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Abstract
Description logics (DLs) are a well-understood family of knowledge represen-

tation (KR) languages. The notation of DLs has the flavour of a variable-free first
order predicate logic. In this paper, a diagrammatic representation of the DLALC,
based on Peirce’s existential graphs, is presented, and a set of transformation rules
on these graphs is provided. It is proven that these rules form a sound and complete
diagrammatic calculus for ALC.
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1 Introduction
Description logics (DLs) are a well-understood family of knowledge representation
(KR) languages tailored to express knowledge about concepts and concept hierarchies
that have gained widespread use. The basic building blocks of DLs are concepts, roles
and sometimes individuals, which can be composed by language constructs such as
intersection, union, value or number restrictions and more to build more complex well-
formed formulas that themselves represent more complex concepts and roles. For ex-
ample, if MAN, FEMALE, MALE, RICH, HAPPY are concepts and if HASCHILD is a
role, we can define

HM ≡ MAN u ∃HASCHILD.FEMALE u ∃HASCHILD.MALE

u∀HASCHILD.(RICH t HAPPY)

which defines the concept of men who have both male and female children, and where
all children are rich or happy (HM abbreviates HAPPYMAN).

The formal notation of DLs has the flavour of a variable-free first order predicate
logic (FOL). In fact, DLs correspond to decidable fragments of FOL. Like FOL, DLs
have a well-defined, formal syntax and Tarski-style semantics, and they provide sound
and complete inference facilities. The variable-free notation of DLs makes them easier
to comprehend than the common FOL formulas that include variables. Nevertheless,
without training, the symbolic notation of FOL can be hard to learn and comprehend.

It has been argued that diagrams are useful for KR systems [9, 12, 13], a fact that
has been acknowledged by the DLs authors (see introduction of [1]). Therefore one
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alternative to DLs symbolic notation is the development of a diagrammatic represen-
tation. A first attempt can be found in [9], where a graph-based representation for the
textual DL CLASSIC is elaborated. In [3], a specific DL is mapped to the diagram-
matic system of conceptual graphs [17]. In [2], a UML-based representation for a DL
is provided. In these approaches, the focus is on a graphical representation of DL,
however, as emphasized in many works on DL, reasoning is a distinguishing feature
of DL. Correspondences between graphical representation of the DL and the DL rea-
soning system are therefore important inclusions in any graphical representation but to
date they have remain largely unelaborated.

This paper presents a diagrammatic representation of the DL ALC in the style
of Peirce’s existential graphs (EGs) [18, 15, 16, 6] (the reasons for choosing Peirce’s
graphs as a diagrammatic framework for DL are presented [8]). An adequate diagram-
matic calculus for ALC, based on Peirce’s calculus for his graphs, is provided.

Reasoning with DLs is usually carried out by means of tableau algorithms. The
calculus of this paper differs significantly from this approach in two respects. First, the
rules of the calculus are deep-inference rules, as they modify deep nested subformulas,
whereas tableau algorithms (similar to other common calculi) only modify formulas
at their top-level (some interesting aspects of Peirce’s rules in terms of proof-theory
are investigated in [7]). More importantly for this workshop, the rules can be best
understood to modify the diagrammatic Peirce-style representations of ALC, i.e., the
calculus is a diagrammatic calculus.

The paper is structured as follows. We assume that the reader has some familiarity
with the system of EGs. In Section 1.1, only a very short introduction is provided.
Thorough introductions can be found in [18, 15, 16, 6]. In Section 2 the syntax and
semantics of the DL ALC as we use it in this paper is introduced. In Section 3, the
diagrammatic calculus for ALC is presented, and its soundness and completeness is
proven. The final section provides a discussion of this research.

1.1 Existential Graphs
Existential graphs [10] are a diagrammatic logic invented by C.S. Peirce (1839-1914)
in the last two decades of his life. Existential graphs are divided into three parts called
Alpha, Beta and Gamma. The three parts build on one another, Beta builds upon Alpha,
and Gamma builds on both Alpha and Beta. Alpha corresponds to propositional logic,
Beta corresponds to FOL (to be precise: first order logic with predicates and equality,
but without functions or constants). Gamma encompasses features of higher order
logic, including modal logic, self-reference and more. In contrast to Alpha and Beta,
Gamma was never finished by Peirce, and even now, only fragments of Gamma (mainly
the modal logic part) are elaborated to contemporary mathematical standards. In this
section, only Beta is introduced.

The EGs of Beta consist of predicate names of arbitrary arities, of heavily drawn
lines which are both used to express existential quantification and identity, and of
closed, doublepoint-free curves which are called CUTS (or sometimes SEPS) and used
to negate the enclosed subgraph. We start with a very simple graph expressing ‘a cat is
on a mat’. Below, three different diagrams of the graph are depicted.
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Each diagram contains two heavily drawn lines. In this case, they do not cross cuts
or do not have branching points (see below for an explanation of cuts and branching
points). This simplest form of a heavily drawn line is called LINE OF IDENTITY. The
two lines of identity denote two (not necessarily different) objects. The first line of
identity is attached to the unary predicate ‘cat’, hence the first object denotes a cat.
Analogously, the second line of identity denotes a mat. Both lines are attached to the
dyadic predicate ‘on’, i.e. the first object (the cat) stands in the relation ‘on’ to the
second object (the mat). The meaning of the graph is therefore ‘there is a cat and a mat
such that the cat is on the mat’, or in short: A cat is on a mat.

