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Abstract. The paper deals with a single-server model with constant re-
trial rate. If an arrival meets the server busy, it joins the infinite-capacity
orbit and then tries to occupy the server again after generally distributed
time interval. Unlike the classical retrial policy, the intensity of orbit cus-
tomers does not depend on its number. To derive the stability condition
for such a model, we construct less complicated for analysis dominating
system and illustrate its stability condition, basing on Markov chain ap-
proach. Then, relying on heuristic method and using some results from
renewal theory, we make a basic assumption about stability condition of
the model under consideration. Simulation results for Pareto and Weibull
distribution of retrial time confirm, that assumed stability condition gives
a good approximation of theoretical stability region.
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1 Introduction

We study a single-server retrial system with Poisson input. If an arrival finds
the server busy, he joins a virtual orbit and after a retrial time attempts to enter
server again. We consider a constant retrial rate policy, in which the total rate of
secondary (retrial) attempts does not depend on the orbit size. Unlike the most
of existing works in which exponential retrials are studied, we consider a general
distribution of the retrial times. The main purpose of the research is to find the
stability conditions of the system under consideration.

For the retrial systems with classic retrial discipline (when the retrial rate
increases with the orbit size) the tight sufficient stability condition has been es-
tablished for the New-Better-Than-Used (NBU) retrials in [1], and this condition

? Partly supported by RFBR, projects 18-07-00147, 18-07-00156, 19-07-00303, 19-57-
45022.

https://orcid.org/0000-0003-3938-9212
https://orcid.org/0000-0001-9412-7800
ar0
Copyright © 2020 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).



indeed coincides with the stability criterion of the corresponding buffered classic
system.

The known sufficient stability conditions for the constant rate retrial systems
are definitely superficial, and there is a gap between them and necessary stability
conditions even for the exponential retrials (in this regard see stability analysis
of a multiclass retrial system in [2]). To find more tight stability condition in the
system with non-exponential retrials, we construct a dominating retrial system
which is more easy to be analyzed. This domination property is intuitive and we
do not provide the proof in this work. Thus our analysis in this point is heuristic.
Our main idea is to approach the remaining retrial times by the stationary
overshoot in the renewal process generated by the sequence of the independent
identically distributed (iid) retrial times. This assumption seems plausible since
an arrival instant of a Poisson customer can considered as a random instant in
a retrial interval. Indeed, as our simulation shows, this assumption is confirmed
for a few specific non-exponential distributions of the retrial times. This analysis
allows to suggest more tight stability condition of the retrial systems and by this
to extend the stability region of these systems.

To motivate our research, we outline the applicability of the retrial systems.
A constant retrial rate system has been introduced in [3] to describe the be-
havior of telephone exchange centers. Later, the multi-server extension of such
a model was analysed in [4]. Constant retrial rate systems are successfully used
in simulation of multi-access protocols, in particular, see applications to TCP
in [5], to CSMA/CD (Carrier Sense Multiple Access with Collision Detection)
protocol in [6] and to ALOHA-type multiple access systems in [7], etc.

The most of stability results are obtained for the system with exponential
retrial times. For instance, a multiserver bufferless system M/M/c/0 was ana-
lyzed by matrix analytic method in [8, 9]. Stability of a retrial system GI/M/1
with a renewal input has been investigated in [10], where the generating function
method s applied. Stability conditions for a general GI/G/c/K system with ex-
ponential retrials have been obtained by the regeneration method in [11]. Just a
few papers consider retrial systems with non-exponential retrials. In particular,
the papers [12,13] deal with PH- retrial times and provide some approximations
and simulation results. Finally, the detailed overviews of the retrial systems can
be found in the well-known monographs [14], [15] and in the paper [16].

The paper is organized as follows. Section 2 contains the description of the
system. In Section 3, an auxiliary dominating system with the known stability
condition is constructed. In Section 4, based on ideas from renewal theory, we
make and advocate an assumption which allows to formulate a tighter stability
condition of the system under consideration. Section 5 contains simulation results
for the systems with Pareto and Weibull retrial times.

