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Abstract. Informational Management Systems (IMS) which are based on lega-
cy systems have a significant problem of dirty data. The data cleansing problem 
solution in such systems usually starts with the search of similar tuples' clusters. 
After that for each cluster the reference tuple should be formed for saving in a 
data warehouse of IMS. Moreover, fail tuples should be returned to the source 
subsystem with the indication of error location, i. e. concrete invalid requisite. 
The necessary of such a deep diagnosis determined by the following fact: the 
reference tuple can be not just one of the existent, but as well the combination 
of several different tuples requisites. Considering one obtained cluster of similar 
tuples, a certain multiset can be composed from all of the certain attribute val-
ues. The paper represents the method of the multiset's diagnostic in terms of 
faultless and correctability, based on the majority principle. The method pro-
vides the minimum time required for establishing the fact of multiset's incor-
rectness, moreover it allow defining valid (reference) and failed elements of the 
multiset. 
 
Keywords: Data Cleansing, Diagnostics, Similar Tuples, Reference Requisite, 
Multiset. 

1 Introduction 

Informational Management Systems (IMS) which are based on legacy systems have a 
significant problem of dirty data. The data cleansing problem solution in such systems 
usually starts with the search of similar tuples' clusters [1]. After that for each cluster 
the reference tuple should be formed for saving in a data warehouse of IMS. 

Therefore, fast index-requisite diagnostics method's  development based on the 
hashing and cyclic codes [2,3] is quite perspective way of data cleaning problem solu-
tion. The main principals of the rational control, which have successful implementa-
tion in system engineering [4], should be investigated on the real functioning database 
of IMS. 
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2 Problem Statement 

Let consider the situation when one cluster tuples consist of three requisites. Then 
the probability ( )p BB  of the event BB , which means that one of two data tuples has 
single or double error in one requisite and second tuple – in another requisite, can be 
calculated as: 

 1 2 3 1 2 3 1 2 3

1 2 3 1 2 3 1 2 3

( ) 2*( ( ) ( ) ( )* ( ) ( ) ( ) ( ) ( ) ( )*
* ( ) ( ) ( )* ( ) ( ) ( ) ( ) ( ) ( )),
p BB p A p D p D p D p A p D p A p D p D
p D p D p A p D p A p D p D p D p A

= +
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where 1 22( ) (1 ) (1 )i iL L
i i c c Li cp A L Cp p p− −= − + −  are probabilities of requisites fails with 

single or double error, ( ) (1 ) iL
i cp D p= −  are probabilities of requisites fails absence, 

iL  are the average lengths of the requisites values, 1,3i = , cp  is the possibility of the 
requisite symbol distortion. For example, when 1 8L = , 2 6L = , 3 10L =  and cp =

210−  5( 02) 0.p BB ≈ .  
Considering only one of the clusters obtained similar tuples proceeds to the formal 

statement of the problem. 
Let R1 is the considered cluster, i.e. set including q N∈ tuples. For every attribute 

ρ  ( 1,hρ = ) of the tuple the corresponding multiset 1 2{ , ,..., }qM sm sm smρ ρ ρ ρ=  
should be formed. Then, based on the principle of majority voting (two among three, 
three among five etc.) is widely used in diagnosing technical systems [4, 5], it is pos-
sible to give definitions of multisetМ ρ correctness. 

Definition 1. A multiset M ρ ( 2M ρ > ) is faultless, if all elements are equal, i.e.  

( ) { }{1,.., } {1,.., } ( ) ( )i jCORRECT M i q j q i j sm smρ ρ ρ= ∈ ∈ ≠ ⇒ =∀ ∀ , 

where ( )CORRECT M ρ  is a Boolean predicate, ⇒ is an implication operator. 

Definition 2. A multiset M ρ ( 2M ρ > ) is correctable, if more than half, but not 

all of its elements are equal, i.e. 
( ) {

( )}
' ' ' '

1 2

' '

{ , ,..., } ( / 2) ( )

{1,..., } {1,..., } ( ) ( ) ,

z

i j

CORRECTED M M sm sm sm M z q z q

i z j z i j sm sm

ρ ρ ρ ρ ρ ρ

ρ ρ

= ∃ = ⊂ > ∧ < ∧

∧ ∀ ∈ ∀ ∈ ≠ ⇒ =
 

where ( )CORRECTED M ρ  is a Boolean predicate, 'M ρ  is a subset of M ρ . 

