image feature embeddings. The meta-learner
needs to generate the classification weights for different tasks

3.3 Latent embedding optimization
Latent Embedding Optimization (LEO) [19] is one of the weights
generation methods that is most related to our work. In LEO, the la-
tent code z is generated by h conditioned on support set S, described
as z = h(S). h is instantiated as relation networks [20]. Classifica-
tion weights w can be decoded from z with l, w = l(z). In the inner
loop, we use w to compute the loss (usually cross entropy) on the
support set and then update z:

z′ = z − η∇zLS(w) (7)

where LS indicates that the loss is evaluated on S only. The up-
dated latent code z′ is used to decode new classification weights w′

with generating function l. w′ is adopted in the outer loop for query
set Q and the objective function of LEO then can be written as

min
θ
LQ
(
w′
)

(8)

Here θ stands for the parameters of h and l and we omit the regu-
larization terms for clarity. LEO avoids updating high-dimensional w
in the inner loop by learning a lower-dimensional latent space, from
which sampled z can be used to generate w. The most significant dif-
ference between LEO and LWGIT is that we do not need inner up-
dates to adapt the model. Instead, LWGIT is a feedforward network
trained to maximize the mutual information so that it fits to differ-
ent tasks well. On the other hand, LWGIT learns to generate optimal
classification weights for each query sample while LEO generates
fixed weights conditioned on the support set within one task.

3.4 Weights Generation Using Information Theory
The framework of our proposed method is shown in Figure 1. As-
sume that we have a feature extractor, which can be a simple 4-layer
Convnet or a deeper Resnet. All the images included in the sam-
pled task T are processed by this feature extractor and represented
as d-dimensional vectors afterwards, i.e., xcn;k, x̂ ∈ Rd. There are
two paths to encode the task context and the individual query sam-
ple respectively, which are called contextual path and attentive path.
The outputs of both paths are concatenated together as input to the

Figure 1. The structure of the proposed LWGIT

generator for classification weights. Generated classification weights
are used to not only predict the label of x̂, but also maximize the
lower bound of mutual information between itself and other vari-
ables, which will be discussed in the following section.

3.4.1 Attention Network

The encoding process includes two paths, namely the contextual path
and attentive path. The contextual path aims at learning representa-
tions for only the support set with a multi-head self-attention net-
work fcpsa [18]. The outputs of contextual path Xcp ∈ RNK×dh thus
contain richer information about the task and can be used later for
weights generation.

Existing weights generation methods generate the classification
weights conditioned on the support set only, which is equivalent to
using contextual path. However, the classification weights generated
in this way might be sub-optimal. This is because estimating the ex-
act and universal classification weights from very few labeled data
in the support set is difficult and sometimes impossible. The gen-
erated weights are usually in lack of adaptation to different query
samples. We address this issue by introducing attentive path, where
the individual query example attends to the task context and then is
used to generate the classification weights. Therefore, the classifica-
tion weights are adaptive to different query samples and aware of the
task context as well.

In the attentive path, a new multi-head self-attention network fapsa
on the support set is employed to encode the global task informa-
tion. fapsa is different from fcpsa in contextual path because the self-
attention network in contextual path emphasizes on generating the
classification weights. On the contrary, outputs of self-attention here
plays the role of providing the Value context for different query sam-
ples to attend in the following cross attention. Sharing the same self-
attention networks might limit the expressiveness of learned repre-
sentations in both paths. The cross attention network fapca applied on
each query sample and task-aware support set is followed to produce
X̂ap ∈ R|Q|×dh .

We use multi-head attention with h heads in both paths. In one at-
tention block, we produce h different sets of queries, keys and values.
Multi-head attention is claimed to be able to learn more comprehen-
sive and expressive representations from h different subspaces [18].

3.4.2 Weights Generator

We replicate Xcp ∈ RNK×dh and X̂ap ∈ R|Q| × dh for |Q|
and NK times respectively and reshape them afterwards. Then we
have Xcp ∈ R|Q|×NK×dh and X̂ap ∈ R|Q|×NK×dh . These two
tensors are concatenated to become Xcp⊕ap ∈ R|Q| × NK ×
2dh, Xcp⊕ap can be interpreted that each query sample has its own
latent representations for support set to generate specific classifica-
tion weights, which are both aware of the task-context and adaptive
to individual query sample.

