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Abstract. In this paper we consider a multi-server heterogeneous queue-
ing system where servers differ in service rates and operating costs. The
optimal allocation policy for this system is of threshold type. Gather-
ing data for evaluated optimal threshold levels and system parameters
is performed using a policy iteration algorithm. We study the possibil-
ity to use these data-sets to provide predictions for optimal thresholds
through artificial neural networks. The obtained results are accompanied
by heuristic solution based on a fluid approximation. Numerical examples
illustrate the quality of provided predictions.
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1 Introduction

Many queueing systems are analyzed for their dynamic and optimal control re-
lated to system access, resource allocation, changing service area characteristics
and so on. Sets of computerized tools and procedures provide large data-sets
which can be useful to expand potential of classical optimization methods. The
paper deals with a known model of a multi-server queueing system with con-
trollable allocation of customers between heterogeneous servers which are differ-
entiated by their service and cost attributes. As it is known, see e.g. [1,9], the
optimal allocation policy which minimizes the long-run average cost per unit
of time for this queueing system belongs to a set of structural policies. For the
servers’ enumeration (1) the allocation control policy denoted by f is defined
through a sequence of threshold levels 1 = q1 ≤ q2 ≤ · · · ≤ qK < ∞. According
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to this policy, the fastest server must be used whenever it is free and there are
waiting customers in the queue. The kth server (k ≥ 2) is used only if the first
k − 1 servers are busy and the queue length reaches a threshold level qk > 0.
In general case, the optimal threshold levels can depend on states of slower
server and formally the optimal policy f is not of a pure threshold type. But
since the kth threshold value may vary by at most one when the state of slower
server changes and it has a weak effect on the average cost, such influence can
be neglected. Hence the optimal allocation policy for multi-server heterogeneous
queueing system can be treated as a threshold one.

Searching for the optimal values of q2, . . . , qK by direct minimizing the aver-
age cost function can be expensive, especially when K is large. To calculate the
optimal threshold levels we can use a policy iteration algorithm [4,6,10] which
constructs a sequence of improved policies that converges to optimal one. Al-
though this algorithm is a powerful tool for solving many optimization tasks, it
has significant limitations on dimensionality of the model, number of states, con-
vergence in a heavy traffic case. The contribution of the paper is two-fold. First,
we provide a simple heuristic solution (HS) for a sub-optimal policy in order to
avoid the search for the optimal one. Second, we investigate the possibility to use
the data generated by a policy-iteration algorithm to provide a prediction for the
optimal threshold levels with artificial neural networks (NN) [3,7,8]. The trained
network can be used then to calculate the optimal thresholds for those system
parameters for which alternative numerical methods are difficult or impossible
to use, for example, in heavy traffic case, or, in general, to reconstruct the areas
of optimality without usage of time-expensive algorithms and procedures. We
unsuccessfully tried to find published works where machine learning methods
would be used to solve a similar problem and therefore we consider this paper
relevant.

This paper is organized as follows. In Section 2 we briefly discuss a mathe-
matical model. Section 3 introduces some heuristic choices for threshold levels,
that turn out to be nearly optimal. Section 4 presents results when the trained
neural network was ran on verification data of the policy iteration algorithm.

2 Mathematical Model

We remind briefly the model under study. Consider an infinite-capacity M/M/K
queueing system with K heterogeneous servers and one common queue, see Fig-
ure 1. The customers arrive to the system according to a homogeneous Poisson
process with a rate λ. The jth server has an exponentially distributed service
time with a rate µj . The server j is called an available server if it is idle. The
service of customers is assumed to be without preemption, i.e. a customer being
served on a server can not change it. The inter-arrival and service times are
mutually independent. The system costs include an operating cost cj > 0 per
unit of time for busy server j and holding cost c0 > 0 per unit of time for any
customer waiting in the queue. Assume that the servers are enumerated in a way

µ1 ≥ · · · ≥ µK , c1µ−11 ≤ · · · ≤ cKµ−1K , (1)



where cjµ
−1
j stands for the mean operating cost per customer for the jth server.