Consequently, an element ipsm M ρ∈  is a reference tuple, if '
ism Mρ ρ∈ , as well 

as an element ism Mρ ρ∈  is an failed tuple, if '
ism Mρ ρ∉ . It is also obviously, in the 

case if M ρ  is correctable 'M ρ  is unique. In addition, if in M ρ  are equal no more than 
half of the elements, M ρ  is not faultless and not correctable. 

The objective of this paper is to represent the method of the multiset’s diagnos-
tic, which ensures minimal time of M ρ  correctness establishment, based on the given 



above definitions, and allow to locate, if it is necessary, reference and failed elements 
of M ρ . 

Let consider the obviously easiest approach, i.e. pairwise comparison of all the 
M ρ  elements ism ρ  and jsm ρ  for ( )i j≠ . To do this, we assign the multiset M ρ  an-

other multiset 1 2{ , ,..., }qCNT cnt cnt cntρ ρ ρ ρ= , such that 
1

1
q

i ij
j
j i

cnt eqρ
=
≠

= +∑ , 1,i q=

where 
1, ;
0, .

i j
ij

if sm sm
eq

othrwise
ρ ρ=

= 


 If 1cnt qρ =  then M ρ  is faultless, or M ρ  is cor-

rectable if  {1,..., } : / 2ipi q cnt q∃ ∈ > , i.e. there is a reference element. For example, 
if {' ', ' ', ' '}M Иванов Ивашов Ивановρ = , then {2, 1, 2}CNTρ = . 1 3,sm smρ ρ  are 

reference elements, 2sm ρ  is a failed element.  
The performance estimation of the pairwise comparisons method [2] by counting 

the number of symbols comparisons is followed. Let each element ism Mρ ρ∈  com-
prises L  characters ( 1L >> ). Then the maximum number of character comparisons 

( )
2

1 2 ... 1
2pc

q qC q q L L−
= − + − + + = . Consequently, 

2

2pc pc
q qT L t−

≈ ⋅ , where pcT  

is the maximum time of the multiset pM  of pairwise comparison elements, pct  is the 
runtime of the two characters comparison. Since the diagnosing second stage maxi-

mum runtime is proportional to q  then 
2

2cpc pc
q qT L q t

 −
≈ + 
 

where cpcT  is the max-

imum runtime of the diagnostic procedure based on the method of pairwise requisite’s 
comparison. 

A significant improvement of this method is using of a conversion key  
(hash) [2], which sends requisites to the array indexes (memory address): 

  : ip ipH sm a→  (2) 

where H  is a transformation (mapping), ipa  is an array index corresponding to an 
element ipsm  of the multiset pM . 

The main challenge deal with the key conversion is that the set of possible val-
ues is much greater than the set of possible memory locations. Therefore it is neces-
sary to choose a mapping H , which allow:  

─ to detect common errors of source data, entering by human-operator in input fields, 
i.e., reference argument ipsm  and argument rpsm , failed with any of the specified 
error, always guarantee different results ip rpa a≠ ;  

─ to establish definitely the difference of ipsm  and rpsm   in the case of different 
results ip rpa a≠ ;  



─ to produce the same addresses for random source elements with the difference of 
arbitrarily small probability; 

─ to conclude that the probability ip rpsm sm≠  is arbitrarily small for the equal ad-
dresses ( ip rpa a= ). 

When mapping H  is chosen, the problem of the pM  correctness establishment 
and the reference and failed pM  elements search can be effectively solved by using 
diagnostic models [4] linking errors indirect signs with the direct ones. 

3 The Choice Of The Requisites-To-Indices Reflection  

The stated problem should be considered as a task of error-correcting coding theory: 
construction of the predetermined code with detecting ability for transmitting discrete 
information through a noisy channel [3].  

Indeed, ( ),ip ipsm a can be regarded as permissible sequence of redundancy code, 

where ipsm  are data bits, ( )ip ipa H sm=  are checking bits. However, in contrast to 
transmission over the communication channel, whereby both data bits and checking 
bits could be corrupted because of possible noise, in this case only information bits 
could be changed, i.e. ipsm  is received as rp ipsm sm≠ . 

