
cb

S. Götz, L. Linsbauer, I. Schaefer, A. Wortmann (Hrsg.): Software Engineering 2021 Satellite Events,
Lecture Notes in Informatics (LNI), Gesellschaft für Informatik, Bonn 2021 1

Model Checking Amalthea with Spin1

Jan Steffen Becker2

Abstract: Although the Amalthea meta-model has emerged in the past years to an industrially
adopted exchange format for (also safety-critical) embedded software architectures, model checking
has been seldom applied to Amalthea models so far. This work presents a simple and extensible
translation approach from Amalthea to Promela models for analysis with the widely used Spin
model checker. This is a first step towards applying standard state-of-the-art model checkers to
Amalthea.

Keywords: Amalthea; model checking; timing verification; safety; Promela

1 Motivation

During many industrial and scientific research projects in the past years, Amalthea [Ec20]
has established itself as a modeling standard for multi-core hardware/software (HW/SW)
systems. It focuses on timing behavior of these systems and is supported as an exchange
format by a growing number of industrial and academic tools. Although not bound to the
automotive domain, Amalthea supports many concepts from the AUTOSAR [Na09]
and OSEK [OSEK] standards and is therefore primarily targeted to automotive embedded
software.

By their nature, many automotive embedded systems are safety-critical (driver assistance
systems, for example). Safety standards such as ISO 26262 require a high demand of
verification effort during development of those systems. In this paper, a verification approach
for Amalthea models is proposed that translates Amalthea models into Promela code
for verification with the state-of-the-art model checker Spin [Ho97]. In contrast to classical
simulation tools, model checkers such as Spin are able to do a full state space exploration
of the input model and therefore proof safety properties (such as task deadlines) formally.
Even if a full state space exploration is not possible, experience shows that model checking
often finds corner cases that are hard to catch using classical simulation methods.

The Spin model checker is state-of-the-art for explicit state model checking of concurrent
systems. Its input language, Promela, is a high-level language that allows a high degree of
non-determinism. The key elements of Promela are parallel processes that communicate
1 This work has been funded by the Federal Ministry of Education and Research (BMBF) as part of PANORAMA
(reference no. 01IS18057G).
2 OFFIS – Institute for Information Technology, Oldenburg, Germany, jan.steffen.becker@offis.de

Copyright © 2021 for this paper by its authors.
Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

https://creativecommons.org/licenses/by/4.0/
mailto:jan.steffen.becker@offis.de

2 Jan Steffen Becker

via message channels and shared variables. As such, it is dedicated to the verification of
concurrent systems.

The goal of this paper is to demonstrate a simple approach for model checking Amalthea
models using Spin. The focus in the translation is on simplicity and not on performance (in
terms of optimizing the Promela code for model checking with Spin). Key elements of
the approach are the following:

• It provides a way to model integer time stopwatches in Promela, together with
a simple but safe approximation for dense time. This is independent from the
Amalthea translation.

• The approach can be extended for other scheduling strategies that can be provided as
a library.

• The translation is template-based, so it can be extended easily to support additional
Amalthea elements.

This work is structured as follows. It starts with a short introduction of Amalthea and
Promela in Sections 2 and 3. Then, in Section 4, the approach for modeling time is
described, with the possibility to stop clocks and with an extension that allows the application
of dense time models. The translation of Amalthea to Promela is finally presented in
detail in Section 5 and a few experimental results are reported in Section 6. The paper closes
with a short summary of related work in Section 7.

2 The Amalthea Meta-Model

The Amalthea Meta-Model is an emerging standard for the exchange of multi-core
HW/SW architectures between analysis, simulation and design tools. It mainly focuses on
timing behavior. It covers many concepts that originate from the AUTOSAR and OSEK
standards. Amalthea is divided into a couple of sub-models that target different parts of
the design. In this work, the following are relevant.

Software model describes the software units (tasks and runnables) of the system including
an abstraction of the control flow.

Hardware model defines the layout of the executing hardware environment, with a focus
on communication paths.

OS model characterizes the operating system (OS), i. e., the task schedulers, synchroniza-
tion mechanisms, and timing overheads caused by OS activities such as context
switches. In this paper, schedulers and OS Events are used from the OS model.