Xcp⊕ap is decoded by the weights generator g :R2dh → R2d

. We assume that the classification weights follow Gaussian distri-
bution with diagonal covariance. g outputs the distribution param-
eters and we sample the weights from learned distribution during
meta-training. The sampled classification weights are represented
as W ∈ R|Q| × NK × d . To reduce complexity, we compute
the mean value on K classification weights for each class to have
Wfinal ∈ R|Q|×N ×d . Therefore, ith query sample has its specific
classification weight matrix Wfinal

i,i,i ∈ RN×d . The prediction for
query data can be computed by X̂WfinalT . The support data X is
replicated for |Q| times and reshaped as Xs ∈ R|Q|×NK×d . So
the prediction for support data can also be computed as XsW

finalT.
Besides the weights generator g, we have another two decoders

r1 : Rd → Rdh and r2 : Rd → Rdh . They both take the gen-
erated weights W as inputs and learn to reconstruct Xcp and Xap

respectively. The outputs of r1 and r2 are denoted as Xcp
re, X̂

ap
re ∈

R|Q|×NK×dh .

3.5 Information Theory
In this section, we perform the analysis for one query sample with-
out loss of generality. The subscripts for classification weights are
omitted for clarity. In general, we use (x,y) and (x̂, ŷ) to represent
support and query samples respectively.

Since the classification weights w generated from g are encoded
with attentive path and contextual path, it is expected that we can
directly have the query-specific weights. However, we show in the
experiments that simply doing this does not outperform a weight gen-
erator conditioned only on the S significantly, which implies that the
generated classification weights from two paths are not sensitive to
different query samples. In other words, the information from atten-
tive path is not kept well during the weights generation.

To address this limitation, we propose to maximize the mutual in-
formation between generated weights w and support as well as query

data. The objective function can be described as

max I((x̂, ŷ);w) +
∑

(x,y)∈S

I((x,y);w) (9)

According to the chain rule of mutual information, we have

I((x̂, ŷ);w) = I(x̂;w) + I(ŷ;w|x̂) (10)

Equation 10 stands for both terms in 9. So the objective function
can be written as

max I(x̂;w) + I(ŷ;w|x̂) +
∑

(x,y)∈S

[I(x;w) + I(y;w|x)] (11)

Directly computing the mutual information in Equation
11 is intractable since the true posteriori distributions like
p(ŷ|x̂,w), p(x̂|w) are still unknown. Therefore, we use Vari-
ational Information Maximization [21] to compute the lower bound
of Equation 9. We use pθ(x̂|w) to approximate the true posteriori
distribution, where θ represents the model parameters. As a result,
we have

I(x̂;w) = H(x̂)−H(x̂|w)

= H(x̂) + Ew∼p(w|x,S)
[
Ex̂∼p(x̂|w)[log p(x̂|w)]

]
= H(x̂) + Ew∼p(w|x,S)DKL (p(x̂|w)‖pθ(x̂|w))

+ Ex̂∼p(x̂|w) [log pθ(x̂|w)]

≥ H(x̂) + Ew∼p(w|x,S)
[
Ex̂∼p(x|w) [log pθ(x̂|w)]

]
(12)

H(·) is the entropy of a random variable.H(x̂) is a constant value
for given data. We can maximize this lower bound as the proxy for
the true mutual information. Similar to I(x̂;w)

I(ŷ;w|x̂) ≥ H(ŷ|x̂)

+ Ew∼p(w|x̂,S)
[
Eŷ∼p(ŷ|x,w) [log pθ(ŷ|x̂,w)]

] (13)

∑
(x,y)∈S

I((x,y);w) ≥
∑

(x,y)∈S

H((x,y))

+ E(x,y)∼p((x,y)|w) [log pθ(x|w) + log pθ(y|x,w)]