2 Description of the Model

We consider a single-server bufferless retrial system with constant retrial rate
denoted by Σ, which is fed by Poisson input of (primary) customers with arrival



instants {tn, n ≥ 1} and rate λ. Thus exponential interarrival times τn = tn+1−
tn are iid. (Here and in what follows we omit serial index to denote generic
element of an iid sequence.) The service times {Sn, n ≥ 1} are assumed to be iid
as well with a general distribution FS . Denote the traffic intensity ρ = λES. If
a primary customer meets the server busy, he joins the infinite-capacity virtual
orbit and then attempts to occupy the server after a random time ξ with a general
dsitribution Fξ. Denote by N(t) the number of customers in orbit (secondary
customers) at instant t. (All continuous-time processes are assumed to be defined
at instant t−.) By definition, the retrial rate does not depend on the orbit size
N(t).

This system is regenerative and it is important to emphasize that the number
of customers in the system and in particular, the orbit-size process {N(t)} are
both regenerative processes, and regenerations occur when a new arrival sees an
empty system. We call the process {N(t)} and the system positive recurrent if
the mean regeneration period is finite. Positive recurrence means that the system
possesses stationary regime [17].

3 A Dominating System

First we present some known stability results for particular systems with con-
stant retrial rate. In the paper [11] the following stability condition of a single-
server system with exponential retrials is obtained:

λρ < µ0(1− ρ), (1)

where µ0 = 1/Eξ is the retrial rate. Because ρ is the stationary busy probability
of the server (again see [11]), then condition (1) has an evident probabilistic in-
terpretation: input rate λρ to the orbit must be less that the successful rate from
the orbit. We note that a similar interpretation can be applied to the stability
condition of the retrial system with renewal input and exponential retrials con-
sidered in [10]. Assume first that the retrial time ξ is NBU, that is for arbitrary
x, y ≥ 0

P(ξ > x+ y|ξ > y) ≤ P(ξ > x).

Note that in this case the tail of the retrial time is stochastically less or equal
than ξ. A sufficient stability condition of a model with NBU retrials and classical
retrials, has been obtained in the recent work [1]. Denote by {Dk, k ≥ 1} the
departure instants of the customers from the system, and define Nk = N(D+

k ),
the orbit size just after the k-th departure, k ≥ 1. An important observation
is that interval [Dk, Dk+1), k ≥ 1 contains two phases: an idle period Ik which
appears after each departure, and the actual service time Sk+1. (By assumption,
we assign service times in the order the customers enter server.) Now we con-
struct a new single-server retrial system Σ̂ with constant retrial rate and the
same input and service times as in the system Σ, in which the retrial times after
departures are constructed as follows. If the orbit is not empty after a departure,
then the residual retrial time is replaced by an independent variable distributed



as generic retrial time ξ in the original system Σ. Note that if the orbit is idle
after a departure, then the idle period distributed as interarrival time τ . Also
we note that the retrial times in Σ̂ between (unsuccessful) attempts which see
server busy are distributed as generic variable ξ. (Indeed we could ignore such
attempts because they do not affect the state of the system.) We denote the
departure instants in the system Σ̂ by {D̂k}. (In fact the system Σ̂ is a partic-
ular case of a system considered in [18].) It follows from construction that the
following recursions hold:

Dk+1 = stDk + min
(
ξ(Dk), τ

)
+ Sk+1,

D̂k+1 = stD̂k + min
(
ξ, τ

)
+ Sk+1, k ≥ 1, (2)

where ξ(Dk) denotes the remaining retrial time at instant Dk in the system Σ.
By the NBU property ξ ≥st ξ(Dk), and then recursion (2) supports our
Assumption 1: the system Σ is less loaded than the system Σ̂.
(The exact proof of this assumption could be based on the coupling arguments
developed in the paper [2].) Thus the stability of Σ̂ yields the stability of the
original system Σ.