The three different diagrams are different representations of the same EG. In order
to distinguish graphs from their diagrams, Peirce coined the term graph and graph
replica, i.e., the above diagrams are different graph replicas of the same EG. Similar
distinctions are made between types and tokens, known from philosophy, or abstract
and concrete syntax, used widely in Computer Science. As discussed in [11, 4], for a
formally precise elaboration of any logic by means of diagrams, this distinction is vital.
This approach is adopted in this paper as well. In Section 2, a fragment of Peirce’s
graphs is used as a diagrammatic system for the DL ALC. In this section, the syntax
of this fragment is defined on a abstract level which prescinds from the topological
properties of the diagrammatic representations.

In the next graphs, the cuts which are used to express negation are introduced.

man man man

The meaning of the first graph is ‘there is a man’. The second graph is built from the
first graph by drawing a cut around it, i.e. the first graph is denied. Hence the meaning
of the second graph is ‘it is not true that there is a man’, i.e. ‘there is no man’. In
the third graph, the heavily drawn line (which is not a line of identity, as it crosses a
cut) begins on the sheet of assertion. Hence, the existence of the object is asserted, not
denied. For this reason the meaning of the third graph is ‘there is something which is
not a man’.

Peirce writes in [10], in 4.116 (we adopt the usual convention to refer to his col-
lected papers), a “line of identity is [. . .] a heavy line with two ends and without other
topical singularity (such as a point of branching or a node), not in contact with any other
sign except at its extremities.” So lines of identity do not have any branching points,
nor are they are allowed to cross cuts. However, by connecting them at their endpoints,
we can obtain networks of lines of identity, which are termed LIGATURES. Peirce al-
lows only two or three lines of identity to be connected. If three lines of identity are
connected, the point where they meet is called a BRANCHING POINT. Moreover, it is
possible to connect lines of identity connect directly on a cut. Due to this possibility,
ligatures are permitted which cross a cut.

Let us now consider the three EGs of Fig. 1, where ligatures are used.
In the first graph, the ligature consists of three lines of identity, which meet in

a branching point, in the second graph, the ligature consists of two lines of identity
meeting on the cut, and the ligature in the third graph is composed of seven lines of
identity. Nonetheless, in all these graphs, a ligature can, similar to a line of identity,
be understood to denote a single object. The meaning of the graphs of Figure 1 ‘there
exists a male, human african’, ‘there exists a man who will not die’, and ‘it is not
true that there is a pet cat such that it is not true that it is not lonely and owned by
somebody’, i.e., ‘every pet cat is owned by someone and is not lonely’.
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Figure 1: Four Peirce graphs with ligatures which do not traverse cuts

Nonetheless, other examples show that this interpretation of ligatures is not so sim-
ple in every case: namely a ligature may stand for more than one object. Let us consider
the three EGs of Figure 2. These graphs have the meanings ‘there are at least two suns’,
‘there are (not necessarily distinct) objects which are blue, red, large and small, respec-
tively’, and ‘the blue and large or the red and small object are distinct’, and ‘there are
objects o1, o2, o3 with the properties S, P , and T resp, and these objects are not all
identical’ (i.e., o1 = o2 = o3 does not hold). In every graphs, there is not a single
ligature that can be understood to denote a single object.

is sun is sun
large
small

blue
red

S

TP

Figure 2: Three Peirce graphs with ligatures which traverse cuts

In every graph in Figure 2 a part of a ligature traverses a cut (i.e., there is a cut c
and a heavily drawn line l which is part of the ligature such that both endpoints of l
are placed on c and the remainder of l is enclosed by c). Such a device denotes non-
identity of the endpoints of l. A complete discussion of ligatures in existential graphs
goes beyond the scope of this paper, see [5] for a more detailed discussion. It will turn
out that in the EGs we have to deal with in this paper, no ligature traverses a cut, so we
will not run into problems caused by the kind of ligatures of we see in Figure 2.

We now have all the necessary elements to express existential quantification, predi-
cates of arbitrary arities, conjunction and negation. As such we see that the Beta part of
EGs corresponds to FOL (without object names and without function names). More-
over, Peirce equipped EGs with a set of five sound and complete inference rules. We
do not address these rules in this section. For the ALC-fragment of EGs, they will be
introduced in Section 3.

2 The Description Logic ALC
The vocabulary (A,R) of a DL consists of a set A of (ATOMIC) CONCEPTS, which
denote sets of individuals, and a setR (ATOMIC) ROLES, which denote binary relation-
ships between individuals. Moreover, we usually consider vocabularies that include the
universal concept >. From these atomic items, more complex concepts and roles are

58



built with constructs such as intersection, union, value and number restrictions, etc. For
example, if C, C1, C2 are concepts, then so are C1 uC2, ¬C, ∀R.C, and ∃R.C (these
constructors are called conjunction, negation, value restriction, and exists restriction).

In this paper, we focus on the description logic ALC, which is the smallest propo-
sitionally closed description logic. For our purpose, we consider ALC to be composed
of conjunction, negation and existential restriction. In contrast to the usual approach,
in this paper the concepts of ALC are introduced as labelled trees. This is more con-
venient for defining the rules of the calculus, and the trees are already close to Peirce’s
notion of graphs.