The most reliable are the cyclic codes having high detecting ability and widely 
used in practice because of less complicated coding/decoding devices schemes in 
comparison with other coding techniques [3]. Constructing the cyclic code for a given 
number u  of data bits the shortest length of code combinations w  is determined to 
provide a predetermined multiplicity of error detection. This problem is reduced to the 
determination of needed generating polynomial ( )G x  of degrees w u− .  

For cyclic codes data bits transformation to test bits has the form as following:  

 ( ) ( )( ) ( ) mod ( )w u
ip ipH M x M x x G x−= + ,  (3) 

where ( )ipM x  is polynomial of a dummy variable x  corresponding to the data bits, 

ipsm , mod  is an operator getting remainder of the polynomials division. 
Thus, it is need to choose a mapping H  such as: 

1. If ( ( )) ( ( ))rp ipH M x H M x≠ , then ( ) ( )rp ipM x M x≠ . 
2. For frequently occurring error classes зE  and ( ) ( )rp ip зM x M x E= +  a combination 

( ),ip ipsm a  is excepted, i.e. ( ( )) ( ( ))rp ipH M x H M x≠ . 

3. For random noise ( ) ( )rp ip cM x M x E= +  the probability of ( ),rp ipm a permission  is 

arbitrarily small, i.e. ( ( ( )) ( ( ))) 0rp ipp H M x H M x= →  where cE  is some random 
noise. 



4. The equity ip rpsm sm= is ensured from ( ( )) ( ( ))rp ipH M x H M x=  with a probability 
close to one. 

It is necessary to show further that the first requirement is satisfied if 
( ( )) 0deg G x >  where ( ( ))deq G x  is a generator polynomial ( )G x  degree. If 

( ( )) ( ( ))rp ipH M x H M x≠  , then ( ( ) ) mod ( ) ( ( ) ) mod ( )w u w u
rp ipM x x G x M x x G x− −≠ . 

Using the distributive property of the operator mod , it can be obtained 
( ( ) ( ) ) mod ( ) 0w u w u

rp ipM x x M x x G x− −+ ≠ . Let's supposed, that 

( ) ( ) 0w u w u
rp ipM x x M x x− −+ = , then 0mod ( ) 0G x ≠  is a contradiction, since the con-

dition deg( ( )) 0G x >  and the definition of 0mod ( ) 0G x = . Consequently, 
( ) ( ) 0w u w u

rp ipM x x M x x− −+ ≠ , ( ) ( )w u w u
rp ipM x x M x x− −≠  and ( ) ( )rp ipM x M x≠ . 

Before finding out conditions that satisfy the second requirement, it is need to in-
troduce auxiliary statements. 

Statement 1. If ( ) mod ( ) 0A x G x ≠  and ( ) mod ( ) 0B x G x ≠ , then 
( ( ) ( )) mod ( ) 0A x B x G x ≠ . 

Proof. Let's supposed, that ( ) mod ( ) 0A x G x ≠  and ( ) mod ( ) 0B x G x ≠ , but 
( ( ) ( )) mod ( ) 0A x B x G x = , then ( ) ( ) ( )A x W x G x≠ , where ( )W x  is a polynomial. 
Multiplying both sides of this inequality by ( )B x , it could be obtained 

( ) ( ) ( ) ( ) ( )A x B x W x G x B x≠ . Next, let take the reminder by dividing both sides by
( )G x  as ( ( ) ( )) mod ( ) ( ( ) ( ) ( )) mod ( )A x B x G x W x G x B x G x≠ , then 0 0≠  is a contra-

diction. Consequently, ( ( ) ( )) mod ( ) 0A x B x G x ≠ , Q.E.D. 
Statement 2. If ( )G x = ... 1cx + +  then ( ) ( ) ... ...d fG x W x x x α= + + + + , where 

, ,c d f N∈ , d f> ,  deg( ( ))d c W x= + , {0,1}α ∈ , ( )W x  is a polynomial. 
Proof. Let represent ( )G x  as sequence of ones. Then multiplication by modulo 2 

of ( )G x  and ( )W x  may be considered as a modulo 2 addition with a shift: 

( ) ( ) ( ) ( ) ( )1 2 ... nG x W x W x W x W x× = ⊕ ⊕ ⊕ , where ⊕  is operation of addition by 

modulo 2, ( )iW x  are right shifts by i  of ( )W x . 
It should be mentioned that the lowest significant bit of the first term and the  

highest significant bit of the last term are not compensated, therefore, ( ) ( )G x W x  
represented in the form ... ...d fx x α+ + + + , Q.E.M. 