(14)

pθ(x̂|w), pθ(x,y|w) are used to approximate the true posteriori dis-
tribution p(x̂|w) and p(x,y|w)

Put the lower bounds back into Equation 11. Omit the constant
entropy terms and the expectation subscripts for clarity, we have the
new objective function as

maxEθ [log pθ(ŷ|x̂,w)]

+ Eθ [log pθ(y|x,w) + log pθ(x|w) + log pθ(x̂|w)]
(15)

The first two terms are maximizing the log likelihood of label for
both support and query data with respective to the network parame-
ters, given the generated classification weights. This is equivalent to
minimizing the cross entropy between prediction and ground-truth.
We assume that pθ(x̂|w) and pθ(x|w) are Gaussian distributions.
r1 and r2 are used to approximate the mean of these two Gaussian
distributions. Therefore maximizing the log likelihood is equivalent
to reconstruct XCp and X̂ap with L2 loss. Thus the loss function to
train the network can be written as

L = CE (ŷpred, ŷ) + λ1

∑
y∈S

CE (ypred,y)

+ λ2

∑
xcp∈S

‖xcp − xcpre‖2 + λ3 ‖x̂ap − x̂apre‖2
(16)

CE here stands for cross entropy. xcp and x̂ap are the inputs to
weights generator g. xcpre ∼ pθ(x|w) and x̂apre ∼ pθ(x̂|w) are the
reconstruction of xcp and x̂ap. Since we convert the log likelihood
in Equation 15 to mean square error or cross entropy in Equation
16 to optimize, the value of each term in Equation 16 is not equal
to real log likelihood and we have to decide the weightage for each
one. λ1, λ2, λ3 are thus hyper-parameters for trade-off of different
terms. With the help of last three terms, the generated classification
weights are forced to carry information about the support data and
the specific query sample.

In LEO [19], the inner update loss is computed as cross entropy
on support data. If we merge the inner update into outer loop, then
the loss becomes the summation of first two terms in Equation 16.
However, the weight generation in LEO does not involve specific
query samples, thus making reconstructing X̂ap impossible. In this
sense, LEO can be regarded as a special case of our proposed method,
where (1) only contextual path exits and (2) λ2 = λ̄3 = 0.

Model Feature Extractor 5-way 1-shot 5-way 5-shot
MAML [4] Conv-4 51.67 70.3

Prototypical Nets [22] Conv-4 53.31 72.69
Relation Nets [6] Conv-4 54.48 71.32

TPN [16] Conv-4 59.91 72.85
MetaOptNet [23] Resnets-12 65.81 81.75

LEO [19] WRN-28-10 66.33 81.44
LWGIT (ours) WRN-28-10 67.46 82.57

Table 1. Accuracy comparison with other approaches on tieredImageNet.

4 Experiments
4.1 Datasets And Protocols
We conduct experiments on miniImageNet [24] and tieredImageNet
[26], two commonly used benchmark datasets, to compare with
other methods and analyze our model. Both datasets are subsets of
ILSVRC-12 dataset. miniImageNet contains 100 randomly sampled
classes with 600 images per class. We follow the train/test split in [8],
where 64 classes are used for meta-training, 16 for meta-validation
and 20 for meta-testing. tieredImageNet is a larger dataset compared
to miniImageNet. There are 608 classes and 779,165 images in to-
tal. They are selected from 34 higher level nodes in ImageNet [27]
hierarchy. 351 classes from 20 high level nodes are used for meta-
training, 97 from 6 nodes for meta-validation and 160 from 8 nodes
for meta-testing.

We use the image features similar to LEO [19]. They trained a 28-
layer Wide Residual Network [28] on the meta-training set. Each im-
age then is represented by a 640 dimensional vector, which is used as
the input to our model. For N-way K-shot experiments, we randomly
sample N classes from meta-training set and each of them contains
K samples as the support set and 15 as query set. Similar to other
works, we train 5-way 1-shot and 5-shot models on two dataset. Dur-
ing meta-testing, 600 N-way K-shot tasks are sampled from meta-
testing set and the average accuracy for query set is reported with
95confidence interval, as done in recent works [4, 19].