An INTERPRETATION is a pair (∆I , I), consisting of an nonempty DOMAIN OF
THE INTERPRETATION ∆I and INTERPRETATION FUNCTION I which assigns to every
A ∈ A a set AI ⊆ ∆I and to role R ∈ R a relation RI ⊆ ∆I × ∆I . We require
>I = ∆I .

Trees can be formalized either as rooted and acyclic graphs, or as special posets.
We adopt the second approach, i.e., a tree is a poset (T,≥), where s ≥ t can be
understood as ‘s is an ancestor of t’. A LABELLED TREE is a structure T := (T,≤, ν),
where (T,≤) is a tree and ν : T → L is a mapping from the set of nodes to some set
L of labels. The greatest element of T is the ROOT of the tree. As usual, each node v
gives rise to a SUBTREE Tv (formally, Tv = (Tv,≥

∣∣
Tv×Tv

, ν|Tv
) with Tv := {w ∈

T | v ≥ w}). We write T′ ⊆ T, if T′ is a subtree of T. Isomorphic labelled trees are
implicitly identified.

Next we introduce some operations to inductively construct labelled trees. These
operations will be used to define the syntax and semantics of ALC based on labelled
trees. We assume to have a set L of labels.
Chain: Let l1, . . . , ln ∈ L. With l1 l2 . . . ln we denote the labelled tree T := (T,≥, ν)
with T := {v1, . . . , vn}, v1 > v2 > . . . > vn and ν(v1) = l1, . . . , ν(vn) = ln.
That is, l1 l2 . . . ln denotes a CHAIN, where the nodes are labelled with l1, l2, . . . , ln,
respectively. We extent this notation by allowing the last element to be a labelled tree:
If l1 l2 . . . ln ∈ L and if T′ is a labelled tree, then l1 l2 . . . lnT′ denotes the labelled
tree T := (T,≥, ν) with T := T ′ ∪ {v1, . . . , vn}, v1 > v2 > . . . > vn and vi > v
for each i = 1, . . . , n and v ∈ T ′, and ν := ν′ ∪ {(v1, l1), . . . , (vn, ln)}. That is, T is
obtained by placing the chain l1 l2 . . . ln above T′.
Subsitution: Let T1,T2 be labelled trees and S := (S,≥s, νs) a subtree of T1. Then
T := T1[T2 /S ] denotes the labelled tree obtained from T1 when S is substituted by
T2. Formally, we set T := (T,≥, ν) with T := (T1 − S) ∪ T2, ≥:=≥1

∣∣
T1−S

∪ ≥2

∪{(w1, w2) | w1 > v, w1 ∈ T1 − S, w2 ∈ T2}, and ν := ν1

∣∣
(T1−S)

∪ ν2.
Composition: Let l ∈ L be a label and T1,T2 be labelled trees. Then l(T1,T2)
denotes the labelled tree T := (T,≥, ν) , where we have T := T1 ∪ T2 ∪ {v} for a
fresh node v,≥:=≥1 ∪ ≥2 ∪({v}× (T1∪T2)), and ν := ν1∪ν2∪{(v, l)}. That is, T
is the tree having a root labelled with l and which has T1 and T2 as (direct) subtrees.

Strictly speaking, in the above operations we have sometimes to consider trees with
disjoint sets of nodes (for example, we have to assume in T1[T2 /S ] that T1 and T2

are disjoint). As we consider trees only up to isomorphism, this can always easily be
achieved and is usually not explicitely mentioned.

Using these operations, we can now define the tree-style syntax for ALC.

Definition 2.1 Let a vocabulary (A,R) be given with > ∈ A. Let ‘u’ and ‘¬’ be
two further signs, denoting conjunction and negation. Let (∆I , I) be a interpretation
for the vocabulary (A,R). We inductively define the elements of ALCTree as labelled
trees T := (T,≥, ν), as well as the interpretation I(T) of T in (∆I , I).
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Atomic Trees: For each A ∈ A, the labelled tree A (i.e. the tree with one node
labelled with A), as well as > are in ALCTree. According to the interpretation of
names in interpretations, we set I(A) = AI and I(>) = ∆I .
Negation: Let T ∈ ALCTree. Then the tree T′ := ¬T is in ALCTree. We set
I(T′) = ∆I − I(T).
Conjunction: Let T1,T2 ∈ ALCTree. Then the tree T := u(T1,T2) is in ALCTree.
We set I(T) = I(T1) ∩ I(T2).
Exists Restriction: Let T ∈ ALCTree, let R be a role name. Then T′ := RT is in
ALCTree. We set I(T′) = {x ∈ ∆I | ∃y ∈ ∆I : xRIy ∧ y ∈ I(T)}.

The labelled trees of ALCTree are called ALC-TREES. Let T := (T,≥, ν) ∈
ALCTree. An element v ∈ T respectively the corresponding subtree Tv is said to be
EVENLY ENCLOSED, iff |{w ∈ T | w > v and ν(w) = ¬}| is even. The notation of
ODDLY ENCLOSED is defined accordingly.

Of course, ALC-trees correspond to the formulas of ALC, as they are defined
in the usual linear fashion. For this reason, we will sometimes mix the notation of
ALC-formulas and ALC-trees. Particularly, we sometimes write T1 u T2 instead of
u(T1,T2). Moreover, the conjunction of trees can be extended to an arbitrary number
of conjuncts, i.e.: If T1, . . . ,Tn are ALC-trees, we are free to write T1 u . . . u Tn.
We agree that for n = 0, we set T1 u . . . uTn := >.