Now we consider the stability condition of the system Σ̂. Denote by {N̂k, k ≥
1} the orbit size in the system Σ̂ just after departure instant D̂k. It is easy to
see, that the sequence {N̂k} (unlike the sequence {Nk}) defines an irreducible,
aperiodic, time-homogeneous Markov chain with the state space {0, 1, 2, . . . }.
Now we find the ergodicity condition of this Markov chain, which is equivalent
to the positive recurrence (stability) of the system Σ̂.

First assume that, at some instant D̂k, the orbit is empty, that is N̂k = 0.
Then the server can be captured by a primary customer only, and the following
idle period is distributed as exponential variable τ . When server becomes busy,
arrival input (with rate λ) joins the orbit. Thus, in the interval [D̂k, D̂k+1), the
sequence {N̂k} transits from state 0 to a state i with probability (w. p.)

pi =

∫ ∞
0

e−λt
(λt)i

i!
dFS(t), i ≥ 0.

If N̂k > 0, then the the two following alternative events may happen: i) the
primary customer occupies the server with w.p. P(τ < ξ), or ii) a retrial attempt
is successful w. p. P(τ ≥ ξ). (In the original system this happens w. p. P(τ <
ξ(Dk)) and P(τ ≥ ξ(Dk)), respectively, which are not analytically available
unless ξ is exponential.) It then follows that N̂k+1 = N̂k + i w.p.

P(τ < ξ; i arrivals during Sk+1) = pi

∫ ∞
0

(1− e−λx)dFξ(x)

and N̂k+1 = N̂k + i− 1 w.p.

P(τ ≥ ξ; i arrivals during Sk+1) = pi

∫ ∞
0

e−λxdFξ(x).



Now we apply the well-known sufficient (negative drift) condition for the Markov
chain to be ergodic [17,19] which in our case can be formulated as supk E|N̂k+1−
N̂k| <∞ and

E[N̂k+1 − N̂k|N̂k = j] < 0, j > 0. (3)

A simple algebra gives, regardless of k,

−1 ≤ E[N̂k+1 − N̂k] ≤
∑
i

ipi = ρ <∞,

and to check (3), we have

E[N̂k+1 − N̂k|N̂k = j] = P(τ < ξ)
∑
i≥1

(i+ j)pi

+ P(τ ≥ ξ)
∑
i≥1

(i+ j − 1)pi − j

=
∑
i≥1

ipi − P(τ ≥ ξ) = λES − P(τ ≥ ξ).

Thus the system Σ̂ is stable if the following condition holds:

ρ < P(τ ≥ ξ), (4)

which has a clear probabilistic interpretation. Namely, the probability ρ that an
arriving customer joins the orbit must be less than the probability P(τ ≥ ξ) that
an attempt happens earlier than the next primary customer arrives. Note that

P(τ ≥ ξ) =

∫ ∞
0

e−λxdFξ(x) = Lξ(λ),

is Laplace-Stieltjes transform of the retrial time ξ. Remark that condition ρ <
Lξ(λ) coincides with the stability condition, obtained in [18] for a general case
of retrial system with balking and repairable server, where retrial time begins
only when the server is idle.

4 Stability Analysis

In previous section we have found a sufficient stability condition for a dominating
system Σ̂. One may expect that this condition is not tight enough for the original
system, and in this section we use an idea from renewal theory to formulate more
tight stability condition for the system Σ. First, we construct a renewal process
generated by the iid copies {ξi, i ≥ 1} of the generic retrial time ξ. Denote the
renewal process

Zn =

n∑
i=0

ξi, n ≥ 0, Z0 := 0,



and define the residual renewal time at instant t as

ξ(t) = min
n
{Zn − t : Zn − t ≥ 0}, t ≥ 0. (5)

It is well-known that if Eξ < ∞ and ξ is non-lattice (it is assumed in what
follows) then the convergence in distribution holds [17]:

ξ(t)⇒ ξs t→∞,

where ξs denotes the stationary excess of the renewal process {Zn}. Denoting
the tail distributions

F ξs(x) = P(ξs > x), F ξ(x) = P(ξ > x),

we have (see, for instance, [17])

F ξs(x) =
1

Eξ

∫ ∞
x

F ξ(y)dy =
1

Eξ

∫ ∞
0

P(ξ > x+ y)dy.