4.2 Few shot image classification
We compare the performance of our approach LWGIT on two
datasets with several state-of-the-art methods proposed in recent

Model
miniImageNet tieredImageNet

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot
LEO 61.76% 77.59% 66.33% 81.44%

Generator in LEO 60.33% 74.53% 65.17% 78.77%
Generator conditioned on S only 61.02% 74.33% 66.22% 79.66%

Generator conditioned on S with IM 62.04% 77.54% 66.43% 81.73%
MLP encoding, λ1 = λ2 = λ3 = 0 58.95% 71.68% 63.92% 75.80%

MLP encoding 62.26% 76.91% 65.84% 79.24%
λ1 = λ2 = λ3 = 0 61.61% 74.14% 65.65% 79.93%
λ1 = λ2 = 0 62.06% 74.18% 65.85% 80.42%
λ3 = 0 62.91% 77.88% 67.27% 81.67%
λ1 = 0 62.19% 74.21% 66.82% 80.61%

λ2 = λ3 = 0 62.12% 77.65% 66.86% 81.03%
random shuffle in class 62.87% 77.48% 67.52% 82.55%

random shuffle between classes 61.20% 77.48% 66.55% 82.53%
LWGIT (ours) 63.42% 78.44% 67.58% 82.04%

Table 2. Analysis of our proposed LWGIT. In the top half, the attentive path is removed to compare with LEO. In the bottom part, ablation analysis with
respective to different components is provided.

Model Feature Extractor 5-way 1-shot 5-way 5-shot
Matching Networks [24] Conv-4 46.60% 60.00%

MAML [4] Conv-4 48.70% 63.11%
Meta LSTM [8] Conv-4 43.44% 60.60%

Prototypical Nets [22] Conv-4 49.42% 68.20%
Relation Nets [6] Conv-4 50.44% 65.32%

SNAIL [25] Resnets-12 55.71% 68.88%
TPN [16] Resnets-12 59.46% 0.00%
MTL [9] Resnets-12 61.20% 75.50%

Dynamic [12] WRN-28-10 60.06% 76.39%
Prediction [13] WRN-28-10 59.60% 73.74%
DAE-GNN [7] WRN-28-10 62.96% 78.85%

LEO [19] WRN-28-10 61.76% 77.59%
LWGIT (ours) WRN-28-10 62.27% 78.74%

Table 3. Accuracy comparison with other approaches on miniImageNet

years. The results of MAML, Prototypical Nets, Relation Nets on
tieredImageNet are evaluated by [16]. The results of Dynamic on
miniImageNet with WRN-28-10 as the feature extractor is reported
in [7]. The other results are reported in the corresponding original pa-
pers. We also include the backbone network structure of the used fea-
ture extractor for reference. The results on miniImageNet and tiered-
ImageNet are shown in Table 1 and 2 respectively.

The top half parts of Table 1 and 2 display the meth-
ods belonging with different meta learning categories, such as
metric-based(Matching Networks, Prototypical Nets), gradient-
based (MAML, MTL), graph-based (TPN). The bottom part shows
the classification weights generation approaches including Dynamic,
Prediction, DAE-GNN, LEO and our proposed LWGIT.

LWGIT can outperform all the methods in top parts of two table.
Comparing with other classification weights generation methods in
the bottom part, LWGIT still shows very competitive performance,
namely the best on tieredImageNet and close to the state-of-the-art
on miniImageNet. We note that all the classification weights gener-
ation methods are using WRN-28-10 as backbone network, which
makes the comparison fair. In particular, LWGIT can outperform
LEO in all settings.

4.3 Analysis

We perform detailed analysis on LWGIT, shown in Table 3. We in-
clude the results of LEO Rusu et al. (2019) for reference. Generator
in LEO means that there is no inner update in LEO. In the upper part
of the table, we first studied the effect of attentive path. We imple-
mented two generators including only the contextual path during en-
coding. Generator conditioned on S with IM indicates that we add the
cross entropy loss and reconstruction loss for support set. It can be
observed that Generator conditioned on S only is trained with cross
entropy on query set, which is similar to Generator in LEO without
inner update. It is able to achieve similar or slightly better results than
Generator in LEO, which implies that self-attention is no worse than
relation networks used in LEO to model task-context. With infor-
mation maximization, our generator is able to obtain slightly better
performance than LEO.