Next a diagrammatic representation of ALC-trees in the style of Peirce’s EGs is
provided. EGs as such correspond to closed FOL-formulas: They are evaluated to true
or false. Nonetheless, they can be easily extended to RELATION GRAPHS [14, 6] which
are evaluated to relations instead. This is done by adding a syntactical device to EGs
which corresponds to free variables. The diagrammatic rendering of free variables can
be done via numbered question markers, which are attached to the lines of identity of
EGs. As ALC-concepts correspond to FOL-formulas with exactly one free variable,
we we assign to each ALC-tree T a corresponding relation graph Ψ(T) with exactly
one (now unnumbered) query marker. Let A be an atomic concept, R be a role name,
let T, T1, T2 be ALC-trees where we already have defined Ψ(T) = ? G ,
Ψ(T1) = G? 1, and Ψ(T2) = G? 2, respectively. Now Ψ is defined inductively
as follows:

Ψ(>) := ? Ψ(A) := ? A Ψ(RT) := R? G

Ψ(T1 uT2) :=
G2

G1? Ψ(¬T) := ? G

Considering our HAPPYMAN-example given in the introduction, the corresponding
ALC-tree, and a corresponding Peirce graph, is provided in Fig. 3. Due to our choice
of constructors, we replaced ∀f by ¬∃¬f and f ∨ g by ¬(¬f ∧ ¬g) (for DL-concepts
f, g). The rules of the forthcoming calculus can be best understood to be carried out
on the Peirce graphs. The ongoing formal proofs with ALC-trees will be depicted this
way.

Finally we define semantic entailment between ALC-trees.

Definition 2.2 Let {Ti | i ∈ I} be a set of ALC-Trees and let T be an ALC-Tree. We
set

{Ti | i ∈ I} |= T :⇐⇒
⋂
i∈I

I(Ti) ⊆ I(T) for each interpretation (∆I , I)
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Figure 3: The ALC-tree, and a corresponding Peirce graph for HAPPYMAN

For I = ∅, we set
⋂

i∈I I(Ti) := ∆I for the respective model, and write |= T. For
|I| = 1, we write T′ |= T.

3 The Calculus for ALCTree

Peirce provided a set of five rules for the system of EGs, termed erasure, insertion,
iteration, deiteration, double cut. These rules are formally elaborated and their sound-
ness and completeness is proven in [6]. Moreover, it is discussed in [6] how these rules
have to be extended for the system of relation graphs.

The class of relation graphs corresponding to ALC is a fragment of the full system
of relation graphs. Of course, the rules for relation graphs are still sound rules for
the ALC-fragment. But it is not clear whether these rules are still complete. For two
graphs G1, G2 of the ALC-fragment with G1 |= G2, we have a proof for G1 ` G2

within the full system of relation graphs, i.e., a sequence of graphs starting with G1,
ending with G2, where each graph in the sequence is derived from its predecessor by
one of Peirce’s five rules. However it may happen that we do not have a proof which
consists only of graphs of the ALC-fragment. In fact, in the calculus we provide, we
need more than Peirce’s five rules. Besides some trivial rules, like rules which capture
the associativity of conjunction, we need special rules for handling of roles. The rules
iteration of roles into even and deiteration of roles from odd (see below) are the most
important example for this.

Next, the Peirce style rules for ALCTree are provided. These rules transform a
given ALC-tree into a new ALC-tree. In order to make the calculus more understand-
able, we provide within the rule definitions some examples and diagrams that illustrate
them. For each rule name, we provide an abbreviation which will be used in the proofs.

Definition 3.1 The calculus for ALC-Trees over a given vocabulary (A,R) consists
of the following rules:
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Addition and Removal of > (>-add. and >-rem.): Let T := (T,≥, ν) be an ALC-
tree, let S ⊆ T be a subtree. For T′ := T[u(S,>)) /S ] we set T a` T′ (T a` T′

abbreviates T ` T′ and T′ ` T). We say that T′ is derived from T by ADDING A
>-NODE, and T is derived from T′ by REMOVING A >-NODE. For the Peirce graphs,
this rule corresponds to adding a branch to a heavily drawn line, or removing it. A
simple example is given below.

? R C
>-add
` ? R C

>-rem
` ? R C

These rules are ”technical ’helper’ rules that will be often combine with other rules
that add or remove subtrees. Examples will be given below.
Addition and Removal of Roles (R-add. and R-rem.): Let T be an ALC-tree having
> as a subtree. Let R be a role name. Then for T[¬R¬> /> ] we set T a` T′. We
say that T′ is derived from T by ADDING THE ROLE R, and T is derived from T′ by
REMOVING THE ROLE R. A simple example for this rule with Peirce graphs is given
below. Due to the symmetry of the rules, the inverse direction of this proof is a proof as
well.