Model Checking Amalthea with Spin 3

Stimuli model contains the activation patterns for tasks. This publication considers time-
triggered (i. e. periodic) stimuli only.

Mapping model brings all the parts together by describing the allocation from software
and data to hardware.

In the context of this work, the most important part is the software model. Its basic elements
are so-called tasks and runnables. A tasks is the smallest unit of software that is managed
by a scheduler in the OS and assigned to a core for execution. A task is in most cases a
sequence of runnables which in turn can be seen as an equivalent of a function. Tasks and
runnables are modeled as so-called activity graphs in Amalthea, whereby a single item
in this graph is an abstraction of low level processor instructions, such as memory access,
computations, or synchronization primitives. The relevant parts of the software model are
described in more detail during the translation in Section 5. A complete documentation of
Amalthea can be found online3.

3 Promela and the Spin model checker

This section gives a short overview of the Promela syntax and semantics used in this paper.
For a more comprehensive definition the reader is referred to the Spin manual [Ho04] or
the extensive online documentation4.

The primary elements of Promela are processes. A process is declared using the keyword
proctype. Active processes (marked with the keyword active) are instantiated automatically,
other processes must be instantiated explicitly from within other processes.

The process body is a sequence (or, more precisely, a graph) of statements separated by
; or ->5. The syntax is a mixture of C and Dijkstra’s guarded commands. A statement is
enabled if it can be executed in the current state, otherwise it blocks. In Promela, Boolean
expressions are statements that do not have a side-effect and are enabled whenever they
evaluate to true. Branching is possible using if and do blocks. A do block is repeated until
a break statement is reached. A branch in an if or do block is enabled whenever its first
statement, called its guard is enabled. If more than one branch is enabled, one is selected
non-deterministically; if none is enabled, the whole block blocks.

Normally, in each step one non-blocked process is selected non-deterministically to execute
one statement. A sequence of statements can be made atomic by surrounding them with
an atomic block. However, atomicity is lost, i. e., another process can gain control, when a
statement blocks, and resumed when the blocking statement becomes enabled (which does

3 https://www.eclipse.org/app4mc/help/app4mc-1.0.0/index.html

4 http://spinroot.com/spin/Man/promela.html

5 As a convention, -> is used after the first statement in an if or do branch. Beware that the -> is overloaded in
Promela and also used as part of an inline if-then-else.

https://www.eclipse.org/app4mc/help/app4mc-1.0.0/index.html
http://spinroot.com/spin/Man/promela.html

4 Jan Steffen Becker

not mean that the process gains control immediately). An atomic block is enabled whenever
its first statement, the guard, is enabled.

Processes communicate via shared variables and message channels. In this work, only a
special type of channel is used, so-called rendezvous channels. In a rendezvous, a message
is passed between two processes if the send and receive statements are executed at the same
time. Otherwise, send and receive statements block until the rendezvous can be executed.
The advantage of rendezvous channels via buffered communication is that no message queue
needs to be stored in the state vector, so they are very cheap during verification. Messages
are sent using the ! and received using the ? operator. A message consists of multiple fields
separated by commas on the right-hand side of the operator. By convention, the first field
contains the message type, and the remaining fields message parameters.

Special statements used in this work are the skip statement that exists for syntactic reasons
and does nothing, the else statement that is only valid as a guard in an if or do branch and
enabled when no other branch is enabled, and the timeout statement that is enabled only if
no other process can execute.

4 Modeling Time in Promela

By design, Promela does not have a notion of time. In the following, it is described
how time progress can be explicitly modeled, though. Although many approaches for
modeling clocks in Promela have been proposed [BD98; MMJ11; TC96; Tr07], none
fits all the needs of this paper: Because we need to model preemptive processes with
non-deterministic execution times, we need a wait function that suspends the calling
proces for a non-deterministic amount of time drawn from some interval [CMIN, CMAX].
Furthermore, time is only accounted when an enablement condition COND evaluates to true.