Statement 3. If ( )G x = ... 1w ux − + + , then for any single error ( ) iE x x= .
{ ,..., 1}i w u w∈ − − , such that ( ) ( ) ( )rp ipM x M x E x= + , ( ( )) ( ( ))rp ipH M x H M x≠  is 

performed. 
Proof. Considered conditions ( ( )) (( ( ) ) ) mod ( )i w u

rp ipH M x M x x x G x−= +  and 

( ( )) (( ( )) ) mod ( )w u
ip ipH M x M x x G x−= , let’s supposed that condition

( ( )) ( ( ))rp ipH M x H M x=  is true. Then equality



(( ( ) ) ) mod ( ) ( ( ) ) mod ( )i w u w u
ip ipM x x x G x M x x G x− −+ =  is true as well, from which it 

is followed that ( ) mod ( ) 0i w ux G x+ − =  and, therefore, ( ) ( )i w ux G x W x+ − = . On the 
other hand, according to statement 2 ( ) ( ) ... ...d fG x W x x x α= + + + +  and

... ...i w u d fx x x α+ − ≠ + + + + . Consequently, ( ( )) ( ( ))rp ipH M x H M x≠ , Q.E.M. 

Statement 4. If ( )G x = ... 1w ux − + + , then for packet type error 
1( ) ...i i pE x x x − += + + , p w u≤ − , { 1,..., 1}i w u p w∈ − + − − , for which 

( ) ( ) ( )rp ipM x M x E x= +  is true, ( ( )) ( ( ))rp ipH M x H M x≠  is performed.  
Proof. Let's supposed that ( ( )) ( ( ))rp ipH M x H M x= , then

1(( ( ) ... ) ) mod ( ) ( ( ) ) mod ( )i i p w u w u
ip ipM x x x x G x M x x G x− + − −+ + + = , hence 

1 1( ( ... 1)) mod ( ) 0w u i p px x G x− + − + − + + = . Each of the factors: 1w u i px − + − +  is not evenly 
divisible by ( )G x ; 1 ... 1px − + +  also not divisible by ( )G x , because of the 

1p w u− < −  and therefore, 1 1( ( ... 1)) mod ( ) 0w u i p px x G x− + − + − + + ≠ . It is a contradic-
tion, and hence, ( ( )) ( ( ))rp ipH M x H M x≠ . 

Statement 4. If for requisite it is used 8 bits to represent one character, rpsm  dif-

fer from ipsm  by any single transcription and ( ) ... 1w uG x x −= + + , where 8w u− ≥ , 
then rp ipa a≠ . 

Proof. Any single transcription can be represented as 1( ) ...i i pE x x x − += + + , 
where 8p ≤ . Consequently, in accordance with the statement 3,

( ( )) ( ( ))rp ipH M x H M x≠  and therefore rp ipa a≠ . 
Statement 5. If for requisite it is used 8 bits to represent one character, rpsm  dif-

fer from ipsm  by any transposition or double transcription of adjacent characters and 

( ) ... 1w uG x x −= + + , where 16w u− ≥ , then rp ipa a≠ . 
Proof. Any transposition or double transcription of adjacent symbols can be rep-

resented as 1( ) ...i i pE x x x − += + + , where 16p ≤ . Consequently, in accordance with 
the statement 3, ( ( )) ( ( ))rp ipH M x H M x≠  and therefore rp ipa a≠ . 