? C >-add
`

? C R-add
`

? C

R

Associativity of Conjunction (conj.): Let T be anALC-tree with a subtree S1 u (S2 u
S3). For T′ := T[ (S1 u S2) u S3 /S1 u (S2 u S3) ] we set T a` T′. We say that
T′ is derived from T resp. T is derived from T′ by USING THE ASSOCIATIVITY OF
CONJUNCTION.
Addition and Removal of a Double Negation (dn): Let T := (T,≥, ν) be an ALC-
tree, let S ⊆ T be a subtree. Then for T′ := T[¬¬S /S ] we set T a` T′. We say
that T′ is derived from T by ADDING A DOUBLE NEGATION and T is derived from T′

by REMOVING A DOUBLE NEGATION.
Erasure from even, Insertion into odd (era. and ins.): Let T := be an ALC-tree with
a positively enclosed subtree S ⊆ T. Then for T′ := T[> /S ] we set T ` T′. We
say that T′ is derived from T by ERASING S FROM EVEN. Vice versa, let T = be an
ALC-tree with an negatively enclosed subtree > ⊆ T. Let S ∈ ALCTree. Then for
T′ := T[S /> ] we set T ` T′. We say that T′ is derived from T by INSERTING S
INTO ODD.

This is another set of rules which often go together with the addition and removal
of >. Examples will be given later.
Iteration and Deiteration (it. and deit.): Let T := (T,≥, ν) be anALC-tree with with
a subtree S := (S,≥S , νS) ⊆ T. Let s be the greatest element of S, let t be the parent
node of s in T. Let ν(t) = u (i.e. t is labelled with ‘u’), let v ∈ T be a node with
v < t, v /∈ S, ν(v) = >, such that for each node w with t > w > v we have ν(w) = ¬
or ν(w) = u. Then for T′ := T[S /> ] we set T a` T′.1 We say that T′ is derived
from T by ITERATING S and T is derived from T′ by DEITERATING S.

Iteration and Deiteration often combine with the addition and removal of >, and
they are probably the most complex rules. To exemplify them, we consider the following
six Peirce graphs. The second and the third graph can be derived from the first graph

1More precisely and according to our convention, we set T′ := T[S′ /> ], where S′ is an isomorphic
copy of S, having only fresh nodes.
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by iterating the subgraph R1 C1? (preceeded by the >-addition rule).

R1 C1

R2 C2

? R1 C1

R2 C2

R1 C1

? R1 C1

R2 C2

R1 C1

?

The next three graphs are not results from the iteration rule. In the fourth graph, the
condition that ν(w) = ¬ or ν(w) = u holds for each node w with t > w > v is
violated. The fifth graph violates the condition v < t, and the sixth graph violates the
condition v /∈ S.

R1 C1

C2R2

R1 C1

? R1 C1

R2 C2
R1

C1

?

R1 C1

R1 C1

R2 C2

?

Iteration of Roles into even, Deiteration of Roles from odd (R-it. and R-deit.): Let
T be an ALC-tree. Let Sa,Sb,S1,S2 be ALC-trees with Sa := u(RS1,¬RS2) and
Sb := R u (S1,¬S2). Then, if Sa ⊆ T is a positively enclosed subtree, for T′ :=
T[Sb /Sa ] we set T ` T′, and we say that T′ is derived from T by DEITERATING
THE ROLE R FROM ODD. Vice versa, if Sb ⊆ T is a negatively enclosed subtree, for
T′ := T[Sa /Sb ] we set T ` T′, and we say that T′ is derived from T by ITERATING
THE ROLE R INTO EVEN.

Below, a simple example for the rule with Peirce’s graphs is provided.

R

R

? 1C

C2

R-deit
`

R? 1

C

C

2

Based on these rules, we can now define formal proofs.

Definition 3.2 Let Ta,Tb be two ALC-Trees. A PROOF FOR Ta ` Tb is a finite
sequence (T1,T2, . . . ,Tn) with Ta = T1, Tb = Tn, where each Ti+1 is obtained
from Ti by applying one of the rules of the calculus.

Now let {Ti | i ∈ I} be a set of ALC-Trees and let T be an ALC-Tree. We set

{Ti | i ∈ I} ` T :⇐⇒ there are ALC-Trees T1, . . . ,Tn ∈ {Ti | i ∈ I}
with T1 u . . . uTn ` T

Before the soundness and completeness of the calculus is proven, we first present
an example of a proof, using the Peirce-style diagrams, and then derive some useful
metarules. The example and the metarules will give some insights in how the calculus
works.

A popular toy example for ALC.reasoning is the mad cow ontology. Consider the
following ALC-definitions:

Cow ≡ Animal u V egetarian Sheep ≡ Animal u hasWool
V egetarian ≡ ∀eats.¬Animal MadCow ≡ Cow u ∃eats.Sheep
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The question to answer is whether this ontology is consistent. This question can
be reduced to rewriting the ontology to a single concept MadCow ≡ Animal u
∀eats.¬Animalu∃eats.(AnimaluhasWool) and to investigate whether this concept
is satisfiable, i.e., whether there exists as least one interpretation where this concept is
interpreted by a non-empty set. We will show that this is not the case by proving with
our calculus that the concept entails the absurd concept. The proof is given below.

eats Animal
hasWool

eats Animal

Animal?
2× era
` eats Animal

?

eats Animal

2×>−rem
`

eats Animal

eats

?

Animal

deit
`

eats

?

Animal

era
` ?

>−rem
` ?

We started with the Peirce graph for the given concept and derived the absurd concept,
thus the ontology is not satisfiable.

Next, we provide the above mentioned metarules, some of them will be used in the
completeness proof.