If retrial time ξ is NBU, that is P(ξ > x+ y) ≤ P(ξ > x)P(ξ > y), then

F ξs(x) ≤ P(ξ > x)

Eξ

∫ ∞
0

P(ξ > y)dy = F ξ(x),

that is P(ξ ≤ x) ≤ P(ξs ≤ x). Because τ and ξ are independent, then

P(τ ≥ ξ) =

∫ ∞
0

λe−λxP(ξ ≤ x)dx ≤
∫ ∞
0

λe−λxP(ξs ≤ x)dx = P(ξs ≤ τ),

where, to obtain the independence between τ and ξs, we use the resampling of
the interarrival time τ at the corresponding departure instant. Thus we have the
inequality

P(τ ≥ ξ) ≤ P(τ ≥ ξs),
which becomes equality for ξ being exponential. If ξ is not exponential then in
general

P(τ ≥ ξ) < P(τ ≥ ξs),
One can expect that the actual stationary remaining retrial time at the departure
instants is close to the stationary residual renewal time (5) in the renewal process
{Zn}, and it implies the following
Assumption 2: for a generally distributed (non-exponential) ξ condition

ρ < P(τ ≥ ξs) (6)

allows to delimit more exact stability region of the original system Σ than the
(excessive) condition (4) obtained for the dominating system under NBU retrials.
(For exponential ξ, conditions (4) and (6) coincide with stability condition (1),
obtained in [11].)

In the next Section we demonstrate, for Weibull and Pareto retrials times,
that condition (6) indeed provides a good approximation of stability region for
the corresponding system.



5 Simulation

To verify the tightness of the new (heuristic) stability condition (6) for a non-
exponential retrial time ξ, we study the dynamics of the orbit provided the traffic
intensity ρ is selected to satisfy the following inequalities:

P(τ ≥ ξ) ≤ ρ < P(τ ≥ ξs), (7)

that is, when sufficient stability condition (4) is violated. Define the unknown
real stability region border S, that is condition

ρ < S

is the stability (positive recurrence) criterion of the system. (Conversely, condi-
tion ρ ≥ S implies instability of the system.) In sections 5.1 – 5.2 we obtain an
approximate value of S by analysing the orbit behavior in simulated system as
follows. First, we vary the value of load coefficient ρ and illustrate the dynamics
of mean orbit size. When for some value ρ∗ we obtain stable orbit if ρ < ρ∗,
while for ρ ≥ ρ∗ the orbit goes to infinity, we define the approximate value of S
by ρ∗.

Below we show by simulation that the value S is indeed close to the proba-
bility P(τ ≥ ξs) for Weibull and Pareto retrial times.

5.1 Weibull Retrials

We consider Weibull retrial time ξ with the scale parameter 1 and the shape
parameter w, that is,

Fξ(x) = 1− e−x
w

.

It is straightforward to show that

P(τ ≥ ξs) =

∫ ∞
0

e−λxdFξs(x) =
1

Γ (1 + 1
w )

∫ ∞
0

e−(λx+x
w)dx,

where Γ is Gamma function. If w = 2, then ξ has NBU property and

P(τ ≥ ξs) =
1

Γ (1.5)

∫ ∞
0

e−λxe−x
2

dx =

√
π

2Γ (1.5)
eλ

2/4 erfc
(λ

2

)
,

where

erfc(x) = 1− 2√
π

∫ x

0

e−t
2

dt

is complementary error function [20]. Next, we fix λ = 1 in which case

P(τ ≥ ξ) = 0.454, P(τ ≥ ξs) = 0.616.