Considering the third requirement for independent input of two values ipsm  and 

rpsm , let’s supposed that all valid requisites ipsm  are equal and H  uniformly send 
them to the full range of possible addresses ipa . In this case, each ipa  corresponds to 

( ( ))2 u w u− −  ipsm . Then there 2 2u u  options independent of input values ipsm  and rpsm , 
among which:  

a) 2u  identical values input options, i.e., ( ,ip rp ip rpsm sm a a= = ); 

b) ( )2 (2 2 )u u u w u− −−  options, in which errors are detected, i.e. 

( ),ip rp ip rpsm sm a a≠ ≠ ; 



c) ( )2 (2 1)u u w u− − −  options, in which errors are not detected, i.e. 

( ),ip rp ip rpsm sm a a≠ = . 

Further there are described computations of the probability of different outcomes 
independent input values ipsm  and rpsm . The probability of entering identical values 

is 2 1( , )
2 2 2

u

ip rp ip rp u u up sm sm a a= = = = . The probability of the case, in which error

8 48

1 1( , ) 0,004
2 2ip rp ip rpp sm sm a a≠ = = − ≈ s is detected, is

( )2 (2 2 ) 1( , ) 1
2 2 2

u u u w u

ip rp ip rp u u w up sm sm a a
− −

−

−
≠ ≠ = = − .  The probability of the case, in 

which error is not detected, is 
( )2 (2 1) 1 1( , )

2 2 2 2

u u w u

ip rp ip rp u u w u up sm sm a a
− −

−

−
≠ = = = − . 

For example, when 56,w =  48u =  and 64,w =  48u =  

5
16 48

1 1( , ) 1,5 10
2 2ip rp ip rpp sm sm a a −≠ = = − ≈ ⋅ . 

Let consider now independent input information elements ipsm , rpsm  and spsm , 
each with equal probability takes any of the valid values and is transformed uniformly 
on the entire range of possible addresses. As previously, each ipa corresponds to 

( ( ))2 u w u− −  ipsm . Totally, there are 2 2 2u u u  values for ipsm , rpsm  and spsm  inputs, 
among which:  

─ 2u  identical values input options, i.e., ( ,ip rp sp ip rp spsm sm sm a a a= = = = ); 
─ the cases, in which errors are not detected, are following: 

a)
, , ,

, , ;
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ ≠ ≠

≠ ≠ =
 b)

, , ,
, , ;

ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ ≠ ≠

≠ = ≠
. 

c)
, , ,

, , ;
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ ≠ ≠

= ≠ ≠
, d)

, , ,
, , ;

ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm sm sm s m sm
a a a a a a

≠ ≠ ≠

= = =
 

e)
, , ,

, , ;
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ ≠ =

= = =
  f)

, , ,
, , ;

ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ = ≠

= = =
  

g) 
, , ,

, , .
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

= ≠ ≠

= = =
  

i.e. cases a, b, c include 
( )( )2 (2 2 )(2 1)

u w uu u u w u − −− −− −  options; g –  
( ) ( )2 (2 1)(2 2)u u w u u w u− − − −− −  options;  e, f  – ( )2 (2 1)u u w u− − −  options. 

─ the cases, in which errors are detected, are following:  



a)
, , ,

, , ;
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm sm sm s m sm
a a a a a a

≠ ≠ ≠

≠ ≠ ≠
    b)

, , ,
, , ;

ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ ≠ =

≠ ≠ =
 

c)
, , ,

, , ;
ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

≠ = ≠

≠ = ≠
   d) 

, , ,
, , ,

ip rp ip sp rp sp

ip rp ip sp rp sp

sm sm s m sm s m sm
a a a a a a

= ≠ ≠

= ≠ ≠
 

i.e. case a includes ( ) ( ) ( )2 (2 2 )(2 2 2 )u u u w u u u w u u w u− − − − − −− − −  options; cases b, c, d – 
( )2 (2 2 )u u u w u− −−  options. 