Fig. 1. Controllable multi-server queueing system with heterogeneous servers and op-
erating costs.

The controller or decision maker, which has a full information about system
states, dispatchers or allocates customers according to a control policy f either
to one of available servers or to queue at a new arrival and service completion
epoch if it occurs with a nonempty queue. The system dynamics is common for
the systems with one queue and heterogeneous servers. At each arrival epoch the
customer joins the queue and the controller can allocate the customer staying at
the head of the queue to an available server j. At service completion epochs the
controller may decide to allocate the customer from the head of nonempty queue
to an available server or leave the customer in the queue. As it was mentioned
above, the optimal control policy, which minimizes the long-run average cost
per unit of time, belongs to a set of threshold policies defined as a sequence of
threshold levels

1 = q1 ≤ q2 ≤ · · · ≤ qK <∞. (2)

According to this policy the first k servers must be occupied whenever there are
q customers in the queue and qk ≤ q ≤ qk+1 − 1.

We formulate the above optimization problem as a Markov decision problem
associated with a multi-dimensional continuous-time Markov chain {X(t)}t≥0 =
{Q(t), D1(t), . . . , DK(t)}t≥0 with a set of admissible actions A = {0, 1, . . . ,K}
with elements a, where a = 0 means the allocation of the customer to the
queue and a = j 6= 0 – to the jth server. The term Q(t) ∈ N0 denotes
the number of customers in the queue at time t, Dj(t) ∈ {0, 1} – the num-
ber of customers at server j at time t. For any fixed policy f , which is of
threshold type with levels (q2, . . . , qK), we wish to guarantee that the process
{X(t)}t≥0 is an irreducible, positive recurrent Markov chain with a state space
Ef = {x = (q(x), d1(x), . . . , dK(x))} ⊆ N0 × {0, 1}K and infinitesimal generator
Λf . The notations q(x) and dj(x) will be used further in the paper to specify the
components of the vector state x ∈ Ef , where q(x) denotes the queue length in
state x and dj(x) – the state of the jth server in state x. The stability condition



is obviously defined through the inequality λ <
∑K
j=1 µj . For ergodic Markov

chains with costs the long-run average cost per unit of time for the policy f
coincides with the corresponding assemble average, i.e.

gf = lim sup
t→∞

1

t
V f (x, t) =

∑
y∈Ef

c(y)πfy , (3)

where c(y) = c0q(y) +
∑K
j=1 cjdj(y) is an immediate cost in state y ∈ Ef ,

V f (x, t) = Ef
[ ∫ t

0

(
c0Q(t) +

K∑
j=1

cjDj(t)
)
dt|X(0) = x

]
denotes the total average cost up to time t given initial state is x and πfy =

Pf [X(t) = y] is a stationary state probability of the process under given policy
f . The policy f∗ is said to be optimal when for gf defined in (3) we evaluate

g∗ = inf
f
gf = min

q2,...,qK
g(q2, . . . , qK). (4)

Algorithm 1 Policy-iteration algorithm

1: procedure PIA(K,W, λ, µj , cj , j = 1, 2, . . . ,K, c0)

2: f (0)(x) = argminj∈J0(x)

{
cj
µj

}
. Initial policy

3: n← 0
4: g(n) ← λv(n)(e1) . Policy evaluation
5: for x = (0, 1, 0, . . . , 0) to (N, 1, 1, . . . , 1) do
6:

v(n)(x)← 1

λ+
∑
j∈J1(x) µj

[
c(x)− g(n) + λv(n)(x+ ef(n)(x))

+
∑

j∈J1(x)

µjv
(n)(x− ej)1{q(x)=0}

+
∑

j∈J1(x)

µjv
(n)(x− ej − e0 + ef(n)(x−ej−e0)

)1{q(x)>0}

]
7: end for
8: . Policy improvement

f (n+1)(x)← argmina∈A(x) v
(n)(x+ ea)