The main idea is to use a global time increment variable delta and Promela’s timeout
statement. Processes that want to wait for an amount of time, communicate the minimum
time delay until their next action to a timing supervisor process. This process uses the
timeout statement to initiate and coordinate a time increment whenever no other (untimed)
progress is possible in the system. Listings 1 and 2 show the Promela code for the waiting
process and the timing supervisor. Their interaction is visualized in Figure 1. The clk
variable ist used to track elapsed time. The Boolean step variable in lines 6 and 9 of
Listing 1 works as a synchronization barrier. Initially, step is 1. The expression step == 0
cannot be passed unless the timing supervisor process initiates a time step by setting step
to 0. When this happens, all the processes that are in a waiting state start executing again
and adjust delta_min and delta_max in order to agree on the minimal and maximal delay
until the next action. Afterwards, the supervisor process selects a time increment delta and
resets step to 1, which starts a new discrete step. In the proposed implementation, one of
{𝛿min, 𝛿min + 1, 𝛿max} is selected (provided 𝛿min < 𝛿max), which allows reaching all possible
time increments as well as to “shortcut” larger ones in order to find safety violations earlier.

Model Checking Amalthea with Spin 5

Waiting processes stay in a loop for multiple time steps, whereby they participate in the
election process and increment their clock only if the COND constraint evaluates to true.
This allows later on in Section 5 to disable time progress for preempted tasks.

1 inline wait(CMIN, CMAX, COND) {
2 atomic {
3 clk = 0;
4 do
5 :: clk >= CMIN -> COND; break
6 :: clk < CMAX -> COND && step == 0;
7 delta_min = MIN(delta_min, MAX(CMIN - clk,1);
8 delta_max = MIN(delta_max, CMAX - clk);
9 step == 1; clk = clk + delta
10 od
11 }
12 }

List. 1: Waiting for an amount [CMIN, CMAX] of time.

1 do
2 :: timeout -> d_step {
3 delta_min = MAX_TIME; delta_max = MAX_TIME;
4 step = 0 };
5 timeout;
6 atomic {
7 if
8 :: true -> delta = delta_min
9 :: delta_min < delta_max -> delta = delta_max
10 :: delta_min < delta_max -> delta = delta_min + 1
11 fi ; send_event(TIME_STEP,delta); step = 1;
12 }
13 od

List. 2: Timing supervisor

It has been shown by [Fe07] that many problems, including safety properties such as
satisfaction of deadlines, are undecidable for preemptive scheduling in dense time. As a
consequence, there is no exact encoding technique for dense time clocks that guarantees a
finite state space. Hence, classical abstraction techniques such as region automata [AD94]
or difference bound matrices (DBMs) that are exact for timed automata, can be adopted
to preemptive scheduling only in some special cases [Fe07] (e. g. deterministic response
times that usually do not apply to Amalthea) or for the price of (theoretically unbounded)
over-approximations [CL00]. The approach in this work is to provide a simple but safe
integer-time over-approximation for the dense time clock values. Because clock values are
only compared to integer constants, it is sufficient to store the integer part of the clock values
in the state space, provided that for any reachable state (𝑠, 𝜈) with real-valued clock vector
𝜈R, the state (𝑠, b𝜈c) is reachable in the discretized approximation. The approximation
is based on the following observation: Assume that in some dense time run, a clock 𝑐

6 Jan Steffen Becker

.. : Task :Timing Supervisor

timeout

step := 0

all tasks

choose
timeout

step := 1

all tasks

Fig. 1: Interaction of tasks with timing supervisor

is resumed in some step 𝑖 and runs until being stopped in some step 𝑗 > 𝑖. Let’s denote
the values of 𝑐 in steps 𝑖 and 𝑗 by 𝑐𝑖 ≤ 𝑐 𝑗 ∈ R≥0, and the time stamps of these steps by
𝑡𝑖 ≤ 𝑡 𝑗 ∈ R≥0. It holds 𝑐 𝑗 − 𝑐𝑖 = 𝑡 𝑗 − 𝑡𝑖 which implies

b𝑐 𝑗c = b𝑐𝑖c + b𝑡 𝑗c − b𝑡𝑖c + 𝑒 with 𝑒 ∈ {−1, 0, 1} (1)

Figure 2 shows a fictive evolution of some clock 𝑐 that contains all three cases for 𝑒. Values
of 𝑐 are displayed at begin and end of each interval where 𝑐 is running, indicated by gray bars.
Note, that the number of task preemptions within some time interval is usually bounded,
which in turn limits how the error accumulates over time. Choosing a smaller step size
reduces the error.