Each rule of the calculus is basically the substitution of a subtree of a given ALC-
tree by another subtree. Each rule can be applied to arbitrarily deeply nested subtrees.
Moreover, if we have a rule which can be applied to positively enclosed subtrees, then
we always have a rule in the converse direction which can be applied to negatively
enclosed subtrees (and visa versa). Due to these structural properties of rules, we
immediately obtain the following helpful lemma (it is adopted from [17]).

Lemma 3.1 Let S1,S2 be two ALC-trees with S1 ` S2. Let T be an ALC-tree. Then
if S1 ⊆ T is a positively enclosed subtree of T, we have T ` T[S2 /S1 ]. Visa versa,
if S2 ⊆ T is a negatively enclosed subtree of T, we have T ` T[S1 /S2 ].

The next lemma corresponds to the equivalence of the ALC-concepts ∀R.(C uD)
and ∀R.C u ∀R.D.

Lemma 3.2 (Splitting Roles) Let S1,S2 be ALC-trees, let R ∈ R be a role name.
Then:

The trees 1S
2S

? R and

1S

2S

?

R

R
are equivalent.

Proof: We show the directions ‘⇒’ and ‘⇐’ separately. As we have already seen,
the deiteration-rule and the erasure rule are usually followed by the >-removal rule,
and visa versa, the iteration rule and the insertion rule are usually preceeded by the >-
addition rule. In the proof, these two steps are combined without explicitely mentioning
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the >-removal/addition rule. Now ‘⇒’ is proven as follows:

1S
2S

? R
it
`

1S
2SR

1S
2SR

?
era
` 1S

2SR

1SR

?
era
`

1S

2S

?

R

R

The other direction is as follows:

1S

2S

?

R

R

ins
`

1S

2S

2S

R

R

?
it
`

1S
2S

2S

2S

R

R

?
dn
`

1S

2S

2S

2SR

R

?

R-it
`

1S

2S

2S

2S

R

R

R

?
deit
`

2S

1S
2S

R

R

?
era
` 1S

2S
? R 2

For ALC, the full deduction theorem holds.

Theorem 3.1 (Deduction Theorem) Let T be a set of ALC-trees, let T1,T2 be two
ALC-trees. Then we have: T ∪ {T1} ` T2 ⇐⇒ T ` ¬(T1 u ¬T2)

Proof: Again applications of the>-removal/addition rule are not explicitly mentioned.
‘⇒’: Let S1, . . . ,Sn ∈ T with S1 u . . . u Sn uT1 ` T2. We have:

T ` ?
1 nS S dn

` ?
1 nS S ins

` ?
1 n 1Tn1S S S S

it
` ?

1 n 1 n 1 n 11S S S S T SS T Lem. 3.1
` ?

1 n 1 n 1 2S S S S T T

deit
` ?

1 n 1 2S S T T era
` ?

1 2T T

‘⇐’: From T ` ¬(T1 u ¬T2) and T ∪ {T1} ` T1 we get T ∪ {T1} ` T1 u
¬(T1 u ¬T2). We proceed as follows:

T ` ?
1 21T T T deit

` ?
1 2T T dn

` ?
1 2T T era

` ? T2 2

The next lemma corresponds to the rule of neccessitation in modal logics.
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Lemma 3.3 If T is an ALC-tree with ` T, then we have ` ¬R¬T as well.

Proof: All rules of the calculus modify subtrees S of a given ALC-tree T, and their
application depends only on whether S is positively or negatively enclosed. So if
(T1,T2, . . . ,Tn) with T1 = > and Tn = T is a proof for T, then (>,¬R¬T1,
¬R¬T2, . . . ,¬R¬Tn) is a proof for ` ¬R¬T. The additional first step is an applica-
tion of the rule ‘addition of roles’. 2

Please note that for this lemma, it is vital that T is derived from the empty set
(the empty sheet of assertion in Peirce’s terminology). The proof of the lemma does
not work if T is derived from some set T, and it can easily be seen that we generally
cannot conclude T ` ¬R¬T from T ` T.

In the following, the soundness and completeness of the calculus is proven. In
contrast to rules of most common calculi, the rules presented here are ‘deep’ rules, as
they modify deeply nested subtrees. For this reason, the following lemma is helpful for
proving the soundness of the rules.

Lemma 3.4 Let T1, T2, S1, S2 be ALC-trees with T2 = T1[S2 /S1 ].

1. If S1 |= S2 and the substitution takes place in an even, then T1 |= T2.

2. If S2 |= S1 and the substitution takes place in an odd, then T1 |= T2.

3. If S1 and S2 are semantically equivalent, then so are T1 and T2.

Proof: The proof of this lemma is a straight-forward induction on ALC-trees.
We are now prepared to prove the soundness of the calculus.

Theorem 3.2 If (∆I , I) is a model and if T′ is obtained from T by one of the rules,
we have I(T) ⊆ I(T′).

Proof: The ALC-trees S and u(S,>) are obviously equivalent. So the soundness of
the rule ‘Addition or Removal of >’ follows immediately from Lemma 3.4(iii). The
rules ‘Addition or Removal of Roles’, ‘Associativity of Conjunction’ and ‘Addition or
Removal of a Double Negation’ are handled similarly.

Next, as we have T |= >, Lemma 3.4(i) yields the soundness of the erasure of a
a positively enclosed subtree, and Lemma 3.4(ii) yields the soundness of the insertion
negatively enclosed subtree.