Further there are described computations of probabilities of the different diagno-
ses with independent input values requisites ipsm . rpsm  and spsm . The probability of 

entering identical values of requisites is equal to 3 2

2 1
2 2

u

u u= . The probability of the 

case, when the error are skipped, is equal to 
( ) ( )

3

3 2 (2 2 )(2 1)
2

u u u w u u w u

u

− − − −⋅ − −
+  

( ) ( ) ( )

3 1

2 (2 1)(2 2) 3 2 (2 1) 1 1 1 13 .
2 2 2 2 2

u u w u u w u u u w u

u w u u w u u

− − − − − −

− − −

− − + ⋅ −   + = − − +  
  

 The 

probability of error detection by comparing indices obtained for the three requisites is 

equal to  
( ) ( ) ( ) ( )

3 3

2 (2 2 )(2 2 2 ) 3 2 (2 2 )
2 2

u u u w u u u w u u w u u u u w u

u u

− − − − − − − −− − − ⋅ −
+ =  

1

1 1 31 1
2 2 2w u w u u− − −

  = − − +  
  

. For example, when 64,w =  48u = , the probability 

of the case, when an error is skipped, [ ]p a b c d∨ ∨ ∨ =

5
16 48 15 48

1 1 1 13 4,5 10
2 2 2 2

−  = − − + ≈ ⋅  
  

.  

Considering the fourth requirement in the case of independent input of two val-
ues ipsm  and rpsm , it should be calculated probability of case, if ip rpa a= , then 

ip rpsm sm= . The Bayes' formula [7] allows to calculate posteriori conditional proba-
bility of the presence of unconditional priori one. 

Let the event 1ER  is equal ip rpsm sm= , event 2ER  – ip rpsm sm≠ , event EI  – 

ip rpa a= . Then 1 1
1 2

1

( ) ( | )( | )
( ) ( | )i i

i

p ER p EI ERp ER EI
p ER p EI ER

=

=

∑
. Let's supposed, that ipsm  and 

rpsm  , which consist of L characters, are independently entered by two human-
operators based on the same original document. Then 1( )p ER  can be calculated as the 
probability of error-free entry of two requisites, i.e. 2

1( ) (1 ) L
cp ER p= − , where cp is 

the possibility of mistakes in the human information (errors per symbol), hence
2

2( ) 1 (1 ) L
cp ER p= − − . For example, for 6L =  and 210cp

−=  ( 1) 0,88p ER ≈ . It is 
obvious that 1( | ) ( | ) 1ip rp ip rpp EI ER p a a m m= = = = , as, for equal requisites 
( ( ) ( ))ip rpM x M x=  it is impossible to obtain different indexes 



( ( ( )) ( ( )))ip rpH M x H M x≠ ,according to (3). For calculations of 

2( | ) ( | )ip rp ip rpp EI ER p a a sm sm= = ≠  it is possible to use the fact of equal proba-
bilities of all admissible ipsm , rpsm  and their uniform mapping to the corresponding 
ranges ipa , rpa .  

According to the formula of conditional probability [7], 

( | )ip rp ip rpp a a sm sm= ≠ =
( , )

( )
ip rp ip rp

ip rp

p a a sm sm
p sm sm
= ≠

=
≠

( )2 1
2 1

u w u

u

− − −
−

. Then

2

1 ( )
2 2

(1 ) 1
( | )

2 1(1 ) 1 (1 (1 ) )
2 1

L
c

u w u
L L

c c u

p ER EI
p

p p
− −

− ⋅
=

 −
− ⋅ + − −  − 

. For example, for 48,u =  

64,w =  6L =  1( | ) 0,999998p ER EI ≈ . 
Considering the fourth requirement in the case of independent input of three val-

ues ipsm , rpsm  and spsm , it is necessary to calculate the probability of 

ip rp spsm sm sm= =  , when ip rp spa a a= = . Let the event 13E R  is equal values 

ip rp spsm sm sm= =  , event 23E R  – , ,ip rp ip sp rp spsm sm s m sm s m sm≠ ≠ = , event 33E R  
– , ,ip rp ip sp rp spsm sm s m sm s m sm≠ = ≠ , event 43E R  – 

, ,ip rp ip sp rp spsm sm s m sm s m sm= ≠ ≠ , event 53E R  – 
, ,ip rp ip sp rp spsm sm s m sm s m sm≠ ≠ ≠ , event 3E I  – ip rp spa a a= = . Then

1 1
1 5

1

( 3 ) ( 3 | 3 )( 3 | 3 )
( 3 ) ( 3 | 3 )i i

i

p E R p E I E Rp E R E I
p E R p E I E R

=

=

∑
. Let calculate the a priori probability of 

events 3 , 1,5iE R i =  according to the binomial law, assuming independence of errors 
in separate characters, as following: 3

1( 3 ) (1 ) L
cp E R p= − .  

