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Abstract. The subcellular localisation of proteins in living cells is a
crucial means for the determination of their function. We propose an
approach to realise such a protein localisation based on microscope im-
ages. In order to reach this goal, appropriate features are selected. Then,
the initial feature set is optimised by a genetic algorithm. The actual
classification of possible protein localisations is accomplished by an in-
cremental neural network which not only achieves a very high accuracy,
but enables on-line learning, as well.

1 Introduction

Location Proteomics, i.e. the automatic subcellular localisation of many or all
proteins of a cell, has made considerable progress during the last decade [1].
By investigating fluorescence images of tagged proteins in living cells, essential
information about their functions can be obtained. This knowledge is applicable
for the simulation of cell behaviour which might facilitate the investigation of
diseases and the development of novel drugs.

2 State of the art and new contribution

In comparison to the direct application of pixel intensities, the usage of numer-
ical features has proven advantageous for the classification of fluorescence im-
ages showing tagged proteins [1, 2]. The feature sets proposed in the literature
comprise, for instance, morphological data of binary image structures, Zernike
moments and edge information. Wide-field microscope images are usually pre-
processed by digital deconvolution in order to enhance the contrast.

Since unnecessary features adversely influence the result of the classification
if too small a number of training samples is available and increase the com-
putational effort, they should be removed. Several methods have been applied
in order to achieve this goal [3]. At this, stepwise discriminant analysis (SDA)
and a genetic algorithm have attained particularly good results. As classifiers,
multilayer perceptrons (MLPs) [4] and support vector machines (SVMs) [3] are
utilised frequently.
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We propose an approach to protein localisation in living Spodoptera frugiper-
da cells (Sf9) which does not require digital deconvolution as a preprocessing
step, thereby reducing the computational effort. In addition, we employ a classi-
fier which has been developed for incremental learning. So, in principle, potential
users can incorporate new data during the application. The relevance of features
is determined by a genetic algorithm. In contrast to other approaches, here, no
binary masking is performed

(
cf. [3, 5]

)
. So, discontinuities in the optimisation

function are avoided. Finally, the protein localisation is adapted for a cell recog-
nition method introduced in [6]. Since automatic cell recognition constitutes a
crucial precondition for performing an automated protein localisation, this con-
nection enables a better collaboration enhancing the performance of the final
complete system.

3 Methods

The protein localisations are classified based on three different types of features:

(i) Zernike moments [7] which are sensitive to the position of tagged proteins
with respect to the surrounding cell,

(ii) granulometries [8] enabling the investigation of the shape and the size of
protein accumulations directly using the image intensities,

(iii) and fractal features [9] allowing for the determination of the granularity and
self-similarity at different scales.

Instead of utilising classifiers which compute discrimination planes, we em-
ploy the simplified fuzzy ARTMAP (SFAM) [10], an incremental neural network.
Its neurons span hyper-rectangular regions in the feature space – the categories.
Their maximal size is determined by the vigilance parameter ρ. An input which
is to be classified receives the label of the best-matching category enclosing it.
Unknown inputs can easily be rejected, as they do not belong to an existing
category. We have extended the subspace of known inputs by a small distance τ
from each category so as to cope with slightly varying data.

In order to assess the importance of the n available features, each input x is
multiplied by a weight vector w. Its components wi as well as the parameters ρ
and τ are evolved by a genetic algorithm utilising rank-based selection in order
to handle slight differences in the fitness values of the population. Furthermore,
arithmetic cross-over and mutation for continuous-valued genes are employed
[11]. The fitness f(X) corresponds to the cross-validation accuracy acc(X) of the
classifier X diminished by a punishment for large values of τ and high weights
wi. These punishments are scaled by the constants cτ and cw, respectively

(
see

(1)
)
.

f(X) = acc(X)− cτ · τ − cw · 1
n

n∑

i=0

wi (1)