The effect of attention is investigated by replacing the attention
modules with 2-layer MLPs, which is shown as MLP encoding. More
specifically, one MLP in contextual path is used for support set and
another MLP in attentive path for query samples. We can see that
even without attention to encode the task-contextual information,
MLP encoding can achieve accuracy close to LEO, for the sake of in-
formation maximization. However, if we let λ1 = λ2 = λ3 = 0 for
MLP encoding, the performance drops significantly, which demon-
strates the importance of maximizing the information

We conducted ablation analysis with respective to λ1, λ2, λ3 to in-
vestigate the effect of information maximization. First,λ1, λ2, λ3 are
all set to be 0. In this case, the accuracy is similar to generator con-
ditioned on S only, showing that the generated classification weights
are not fitted for different query samples, even with the attentive path.
It can also be observed that maximizing the mutual information be-
tween weights and support is more crucial since λ1 = λ2 = 0 de-
grades accuracy significantly, comparing with λ3 = 0. We further
investigate the relative importance of the classification on support as
well as reconstruction. λ1 = 0 affects the performance noticeably.
We conjecture that the support label prediction is more critical for
information maximization.

The classification weights are generated specifically for each
query sample in LWGIT. To this point, we shuffle the classification
weights between query samples within the same classes and between

different classes as well to study whether the classification weights
are adapted for different query samples. Assume there are T query
samples per class in one task. W final ∈ R|Q| × N × d can be re-
shaped into W final ∈ RN×T×N×d. Then we shuffle this weight ten-
sor along the first and second axis randomly. The results are shown as
random shuffle between classes and random shuffle in class in Table
3. For 5-way 1-shot experiments, the random shuffle between classes
degrades the accuracy noticeably while the random shuffle in class
dose not affect too much. This indicates that when the support data
are very limited, the generated weights for query samples from the
same class are very similar to each other while distinct for different
classes. When there are more labeled data in support set, two kinds of
random shuffle show very close or even the same results in 5-way 5-
shot experiments, which are both worse than the original ones. This
implies that the generated classification weights are more diverse and
specific for each query sample in 5-way 5-shot setting. The possible
reason is that larger support set provides more knowledge to estimate
the optimal classification weights for each query example.

5 CONCLUSION

In this work, we introduce latent weights generating using informa-
tion theory(LWGIT) for few shot learning. LWGIT learns to generate
optimal classification weights for each query sample within the task
by two encoding paths. To guarantee this, the lower bound of mu-
tual information between generated weights and query, support data
is maximized. The effectiveness of LWGIT is demonstrated by state-
of-the-art performance on two benchmark datasets.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, 2016, pp. 770–778.

[2] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[3] D. Silver, T. Hubert, J. Schrittwieser, I. Antonoglou, M. Lai, A. Guez,
M. Lanctot, L. Sifre, D. Kumaran, T. Graepel et al., “A general rein-
forcement learning algorithm that masters chess, shogi, and go through
self-play,” Science, vol. 362, no. 6419, pp. 1140–1144, 2018.

[4] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning for
fast adaptation of deep networks,” in Proceedings of the 34th Interna-
tional Conference on Machine Learning-Volume 70. JMLR. org, 2017,
pp. 1126–1135.

[5] M. Andrychowicz, M. Denil, S. Gomez, M. W. Hoffman, D. Pfau,
T. Schaul, B. Shillingford, and N. De Freitas, “Learning to learn by
gradient descent by gradient descent,” in Advances in neural informa-
tion processing systems, 2016, pp. 3981–3989.

[6] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. Torr, and T. M. Hospedales,
“Learning to compare: Relation network for few-shot learning,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 1199–1208.

[7] S. Gidaris and N. Komodakis, “Generating classification weights with
gnn denoising autoencoders for few-shot learning,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition,
2019, pp. 21–30.