2
2 3 4( 3 ) ( 3 ) ( 3 ) (1 ) (1 (1 ) )L L

c cp E R p E R p E R p p= = = − − − , 3
5( 3 ) (1 (1 ) )L

cp E R p= − − . 
For example, for 6L =  and 210cp

−=  1( 3 ) 0,83p E R ≈ , 2( 3 ) 0,05p E R ≈ , 

5( 3 ) 0,0002p E R ≈ . 
As previously, calculation of the conditional probabilities ( 3 | 3 )ip E I E R  is 

based on the conditions of the equal probability of all admissible ipsm , rpsm  and 

spsm  and uniformity of transformation to corresponding ranges ipa , rpa  and spa . So,

1( 3 | 3 ) 1p E I E R =  due to the fact that the mapping H  each value ipsm  sends to no 
more than one ipa  and hence H is a function.  The conditional probabilities of coin-
cidence of codes in the case of only one failed requisite are following:

2 3 4( 3 | 3 ) ( 3 | 3 ) ( 3 | 3 )p E I E R p E I E R p E I E R= = =  
( , , , )

( , , )
ip rp sp ip rp ip sp rp sp

ip rp ip sp rp sp

p a a a sm sm s m sm sm sm
p sm sm sm sm sm sm

= = ≠ ≠ =
=

≠ ≠ =

( )2 1
2 1

u w u

u

− − −
=

−
. The condi-

tional probability of indices coincidence in the case of three different requisites input 



by human- operator is following:
 

5

( , , , )
( 3 | 3 )

( , , )
ip rp sp ip rp ip sp rp sp

ip rp ip sp rp sp

p a a a sm sm s m sm s m sm
p E I E R

p sm sm sm sm sm sm
= = ≠ ≠ ≠

= =
≠ ≠ ≠

 

( ) ( )(2 1)(2 2)
(2 1)(2 2)

u w u u w u

u u

− − − −− −
=

− −
. Thus, the posterior probability of identity requisites 

ip rp spsm sm sm= =  provided that ip rp spa a a= = , can be calculated as 

1( 3 | 3 )p E R E I =  
3

( ) ( ) ( )
3 2 3

(1 ) 1
.

2 1 (2 1)(2 2)(1 ) 1 3 (1 ) (1 (1 ) ) (1 (1 ) )
2 1 (2 1)(2 2)

L
c

u w u u w u u w u
L L L L

c c c cu u u

p

p p p p
− − − − − −

− ⋅
=

− − −
− ⋅ + ⋅ − − − ⋅ + − − ⋅

− − −

 

For example, for 48, 64, 6u w L= = =  1( 3 | 3 ) 0,999997p E R E I ≈ . 
The standard CRC-CCITT polynomial 16 12 5

1( ) 1G x x x x= + + +  and CRC-16 - 
16 15 2

2 ( ) 1G x x x x= + + +  are commonly used to increase the reliability of information 
transmission in computer networks [6]. It is obvious that they satisfy the first and 
second requirements,  as ( ( )) 0ideq G x >  and ( ) ... 1w u

iG x x −= + + , where 16w u− ≥ . 

1, 2i = . Furthermore, they may be represented as a product of polynomials of lower 
degree, for example, 1( ) ( 1)G x x= + ⋅ 15 14 13 12 4 3 2( 1)x x x x x x x x+ + + + + + + + , and 
are not irreducible. Therefore, the codes constructed  based on the 1( )G x  and 2 ( )G x
does not refer to cyclic, but inherit all the capabilities of error detection, the inherent 
cyclic codes, including  the ability of uniform mapping the possible keys ipsm , rpsm
..., spsm  to the corresponding ranges ipa , rpa ..., spa . Therefore, assuming that each of 
the elements ipsm . rpsm ..., spsm  with equal probability takes any of the permissible 
values, then 1( )G x  and 2 ( )G x  satisfies the third and fourth requirements.  

Choosing the best alternative was carried out using the method of weighted sum. 
Natural when forming the weighting factors will have an idea of ranking weights 
according densities classes most common error. 