𝑡0=0 𝑡1=0.4 𝑡2=1.6 𝑡3=2.6 𝑡4=3.8 𝑡5=4.2 𝑡6=5.2 𝑡7=5.8

𝑐0=0 𝑐1=0.4 𝑐2=0.4 𝑐3=1.4 𝑐4=1.4 𝑐5=1.8 𝑐6=1.8 𝑐7=2.4
𝑒=0 𝑒=−1 𝑒=1

Fig. 2: Illustrating example for Equation (1)

In a dense time interpretation of the Promela model, delta = b𝑡 ′c − b𝑡c contains the
difference between the integer parts of the current and last time points, and the clk variable
tracks the integer part of a dense time clock. Listing 3 extends the wait function from
Listing 1 and adds adjustments to clk for the different possibilities for the error 𝑒. This is
done by tracking (in the suspended variable) whether the clock was suspended during the
last time step, and, in that case, allow alternative time increments clk := clk + 𝛿 ± 1.

5 Encoding of Amalthea

In this section, the translation of an Amalthea model into Promela is described.
Additionally to the timing supervisor which is part of the initial Promela process, a

Model Checking Amalthea with Spin 7

1 inline wait(CMIN, CMAX, COND) {
2 atomic {
3 clk = 0; suspended = false;
4 do
5 :: clk >= CMIN -> COND; break
6 :: clk < CMAX ->
7 if
8 :: COND && step == 0 ->
9 delta_min = MIN(delta_min, MAX(CMIN - clk, 0));
10 delta_max = MIN(delta_max, CMAX - clk);
11 step == 1;
12 if
13 :: true -> clk = clk + delta
14 :: suspended && clk + delta > 0 -> clk = clk + delta - 1
15 :: suspended -> clk = clk + delta + 1
16 fi; suspended = false
17 :: !COND && step == 0 && !suspended -> suspended = true
18 fi
19 od
20 }
21 }

List. 3: Waiting for an amount [CMIN, CMAX] of time, with dense time adjustment

process is created for each task, each scheduler, each time-triggered stimulus, and each
timing constraint. These processes communicate via rendezvous channels.

Amalthea elements that store state information are encoded as global variables. The
Promela encoding uses global variables for mode labels, OS events, task states, and
activation counters.

Mode labels are used in so-called mode switches to model operation-mode dependent
control flow and mode changes. Mode labels can be shared by multiple tasks. For
each mode label 𝑚, the translation introduces a global variable var𝑚.

OS events are synchronization primitives belonging to the operating system. OS events
are global Boolean variables and are encoded in Promela as such. However, the
handling is special: The owner task of an event can wait for one or a set of events to
be set. In Amalthea, this may either be passive waiting, i. e., the task switches to
waiting state and gets activated once the event is set, or active waiting meaning the
task stays in running state while waiting. Other tasks may set an OS event to inform
the owner about some event, e. g., some data now being ready for processing.

Task execution states are stored in a global array named states. We assign to every task
𝑇 some index 𝐼𝐷𝑇 in this array. The advantage of an array over one state variable per
task is that scheduler implementations in Promela can be easily reused: The task

8 Jan Steffen Becker

IDs (i. e. indices in the state array) are sent to a scheduler via its comm𝑆 channel with
an activation request. So there is no need to hardcode execution state variables in the
scheduler implementation.

The prototype implements the extended OSEK task state automaton [OSEK] shown in
Figure 3. The original state automaton defined by Amalthea is an extension of it that
introduces variants of the running and preempted states that are entered when the task is
actively waiting, or preempted during active waiting, respectively. These task states are
purely conceptional, however, so it is possible to use the simpler OSEK task automaton
without changing analysis results. The currently executing task is in the running state, and
tasks that are ready for execution are in the ready state. Initially, and after termination (until
the next activation), tasks are in the suspended state. In the Promela translation proposed
in this work, the task process can send activate, wait, release, and terminate messages to the
scheduler process, which acknowledges them by changing the task state accordingly. At
the same time, the scheduler can start or preempt other tasks, according to the scheduling
strategy. In a fixed-priority preemptive scheduling, for example, it will always put the highest
priority task to running.