Next we consider the iteration and deiteration of roles. Let Sa,Sb be defined as
in the rule. We will show Sa |= Sb. Let a ∈ I(Sa). Then it follows a ∈ I(RS1)
and a ∈ I(¬RS2). Therefore there exists b ∈ ∆I with aRb and b ∈ I(S1), but there
exists no c ∈ ∆I with aRc and c ∈ I(S2). Particularly we have b /∈ I(S2). We
conclude b ∈ I(¬S2), so we have b ∈ I(u(S1,¬S2)) as well. Due to aRb, we finally
obtain a ∈ I(Sb). As we now have Sa |= Sb, Lemma 3.4(i) yields the soundness of
deiterating a role R from an odd, and Lemma 3.4(ii) yields the soundness of iterating
a role into an even.

Finally, we have to prove the soundness of the iteration and deiteration rule. First
note the iteration rule removes v from T and adds the fresh nodes of S′ to T , i.e., we
have T − {v} ⊆ T ′. To ease the technical presentation, let us assume that the greatest
element of S′ is v (instead of a fresh node), so that we have T ⊆ T ′.

For a node w ∈ T , let Tw be the corresponding subtree of T, and let T′
w be the

corresponding subtree of T′ (particularly, due to our assumption, we have Tv = > and
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T′
v = S′). We will prove that Tt and T′

t are semantically equivalent. So let a ∈ ∆I .
We have to show that,

a ∈ I(Tw) ⇐⇒ a ∈ I(T′
w) (1)

holds for w = t. We have T′ = T[T′
t /Tt ], so once Eqn. (1) is proven for w = t, we

can now apply Lemma 3.4(iii) and obtain that T and T′ are semantically equivalent,
which yields the soundness of the iteration and deiteration rule. So it remains to show
Eqn. (1).

In either T and T′, the node t has two branches, one of which is S. If we have
a /∈ I(S), we have a /∈ I(Tt) and a /∈ I(T′

t) as well, so Eqn. (1) holds. Now let us
assume the alternate case, that we have a ∈ I(S). We will prove that Eqn. (1) holds
for each w with t ≥ w ≥ v by induction.

We have Tv = >, T′
v = S, a ∈ I(>) and a ∈ I(S′), so Eqn. (1) holds for w = v.

This proves the induction start.
For the induction step, let w be such that the induction hypothesis is proven for the

child u of w with u ≥ v. There are two cases to consider: ν(w) = ¬ or ν(w) = u.
For ν(w) = ¬, we have Tw = ¬Tu and T′

w = ¬T′
u. As we have a ∈ I(Tu) ⇔

a ∈ I(T′
u) due to the induction hypothesis, we obtain that Eqn. (1) holds for w.

For ν(w) = u, the node w has two children, one of them being u. Let u′ be the
child of w which is different from u. Then we have Tw = u(Tu,Tu′) and T′

w =
u(T′

u,T′
u′). Moreover, we have Tu′ = T′

u′ , and a ∈ I(Tu) ⇔ a ∈ I(T′
u) holds due

to the induction hypothesis. From this we conclude that Eqn. (1) holds.
This finishes the induction, so we conclude Eqn. (1) for w = t, which in turn

finishes the proof for the soundness of the iteration and deiteration rule. 2

We are now prepared to prove the completeness of the calculus.

Theorem 3.3 Let T := {Ti | i ∈ I} be a set ofALC-Trees and let T be anALC-Tree.
Then we have:

{Ti | i ∈ I} |= T =⇒ {Ti | i ∈ I} ` T

Proof: We assume that there is no derivation of T from T, and we show that T 6|= T.
We call a set S of ALC-Trees INCONSISTENT, if we have S ` ¬>. Due to the

deduction theorem, S is inconsistent if and only if there are S1, . . . ,Sn ∈ S with
` ¬(S1 u . . . u Sn). We assume that there is no proof of T from T. Then T ∪ {¬T}
is consistent.

For a set S of ALC-Trees and a role name R, let SR := {S | ¬R¬S ∈ S}. We
first prove the following property:

If S is consistent, where R¬S ∈ S, then SR ∪ {¬S} is also consistent. (2)

It is easier to show the contraposition of Eqn. (2), so we assume that SR ∪{¬S} is not
consistent. Then there exists finitely many elements S1, . . . ,Sn of SR such that there
is a proof of ¬(S1 u . . .Sn u ¬S) (from the empty set). Now Lemma 3.3 yields that
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we have a proof of ¬R¬¬(S1 u . . .Sn u ¬S) as well. We proceed as follows:

? `
1

? R
nSS S dn

`
R?

1 nS S S

dn
` n1

R?

S S
S R-it

`

RR

?

n1S S
S Lem. 3.2

`

R

1

R

n

?

S S

R

S

So S is also T-inconsistent, thus Eqn. (2) holds.
Now, using a standard argument based on the axiom of choice, every consistent

set can be extended to a maximal consistent set, i.e., a consistent set which cannot be
properly extended to another consistent set.

Next, for a maximal consistent set Sm, we have

S ∈ Sm ⇐⇒ ¬S /∈ Sm (3)
S u S′ ∈ Sm ⇐⇒ S ∈ Sm and S′ ∈ Sm (4)

for arbitrary ALC-Trees S,S′. We only prove Eqn. (3), the proof of Eqn. (4) is done
similarly.