Thus, the code based on the polynomial 16 12 5
1( ) 1G x x x x= + + +  will have the 

best total controlling ability relative to the most common classes of errors in the data 
on the names of employees of the KhAI University 

4 Diagnostic Data Model 

According to the signal-parametric approach to control systems diagnostic [4,8], 
the diagnostic models  are defined as mathematical constructions linking indirect 
signs with direct reasons of the fault. In our case, diagnostic data model (DMD) is 
named a mathematical construction that relates indirect indications of the data lines 
with errors, the DMD must be of the form 



 D D DD = −


 , (4) 

where ΔD  is an indirect indication of the presence of failed data; D , D


 are  direct 
functions of signs of error and the reference data, respectively. For any DMD, the 
conditions of diagnosability must also be fulfilled, i.e. the possibility of an unambigu-
ous establishment of the fact of the presence of failed data on indirect signs. 

Let’s create the DMD to identify and search for a place of failed requisites in the 
multiset M ρ . Let 1 2{ , ,..., }qA a a aρ ρ ρ ρ=  be multiset indices calculated for the initial 

requisites, and 16 12 5( ) 1G x x x x= + + + , let D  be row vector of dimension 
16[0,..., 2 1]−  such that [ ] | |i iD a A Aρ ρ ρ= ∩ where { , ,..., }i i i i

q раз

A a a aρ ρ ρ ρ

−

=


. Then the 

equation, characterized by the absence of failed requisites in M ρ  will have the form 

1[ ]D a qρ =


, i.e. all indexes are the same. If, however, M ρ  contains failed requisites, 

the 1 1[ ] | |D a A Aρ ρ ρ= ∩ . Thus, the DMD to detect failed data in M ρ  looks as: 

 det 1 1 1[ ] [ ] | |D D a D a A A qρ ρ ρ ρ ρD = − = ∩ −


 , (5) 

where det DρD  is an indirect indication of the presence of failed data in M ρ . If

det 0DρD ≡ then M ρ  is error-free, or M ρ  contains failed information. 
To find a place in the wrong requisite M ρ  DMD will be as follows: 

 [ ] [ ] | |
2pl i i i i
qD D a D a A Aρ ρ ρ ρ ρ αD = − = ∩ − −



 , (6) 

where pl iD ρD  is an indirect indication of the presence of failed data in the requisite 

ism ρ . 1[ ; 1]
2 2

qα ∈ − , and if 0pl iD ρD < , then ism ρ  is faulty requisite, otherwise ism ρ

is a reference requisite. 
The performance of the method of index-requisite diagnosis was evaluated. In 

this case the first stage is filling a row vector D . It can be assumed to be proportional 
to the value q . It is assumed that the calculation of indices occur before data cleaning 
process. As for the time of the second stage, it coincides with the time of the second 
stage in the case of pairwise comparisons requisites. Maximum wait time for diagnos-
tic procedures on the basis of the method of index-requisite diagnosis -

. . .2* *общ инд рекв cр вT q t≈ . The overall performance of the method of index-requisite 

diagnosis of redundant information in ( 1)* 2
4

q L− + times higher than the performance 

of the method based on pairwise comparison requisites. For example, when 3q =  and 

8L =  . .

. .

4.5общ поп ср

общ инд рекв

T
T

≈ . 



5 Conclusion 

Deep diagnostics data is the basis for the following problem solution of data recovery. 
Determining, based on the principle of majority, error and reference values for each 
attribute it is possible automatic replacement of standard errors. In addition, the failed 
attributes should be corrected in the source subsystem. Since the change in the origi-
nal data in the data warehouse is technically impossible, human-operator should be 
informed about the error occurred to ensure the quality of subsystem data. Such noti-
fication must include the failed attribute, reference attribute, as well as the record ID, 
for example, last name, first name, etc. If the source subsystem allows working with a 
clipboard, the failed value could be replaced by correct one automatically.  

If it is impossible to find the reference and failed values for the attribute, for exam-
ple, if there are two different requisites and diagnostic model cannot detect the place, 
it is concluded that both requisites are incorrect. Decision-making is entrusted to the 
system administrator, which can redirect the problem to the operators. 
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