SUSPENDED preemt

RUNNING

start

READY

WAITING

resume

terminate

activat
e

wait

Fig. 3: Extended OSEK task state automaton

Listing 4 shows the Promela code frame for tasks. The variable trigg𝑇 counts pending
activations for task 𝑇 . For tasks with a periodic stimulus, for example, this counter is
incremented by a stimulus process as shown in Listing 5. The task frame is an infinite
loop. At start of the loop, the process waits for some pending activation. When there is a
pending activation, the task process sends a message with an activation request, its ID and
scheduling parameters (the task priority 𝑝𝑇 in this case) to its scheduler 𝑆, via the channel
comm𝑆 . Then, the instructions (activity graph items in Amalthea) of the task are processed.
Every item in the instructions sequence is an atomic block that is guarded by the condition
states[𝐼𝐷𝑇]==RUNNING, so they are only processed when the task has been put into running
state by the scheduler. At the end of the loop, a termination signal is sent to the scheduler.

In the following, the translations of individual activity graph items are described. First of
all, calls to other Runnables are inlined during translation.

Ticks are the primary element in Amalthea to model execution time. Ticks are
an abstraction of some arbitrary instruction sequence that is characterized by
an lower (𝑙) and upper (𝑢) execution time bound. Ticks are translated as
wait(𝑙, 𝑢, states[𝐼𝐷𝑇]==RUNNING). Here we see the need for the COND parameter
in the wait function: Time is only consumed when the task is in running state.

Model Checking Amalthea with Spin 9

1 active proctype task𝑇 () {
2 do
3 :: atomic {trigg𝑇 > 0 -> trigg𝑇 --;
4 comm𝑆!ACTIVATE,𝐼𝐷𝑇 ,𝑝𝑇 };
5 /* instructions sequence */
6 atomic {states[𝐼𝐷𝑇] == RUNNING;
7 comm𝑆!TERMINATE,𝐼𝐷𝑇 ,0 }
8 od
9 }

List. 4: Task process frame

1 active proctype stimSt() {
2 int clk, t_next;
3 atomic { t_next = 𝑂;
4 do
5 :: wait(t_next, t_next, true) ;
6 t_next = 𝐷;
7 /* for each stimulated task 𝑇: */
8 trigg𝑇 = trigg𝑇 + 1
9 od }
10 }

List. 5: Promela process for a simple periodic
stimulus St with recurrence (i. e. period) 𝑅 and
offset 𝑂.

Switches are used to model control flow. In Amalthea, there are two types of switches:
In a mode switche each branch is guarded by a Boolean condition over the current
values of mode labels. In a probability switch each branch is taken with some fixed
probability, independent from the system state. A switch is encoded as an if block

if :: states[𝐼𝐷𝑇]==RUNNING && 𝑐1 -> /* instructions of branch 1 */
:: states[𝐼𝐷𝑇]==RUNNING && 𝑐2 -> /* instructions of branch 2 */
/* ... */
:: states[𝐼𝐷𝑇]==RUNNING && 𝑐𝑛 -> /* instructions of branch 𝑛 */ fi

For mode switches, 𝑐𝑖 is the enabling condition for the 𝑖th branch, conjunct with
¬𝑐1 ∧ · · · ∧ ¬𝑐𝑖−1 to make the branches prioritized. For probability switches, any
branch is possible, so set 𝑐1 := · · · := 𝑐𝑛 := true.

Label access is not part of the Promela code in general, except for write access to mode
labels, which is translated as atomic { states[𝐼𝐷𝑇]==RUNNING; var𝑚 = 𝑣 }, where
𝑚 is the label written, and 𝑣 the new value (Amalthea uses symbolic constants
to represent values, which are mapped to integers during the translation). Other
label access is not translated, because Amalthea does not model data values and
therefore it does not affect the state space. Of course it is possible to consider the
communication overhead in the translation, though, by inserting appropriate wait
statements at the point of label access. Possible approaches for calculating safe
bounds on the communication overhead are presented in [Hö19; Kr19]. Simulating
communication overhead (e. g. in form of bus transactions) is outside of the scope of
this publication.