9: if f (n+1)(x)← f (n)(x), x ∈ EX then return f (n+1)(x), v(n)(x), g(n)

10: else n← n+ 1, go to step 4
11: end if
12: end procedure



To evaluate optimal threshold levels and optimized value for the mean num-
ber of customers in the system the policy-iteration algorithm 1 is used. Here we
use the notations

J0(x) = {j : dj(x) = 0}, J1(x) = {j : dj(x) = 1}

to specify respectively a set of idle and busy servers in state x, A(x) = J0(x) ∪
{0} ⊆ A the subset of admissible actions in state x and ej stands for a vector of
dimension K+1 with 1 in the jth position (j = 0, 1, . . . ,K) and 0 elsewhere. We
convert the K + 1-dimensional state space Ef of the Markov decision process
ordered in a certain way to a one-dimensional equivalent state space N0, ∆ :
Ef → N0, for state x = (q(x), d1(x), . . . , dK(x)) ∈ Ef ,

∆(x) = q(x)2K +

K∑
i=1

di(x)2i−1. (5)

Therefore, in one-dimensional case the changing of the state x due to adding or
removing a customer from the queue and due to occupation or departure of a
customer from the jth server can be respectively represented in the form,

∆(x± e0) = (q(x)± 1)2K +

K∑
i=1

di(x)2i−1 = ∆(x)± 2K ,

∆(x± ej) = q(x)2K +

K∑
i=1

di(x)2i−1 ± 2j−1 = ∆(x)± 2j−1.

For further details about derivation of the dynamic programming equation needed
to evaluate the optimal policy the interested readers are referred to [1]. The infi-
nite buffer queueing system is approximated by a finite buffer equivalent system
in such a way that the loss probability does not exceed some specified small
number ε > 0.

Remark 1. For the bounded buffer size W the number of states is

|Ef | = 2K(W + 1).

If the queue length q ≥ qK , all servers must be busy and the system behaves like
a M/M/1 queueing system with a service rate

∑K
j=1 µj . The stationary state

probabilities π(q,1,...,1), q ≥ qK , satisfy the difference equation

λπ(q−1,1,...,1) −
(
λ+

K∑
j=1

µj

)
π(q,1,...,1) +

K∑
j=1

µjπ(q+1,1,...,1) = 0,

which has a solution in a geometric form, π(q,1,...,1) = π(qK ,1,...,1)ρ
q−qK , q ≥ qK .

For details and theoretical substantiation see e.g. [2]. The threshold level qK can



be estimated using HS (7). The buffer size W is chosen in such a way that it
satisfies the condition for the loss probability

∞∑
q=W

π(q,1,...,1) = πqK

∞∑
q=W

ρq−qK ≤
∞∑

q=W

ρq−qK =
ρW−qK

1− ρ
< ε,

where ρ = λ∑K
j=1 µj

. After simple algebra it implies

W >
log ε(1− ρ)

log(ρ)
+ qK .

Example 1. Consider the system M/M/5 with K = 5 and λ = 15. All other
parameters take the following values

j 0 1 2 3 4 5

cj 1 5 4 3 2 1
µj - 20 8 4 3 1

cjµ
−1
j - 0.25 0.50 0.75 0.67 1.00

The buffer size isW = 80 which guaranteesW > log 0.0001(1−14/36)
log(14/36) +q5 = 22.2734

for ε = 0.0001, where q5 = 12 is evaluated by (7). The table of evaluated control
actions f(x) for selected system states x is of the form:

System state x Queue length q(x)
d = (d1, d2, d3, d4, d5) 0 1 2 3 4 5 6 7 8 9 10 11 12 . . .