So, only the weights of features which are important for obtaining a good
accuracy receive high values and the considered subspace is reduced. After a run
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Fig. 1. Protein distributions in Sf9 cells: The white contours represent the surrounding
cells which were manually extracted from corresponding bright-field images by biolog-
ical experts
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of the genetic algorithm, all weight vectors are normalised in such a way that
the maximal component equals 1 in order to enable the usage of the possible
input space

(∀i ∈ {1, · · · , n} : xi ∈ [0, 1]
)

and to avoid multiple solutions of the
optimisation function resulting from scaling the occupied region of the feature
space. By considering the weights of the final generation, conclusions about the
relevance of features can be drawn, as these individuals are adapted to the task
at hand.

4 Results

Our approach was evaluated on 972 images of single cells manually extracted
from 99 bright-field micrographs taken in parallel with each fluorescence image.
Here, six different protein locations were considered: nucleus (150 cells), cytosol
(164 cells), peroxisomes (71 cells), lysosomes (222 cells), mitochondria (268 cells),
and plasma membrane (97 cells). Protein distributions of these six classes are
depicted in Fig. 1.

In addition to the manually segmented cells, 5368 cell images were generated
automatically using an active contour approach [6]. This method yields segments
which resemble the manually determined cells. As we plan to utilise it for cell
recognition, the resulting segments are more likely to occur during an automated
application of our protein localisation technique. In addition, the number of
training samples is increased which alleviates the classification task.

After computing the features of every cell image, the resulting data set was
split into ten disjoint parts. Five groups of eight data sets each were used for
the determination of the input weights by our genetic algorithm. Here 100 gen-
erations with 100 individuals were applied after performing preliminary trials.
Results from the literature confirm that these values are sufficiently high

(
cf. [3]

)
.
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Table 1. Confusion matrix for manually segmented cells. The table entries represent
the number of cells from a specific class i (row) which were recognised as class j
(column). A correct classification is characterised by equal labels i and j

classification result
cell compartment (a) (b) (c) (d) (e) (f) unknown

nucleus (a) 145 3 0 0 1 1 0
cytosol (b) 0 156 0 4 3 1 0
peroxisomes (c) 0 0 63 2 5 1 0
lysosomes (d) 1 5 0 195 18 3 0
mitochondria (e) 0 0 2 14 250 2 0
plasma membrane (f) 0 0 2 3 5 87 0

The parameters cτ and cw were chosen in such a way that the fitness is mainly
determined by the accuracy (cτ=0.02 and cw=0.1). At this, only slight variations
of the fitness were intended, since the accuracy should not be decreased by the
feature selection method.

The evaluation occurred based on the remaining groups of two data sets
averaging the results (five-fold cross-validation). In order to determine the fit-
ness value of a classifier, eight-fold cross-validation was applied in each group (see
Section 3). During the evaluation, manually and automatically obtained samples
were distinguished, since the manually segmented cells are more biologically rele-
vant. At this, an accuracy of 92% was achieved. Table 1 shows the corresponding
confusion matrix. For the automatically determined samples, accuracies up to
94% were reached.

In order to reduce the dimensionality of the feature space, a computation
of the mean weight vector over all individuals of the final generation occurred.
Then, inputs with mean weights smaller than a threshold τw were rejected (see
Fig. 2). Using a value of τw=0.9, the number of required features n could be
decreased from 64 to 19.2 on average without impairing the classification results.
Higher values of τw resulted in considerably reduced accuracies.

5 Discussion

We have proposed an approach to the localisation of proteins with a high accu-
racy. The number of the employed features, which were chosen with respect to
the task at hand, was significantly reduced by means of a genetic algorithm. In
contrast to known approaches, our method enables on-line learning and does not
require optical deconvolution. Furthermore, it can be applied in an automated
context, since it is adapted for an automatic cell recognition method.
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Fig. 2. Accuracy with respect to the manually segmented cells and number of required
features n, which decreases if the threshold τw is rising or the accuracy remains high
for values of τw up to 0.9
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