OS events are handled as follows: Setting and re-setting OS events is translated the same as
mode label write access above, where the Boolean variable var𝑒 for event 𝑒 is set to
true in case of setting events, and to false in case of a reset. Active waiting for some
event 𝑒, i. e., the task is continuously running while waiting, can be translated very
easily to states[𝐼𝐷𝑇]==RUNNING && var𝑒. Because in Promela conditions block a

10 Jan Steffen Becker

process until they evaluate to true, this statements causes the task process to wait for
the event. Passive waiting is a bit more complex:

1 if :: states[𝐼𝐷𝑇]==RUNNING && var𝑒 -> skip
2 :: atomic { states[𝐼𝐷𝑇]==RUNNING && ! var𝑒 ->
3 comm𝑆!WAIT,0;
4 states[𝐼𝐷𝑇]==WAITING && var𝑒;
5 comm𝑆!RELEASE,𝑝𝑇 } fi

For safety properties, such as event chains and worst-case response times, special processes
are generated that act as observers. These cannot be implemented outside the simulation
model (as so-called never claims) as usual in Promela, because otherwise it is not possible
in Promela to use helper variables for tracking elapsed time. So the observers are regular
active processes. For sending events to the observers, a macro send_event(evt, data)
is generated that logs6 the event and sends it via rendezvouz channels to the observers.
The observers handle events in an atomic sequence and acknowledge them via another
rendezvouz channel. This passes control back to the process that sends the event without the
possibility of being interrupted by other processes. A special message TIME_STEP is used by
the timing supervisor to inform the observers about time increments.

For reason of space, it is not possible to show scheduler and observer implementations
here. The interested reader can find examples in the source code available online (see next
section).

6 Evaluation

In order to evaluate the approach, the translation has been applied to three example
Amalthea models: The democar and state machine examples shipped with the APP4MC
platform, and the solution to the 2019 FMTV verification challenge provided by Krawczyk
et al. in [Kr19]. The Amalthea and Promela files can be found online7. All models have
been generated with a step size of 100𝜇𝑠, using the dense time approximation.

• Spin is able to do a full state-space exploration of the state machine example. It has
1158 states and 1842 transitions.

• In the democar example, Spin finds the deadline violation for Task_10ms. Without
observers, a full state space exploration results in about 27 × 106 states and 65 × 106
transitions.

• Because a Promela implementation of the time-slice scheduling used in the FMTV
challenge for the GPU tasks is future work, a fixed priority preemptive scheduling

6 The prototype implementation inserts printf statements into the code that are emitted by Spin when replaying a
counterexample trail. The output can be used to produce an execution trace of the Amalthea model.

7 https://gitlab.com/jansbecker/ase2021

https://gitlab.com/jansbecker/ase2021

Model Checking Amalthea with Spin 11

has been used also for the SFM and Localization tasks in the model. When assigning
the same priority to both tasks, a deadline violation for the SFM task is found after
15681 steps (using depth-first search).

Within the experiments, no false-positive deadline violations due to the over-approximation
of dense time have been reported. So it seems that the price of over-approximation is low.

7 Conclusion and Related Work

In this work, a translation from Amalthea to Promela is presented that allows verification
of safety properties of Amalthea software models using the Spin model checker. The
translation is surprisingly straight forward after making a few building blocks, such as
stoppable clocks, available in Promela.

Most verification tools for Amalthea use simulation and static analysis approaches. The
most famous industrial tools of this kind are probably the TA Tool Suite8 by VECTOR and
the INCHRON Tool Suite9. Besides these, a number of verification techniques have been
applied to Amalthea models in the context of case studies, e. g., [Co16; Hö19; Kr19].
Among those, [St16] is the only one known to the author that applies explicit state model
checking to Amalthea. Compared to the Promela translation presented here, the model
checker used in that work, RTAna2, is specialized to the analysis of task networks.