(0,*,*,*,*) 1 1 1 1 1 1 1 1 1 1 1 1 1 1
(1,0,*,*,*) 0 0 2 2 2 2 2 2 2 2 2 2 2 2
(1,1,0,*,*) 0 0 0 3 3 3 3 3 3 3 3 3 3 3
(1,1,1,0,*) 0 0 0 0 4 4 4 4 4 4 4 4 4 4
(1,1,1,1,0) 0 0 0 0 0 0 0 0 0 0 0 5 5 5
(1,1,1,1,1) 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Threshold levels qk, k = 1, . . . ,K = 5, can be evaluated by comparing the
optimal actions

f(q, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) < f(q + 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

)

for q = 0, . . . ,W−1. In this example the optimal policy f∗ is defined here through
a sequence of threshold levels (q2, q3, q4, q5) = (3, 4, 5, 12) and g∗ = 4.92897.

The data needed either to verify the heuristic solution or for training and veri-
fication of the neural network was generated by a policy-iteration algorithm in
form of the list

S =
{

(λ, µ1, . . . , µK , c0, c1, . . . , cK)→ (q2, . . . , qK) : (6)

λ ∈ [1, 45], µ1, . . . , µK ∈ [1, 40], c0 ∈ [1, 3], c1, . . . , cK ∈ [1, 5],

λ <

K∑
j=1

µj , µ1 ≥ · · · ≥ µK , c1µ−11 ≤ · · · ≤ cKµ−1K
}
.



Example 2. Some elements of the list S for the M/M/5 queueing system are

(1, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (2, 5, 13, 30),

(10, 20, 8, 4, 2, 1, 1, 1, 1, 1, 1, 1)→ (1, 4, 9, 21),

(1, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (5, 12, 20, 20),

(10, 20, 8, 4, 2, 1, 1, 5, 4, 3, 2, 1)→ (3, 8, 13, 13).

3 Heuristic Solution

As it was mentioned above, the policy iteration algorithm has restrictions on
dimensionality of the model, number of states, convergence in a heavy traffic case.
In this section we derive a heuristic solution (HS) to estimate threshold levels
qk, k = 2, . . . ,K, for the arbitrary K using a simple discrete fluid approximation
which is illustrated in Figure 2. Assume that qk is an optimal threshold to

Fig. 2. Fluid approximation.

allocate the customer to server k in state (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), where the

first k − 1 servers are busy. Now we compare the queues of the system given
initial state is x0 = (qk, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is not used for

a new customer, and y0 = (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 1, 0, . . . , 0︸ ︷︷ ︸
K−k

), where the kth server is

occupied by a waiting customer. It is assumed that the stability condition holds.
In Figure 2, the queue lengths are labeled by A = qk and B = qk−1. If the queue
dynamics corresponded to the deterministic fluid, it would decrease at the rate∑k−1
j=1 µj − λ. When this rate is maintained until the queue is empty, it occurs

respectively at points D = qk∑k−1
j=1 µj−λ

and C = qk−1∑k−1
j=1 µj−λ

. The total holding

times of customers in a queue with lengths qk and qk − 1 are equal obviously to
the areas

FAOD =
qk(qk + 1)

2
· 1∑k−1

j=1 µj − λ
and FBOC =

qk(qk − 1)

2
· 1∑k−1

j=1 µj − λ



of triangles AOD and BOC. The mean operating cost of the first k − 1 servers
until the queue is empty starting from state x0 is equal to

qk

( c1
µ1

µ1∑k−1
j=1 µj

+ · · ·+ ck−1
µk−1

µk−1∑k−1
j=1 µj

)
= qk

∑k−1
j=1 cj∑k−1
j=1 µj

,

where µi∑k−1
j=1 µj

is a probability to be served by the ith server, and starting from

state y0 – is equal to (qk−1)
∑k−1

j=1 cj∑k−1
j=1 µj

. According to a specified deterministic fluid
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Fig. 3. Confusion matrices (a)–(d) for prediction of q2, q3, q4 and q5 using HS

schema we formulate

Proposition 1. The optimal thresholds qk, k = 2, . . . ,K, are defined by

qk ≈ q̂k = min

{
1,

⌊∑k−1
j=1 µj − λ
c0

[ ck
µk
−
∑k−1
j=1 cj∑k−1
j=1 µj

]⌋}
. (7)

Proof. Denote by V (x) the overall average system cost until the system is empty
given initial state is x ∈ Ef . The decision to perform the allocation to the kth
server in state (qk − 1, 1, . . . , 1︸ ︷︷ ︸

k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

) must lead to a reduction of the overall



system costs under fluid schema, i.e.