[8] S. Ravi and H. Larochelle, “Optimization as a model for few-shot learn-
ing,” 2016.

[9] Q. Sun, Y. Liu, T.-S. Chua, and B. Schiele, “Meta-transfer learning for
few-shot learning,” in Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition, 2019, pp. 403–412.

[10] H. Li, D. Eigen, S. Dodge, M. Zeiler, and X. Wang, “Finding task-
relevant features for few-shot learning by category traversal,” in Pro-
ceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2019, pp. 1–10.

[11] Y. Lifchitz, Y. Avrithis, S. Picard, and A. Bursuc, “Dense classification
and implanting for few-shot learning,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 9258–
9267.

[12] S. Gidaris and N. Komodakis, “Dynamic few-shot visual learning with-
out forgetting,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2018, pp. 4367–4375.

[13] S. Qiao, C. Liu, W. Shen, and A. L. Yuille, “Few-shot image recogni-
tion by predicting parameters from activations,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2018,
pp. 7229–7238.

[14] T. Munkhdalai and H. Yu, “Meta networks,” in Proceedings of the 34th
International Conference on Machine Learning-Volume 70. JMLR.
org, 2017, pp. 2554–2563.

[15] Z. Chen, Y. Fu, Y.-X. Wang, L. Ma, W. Liu, and M. Hebert, “Image de-
formation meta-networks for one-shot learning,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 8680–8689.

[16] Y. Liu, J. Lee, M. Park, S. Kim, E. Yang, S. J. Hwang, and Y. Yang,
“Learning to propagate labels: Transductive propagation network for
few-shot learning,” arXiv preprint arXiv:1805.10002, 2018.

[17] N. Parmar, A. Vaswani, J. Uszkoreit, Ł. Kaiser, N. Shazeer, A. Ku, and
D. Tran, “Image transformer,” arXiv preprint arXiv:1802.05751, 2018.

[18] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in
Advances in neural information processing systems, 2017, pp. 5998–
6008.

[19] A. A. Rusu, D. Rao, J. Sygnowski, O. Vinyals, R. Pascanu, S. Osindero,
and R. Hadsell, “Meta-learning with latent embedding optimization,”
arXiv preprint arXiv:1807.05960, 2018.

[20] A. Santoro, D. Raposo, D. G. Barrett, M. Malinowski, R. Pascanu,
P. Battaglia, and T. Lillicrap, “A simple neural network module for re-
lational reasoning,” in Advances in neural information processing sys-
tems, 2017, pp. 4967–4976.

[21] X. Chen, Y. Duan, R. Houthooft, J. Schulman, I. Sutskever, and
P. Abbeel, “Infogan: Interpretable representation learning by informa-
tion maximizing generative adversarial nets,” in Advances in neural in-
formation processing systems, 2016, pp. 2172–2180.

[22] J. Snell, K. Swersky, and R. Zemel, “Prototypical networks for few-shot
learning,” in Advances in neural information processing systems, 2017,
pp. 4077–4087.

[23] K. Lee, S. Maji, A. Ravichandran, and S. Soatto, “Meta-learning with
differentiable convex optimization,” in Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition, 2019, pp. 10 657–
10 665.

[24] O. Vinyals, C. Blundell, T. Lillicrap, D. Wierstra et al., “Matching net-
works for one shot learning,” in Advances in neural information pro-
cessing systems, 2016, pp. 3630–3638.

[25] N. Mishra, M. Rohaninejad, X. Chen, and P. Abbeel, “A simple neural
attentive meta-learner,” arXiv preprint arXiv:1707.03141, 2017.

[26] M. Ren, E. Triantafillou, S. Ravi, J. Snell, K. Swersky, J. B. Tenenbaum,
H. Larochelle, and R. S. Zemel, “Meta-learning for semi-supervised
few-shot classification,” arXiv preprint arXiv:1803.00676, 2018.

[27] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference on
computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[28] S. Zagoruyko and N. Komodakis, “Wide residual networks,” arXiv
preprint arXiv:1605.07146, 2016.