Timing extensions to the Spin model checker, respectively approaches to model time in
Promela, have been published already some years ago. The best known ones are probably
[BD98; TC96], some more recent ones can be found in [MMJ11; Tr07]. Among these,
only [Tr07] handles stopwatches, which is essential for modeling preemptive scheduling.
Compared to the cited work, the approach developed here is less simplistic due to the com-
bination of clock suspension, variable step sizes and a dense time adjustment. Nevertheless,
it is worth seeking for a more efficient implementation that needs fewer process interactions
per time step. Also, further research investigates into other approximations for dense time
that hopefully guarantee bounded errors.

References

[AD94] Alur, R.; Dill, D. L.: A theory of timed automata. Theoretical computer science
126/2, pp. 183–235, 1994.

[BD98] Bošnački, D.; Dams, D.: Integrating real time into Spin: A prototype implemen-
tation. In: Formal Description Techniques and Protocol Specification, Testing
and Verification. Springer, pp. 423–438, 1998.

8 https://www.vector.com/de/de/produkte/produkte-a-z/software/ta-tool-suite/

9 https://www.inchron.com/tool-suite/

https://www.vector.com/de/de/produkte/produkte-a-z/software/ta-tool-suite/
https://www.inchron.com/tool-suite/

12 Jan Steffen Becker

[CL00] Cassez, F.; Larsen, K.: The impressive power of stopwatches. In: International
Conference on Concurrency Theory. Springer, pp. 138–152, 2000.

[Co16] Concepcin, J. R.; Gutirrez, J.; Medina, J.; Harbour, M.: Calculating latencies in
an engine management system using response time analysis with mast. In: 7th
WATERS, FMTV Challenge. 2016.

[Ec20] Eclipse Foundation, Inc.: Eclipse APP4MC, https://www.eclipse.org/
app4mc/, accessed Dec. 15, 2020.

[Fe07] Fersman, E.; Krcal, P.; Pettersson, P.; Yi, W.: Task automata: Schedulability,
decidability and undecidability. Information and Computation 205/8, pp. 1149–
1172, 2007.

[Ho04] Holzmann,G. J.: The spinmodel checker: primer and referencemanual. Addison-
Wesley, 2004.

[Hö19] Höttger, R.; Ki, J.; Bui, T. B.; Igel, B.; Spinczyk, O.: CPU-GPU Response Time
and Mapping Analysis for High-Performance Automotive Systems. In: 10th
International Workshop on Analysis Tools and Methodologies for Embedded
and Real-time Systems (WATERS). June 2019.

[Ho97] Holzmann, G. J.: The model checker SPIN. IEEE Transactions on software
engineering 23/5, pp. 279–295, 1997.

[Kr19] Krawczyk, L.; Bazzal, M.; Govindarajan, R. P.; Wolff, C.: Model-based Timing
Analysis and Deployment Optimization for Heterogeneous Multi-Core Systems
using Eclipse APP4MC. In: 2019 ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems Companion (MODELS-C).
IEEE, pp. 44–53, 2019.

[MMJ11] Marquet, K.; Moy, M.; Jeannet, B.: Efficient encoding of SystemC/TLM in
Promela. In: DATICS-IMECS. 2011.

[Na09] Naumann, N.: Autosar runtime environment and virtual function bus. Hasso-
Plattner-Institut, Tech. Rep 38/, 2009.

[OSEK] OSEK/VDX Operating System Specification, 2.2.3, OSEK Group, Feb. 2015.
[St16] Stierand, I.; Reinkemeier, P.; Gerwinn, S.; Peikenkamp, T.: Computational

Analysis of Complex Real-Time Systems: FMTV 2016 Verification Challenge.
In: 7th WATERS FMTV Challenge. 2016.

[TC96] Tripakis, S.; Courcoubetis, C.: Extending Promela and Spin for real time. In:
International Workshop on Tools and Algorithms for the Construction and
Analysis of Systems. Springer, pp. 329–348, 1996.

[Tr07] Traulsen, C.; Cornet, J.; Moy, M.; Maraninchi, F.: A SystemC/TLM semantics
in Promela and its possible applications. In: International SPIN Workshop on
Model Checking of Software. Springer, pp. 204–222, 2007.

https://www.eclipse.org/app4mc/
https://www.eclipse.org/app4mc/