V (x0)− V (y0) > 0. (8)

where

V (x0) = c0FAOD + qk

∑k−1
j=1 cj∑k−1
j=1 µj

+ V (0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

), (9)

V (y0) =
ck
µk

+ V (qk − 1, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, 0, . . . , 0︸ ︷︷ ︸
K−k

)

=
ck
µk

+ c0FBOC + (qk − 1)

∑k−1
j=1 cj∑k−1
j=1 µj

+ V (0, 1, . . . , 1︸ ︷︷ ︸
k−1

, 0, . . . , 0︸ ︷︷ ︸
K−k+1

).

After substitution of (9) into (8) and some simple manipulations we get that
the heuristic solution for the optimal threshold qk is defined then as the integer
larger then 1 and the smallest integer (7) satisfying the inequality (8).

Example 3. Consider a queueing system from previous example for K = 5. We
select randomly from the data-set S (6) a list of system parameters (λ, µ1, . . . ,
µK , c0, c1, . . . , cK) and evaluate with HS the corresponding thresholds qk, k =
1, . . . ,K. Confusion matrices in Figure 3 visualize the performance of proposed
heuristics respectively for the threshold levels (q2, q3, q4, q5). Each row of these
matrices represents the instances in a predicted value while each column rep-
resents the instances in an actual value. The overall accuracies, i.e. the metric
which describe the closeness of the measurements to a specific value, as well as
the accuracies for results with possible deviation of threshold values by ±1 from
the real value are summarized in Table 1.

HS q2 q3 q4 q5
Accuracy 0.8430 0.8778 0.7899 0.6282
Accuracy ±1 0.9861 0.9884 0.9871 0.9769
Table 1. Accuracy for prediction with HS

4 Artificial Neural Networks

Artificial Neural Networks (NN) is a part of a supervised machine learning which
is most popular in different problems of data classification, pattern recognition,
regression, clustering, time series forecasting. Here we show that the NN can give
even more positive results comparing to the HS that indicates the possibility to
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Fig. 4. Confusion matrices (a)–(d) for prediction of q2, q3, q4 and q5 using NN

use it for predicting the structural control policies. The data-set S (6) is used to
explore predictions for the optimal threshold levels through the NN. 70% of the
same data S which was not used for HS is referred to as training data and the rest
of S – as validation data. We train a multilayer (6-layer) NN using an adaptive
moment estimation method [5] and the neural network toolbox in Mathematica c©

of the Wolfram Research. Then we verify the approximated function

q̂k := q̂k(λ, µ1, . . . , µK , c0, c1, . . . , cK),

which should be accurate enough to be used to predict new output from verifi-
cation data. The algorithm was ran many times on samples and networks with
different sizes. In all cases the results were quite positive and indicate the poten-
tial of machine learning methodology for optimization problems in the queueing
theory.

Example 4. The results of predictions in framework of some typical example are
summarized in form of confusion matrices shown in Figure 4. The overall accu-
racy of classification and accuracies for the values with deviations are given in
Table 2. We can see that the NN methodology exhibits more accurate predictions
for the optimal thresholds comparing to the HS. Therefore we may conclude that
classical queueing system analysis can and must be supplemented and extended
by more active use of machine learning technologies.



NN q2 q3 q4 q5
Accuracy 0.9700 0.8785 0.8708 0.7977
Accuracy ±1 0.9991 0.9951 0.9874 0.9962
Table 2. Accuracy for prediction with NN

5 Conclusion

We combine classic methodology of analyzing controllable queues with a heuristic
solution and machine learning to study the possibility to forecast the values
of optimal thresholds. When analyzing and comparing the results obtained by
algorithms of the Markov decision theory and by supervised learning we may
conclude that these methodologies can be seen as complementary rather than
competitive.
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