Due to Su¬S
deit
` Su¬>

era
` >u¬>

>-rem
` ¬>, and as we can infer any tree from

¬>, we cannot have both S ∈ Sm and ¬S ∈ Sm. On the other hand, let us suppose we
have ¬S /∈ Sm. Then we have Sm 6` ¬S. Assume Sm ∪ {S} is inconsistent. Then we
have S1, . . . ,Sn ∈ Sm with ` ¬(S1u. . .uSnuS). Thm. 3.1 yields S1u. . .uSn ` ¬S,
i.e., we have Sm ` ¬S. This contradicts Sm 6` ¬S. So if ¬S /∈ Sm, then Sm ∪ {S} is
consistent, thus S ∈ Sm due to the maximality of Sm. Hence Equation (3) is proven.

Now let (∆I , I) be defined as ∆I := {Sm | Sm is maximal consistent}, I(A) :=
{Sm | TA ∈ Sm} and I(R) := {(Sm,Tm) | SR

m ⊆ Tm}. We prove by induction
over the construction of ALC-trees that for S ∈ ALCTree and Sm ∈ ∆I we have

Sm ∈ I(S) ⇐⇒ S ∈ Sm (5)

For a concept name A, Eqn. (5) holds by the definition of the model. For a tree ¬S, we

have Sm ∈ I(¬S) Def. I⇐⇒ Sm /∈ I(S) I.H.⇐⇒ S /∈ Sm
Eqn. (3)⇐⇒ ¬S ∈ Sm. For a tree SuS′,

Eqn. (5) is similarly proven using Eqn. (4). It remains to consider role names.
Let R ∈ R. We first prove Eqn. (5) for ALC-trees S′ := ¬R¬S (instead of

S′ := RS). Due to our induction, we can assume that Eqn. (5) is proven for all ALC-
trees which have less occurrences of R than S′. Def. 2.1 yields

Sm ∈ I(¬R¬S) ⇐⇒ for all Tm with (Sm,Tm) ∈ I(R) we have Tm ∈ I(S)
(6)

Suppose first we have S′ ∈ Sm. If Tm ∈ ∆I is arbitrary with (Sm,Tm) ∈ I(R),
then S ∈ Tm by the definition of the model. The induction hypothesis yields Tm ∈
I(S), so Eqn. (6) yields Sm ∈ I(S′). Next suppose S′ /∈ Sm. Eqn. (3) yields R¬S ∈
Sm. Let T′ := SR

m ∪ {¬S}. Then T′ is consistent due to Eqn. (2). Let Tm ⊇ T′ be a
maximal consistent set. Then Tm ∈ ∆I , and (Sm,Tm) ∈ I(R). Since ¬S ∈ T′ ⊆ Tm,
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we have S /∈ Tm. The induction hypothesis yields Tm /∈ I(S), thus Sm /∈ I(S′) due
to Eqn. (6). Hence Eqn. (5) is proven for S′ = ¬R¬S.

To finish the proof of Eqn. (5), let us finally observe that forALC-trees of the form
RS, we have Sm ∈ I(RS) ⇐⇒ Sm /∈ I(¬R¬¬S) s.a.⇐⇒ ¬R¬¬S /∈ Sm ⇐⇒ RS ∈
Sm. So Eqn. (5) is proven.

Now let Sm ∈ ∆I . We have: Sm ∈
⋂

S∈T I(S) ⇐⇒ Sm ∈ I(S) for all S ∈
T

Eqn. (5)⇐⇒ S ∈ Sm for all S ∈ T ⇐⇒ T ⊆ Sm. This yields
⋂

S∈T I(S) = {Sm ∈
∆I | Sm ⊇ T}. As T ∪ {¬T} is consistent, there exist a maximal consistent set
T0

m ⊇ T∪{¬T}. On the one hand, we now have T0
m ∈

⋂
S∈T I(S). On the other hand,

we have T /∈ T0
m, thus T0

m /∈ I(T) by Eqn. (5). So we obtain
⋂

S∈T I(S) 6⊆ I(T),
which means T 6|= T. 2

4 Conclusion and Further Research
This paper provides the first steps toward a diagrammatic representation of DLs, in-
cluding diagrammatic inference mechanisms. To the best of our knowledge, this is
the first attempt to providing diagrammatic reasoning facilities for DLs. The results
presented in this paper show promise in investigating relation graphs further as dia-
grammatic versions of corresponding DLs.

The approach can to be extended to other variants of DL as well. For instance,
a major task is to incorporate nominals, or number restrictions (either unqualified or
qualified). Similarly, constructors on roles, like inverse roles or role intersection, have
also to be investigated.

In the long term, our research advocates developing a major subset of DL as a
mathematically precise diagrammatic reasoning system. While the intention is to ren-
der DL more user-friendly through a diagrammatic correspondence, such systems will
need to be evaluated against the traditional textual form of DL in order to measure any
readability improvement. Cognition experiments with such a evaluation are planned as
future work.

5 Acknowledgements
We like to thank the anonymous referees for their valuable suggestions, and particularly
to the ones who pointed out a gap in the former proof of the completeness.

References
[1] F. Baader, D. Calvanese, D. L. McGuinness, D. Nardi, and P. F. Patel-Schneider, editors.

The Description Logic Handbook: Theory, Implementation, and Applications. Cambridge
University Press, 2003.

[2] S. Brockmans, R. Volz, A. Eberhart, and P. Löffler. Visual modeling of owl dl ontologies
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