Figure 1 presents the orbit dynamics for a few values of ES = ρ for exponential
service time. As Figure 1 shows, when ρ satisfies inequalities (7) (solid lines) then



orbit demonstrates stability behaviour, while when ρ violates (7) (dash line) the
orbit becomes unstable. Note that in these experiments

S ≈ 0.593 < P(τ ≥ ξs) = 0.616,

and we conclude, at least for the studied NBU Weibull retrials, that the bound
P(τ ≥ ξs) indeed slightly violates the border of stability region. However the
proximity between P(τ ≥ ξs) and (in general unknown) actual border S can be
used to approach S effectively in simulation.

Fig. 1. Orbit dynamics for NBU Weibull retrials, w = 2, λ = 1.

Now we consider Weibull retrials with w < 1, in which case ξ has the so-called
New-Worse -Than-Used (NWU) property meaning that

P(ξ > x+ y|ξ > y) ≥ P(ξ > x), x ≥ 0, y ≥ 0.

For arbitrary λ > 0 and w = 1/2 we have

P(τ ≥ ξs) =
1

Eξ

∫ ∞
0

e−(λx+
√
x)dx

=
1

2
√
λ3Γ (3)

[√
πe

1
4λ

(
erf
(
0.5/
√
λ
)
− 1
)

+ 2
√
λ
]
,

where

erf(x) =
2√
π

∫ x

0

e−t
2

dt



is Gauss error function [20]. (Note, that in the NWU case, we can not claim that
the corresponding system Σ̂ dominates the system Σ.) Selecting w = 1/2 and
λ = 1, we have

P(τ ≥ ξs) =
1

Γ (3)

∫ ∞
0

e−(x+
√
x)dx

=
1

Γ (3)

[√πe 1
4

2

(
erf
(
1/2
)
− 1
)

+ 1
]

=
0.454

2
= 0.227.

The orbit dynamics for w = 1/2 is presented on Figure 2, where the solid grey
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Fig. 2. Orbit dynamics for NWU Weibull retrials, w = 0.5, λ = 1.

line corresponds to ρ = 0.27. In this case condition (6) is violated and orbit
demonstrates “less” instability (in comparison with the case ρ = 0.30, dashed
line). Numerical results also show that in this case

S ≈ 0.265 > P(τ ≥ ξs) = 0.227,

and thus condition P(τ ≥ ξs) narrows the actual stability region.



5.2 Pareto Retrials

Now we consider retrial time ξ with Pareto distribution

Fξ(x) = 1− x−α, α > 1, x ≥ 1.

In this case

P(τ ≥ ξs) =
1

Eξ

(∫ 1

0

e−λxdx+

∫ ∞
1

e−λxx−αdx
)

=
α− 1

α

(1− e−λ

λ
+

∫ ∞
1

e−λxx−αdx
)
.

For instance, for λ = 1 and α = 2,

P(τ ≥ ξs) = (0.632 + 0.148)/2 = 0.390.

Simulation shows that in this experiment,
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Fig. 3. The orbit dynamics for Pareto retrials, α = 2, λ = 1.

S ≈ 0.385 < P(τ ≥ ξs) = 0.390,

and thus the border P(τ ≥ ξs) “extend” actual stability region a little. The
results of simulation are illustrated by Figure 3.



6 Conclusion

In this paper we develop a heuristic approach, using an idea from renewal the-
ory, to construct more tight stability condition for a single-server retrial system
with Poisson input, general iid service times and general (iid) retrial times. It is
assumed that the system follows a constant retrial rate policy. We construct a
dominating retrial system and study an embedded Markov chain at the depar-
ture instants to find sufficient stability condition for the NBU retrials. Then we
formulate a more tight stability condition and verify its accuracy by simulation
in the systems with Weibull (both NBU and NWU retrials) and Pareto retrials.
As experiments show, this new condition allows to approach the actual border
of the stability region but it must be used carefully.
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