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Abstract. A novel model-based identification of white brain matter in
OCT A-scans is proposed. Based on nonlinear energy operators used in
the classification of neural activity, candidates for white matter struc-
tures are extracted from a baseline-corrected signal. Validation of candi-
dates is done by evaluating the correspondence to a simplified intensity
model which is parametrized beforehand. Results for identification of
white matter in rat brain in vitro show the capability of the proposed
algorithm.

1 Introduction

Optical coherence tomography (OCT) is a powerful, real-time technique for in-
vestigating depth structure of biological tissue. Since entering the field of medical
imaging it has been well established for imaging purposes in certain medical dis-
ciplines e.g. ophthalmology and dermatology [1]. Major advantages are the high
resolution, the video-rate scanning capability, and the non-invasive nature of
OCT-imaging. Recent research results show that OCT is also applicable to im-
age brain morphology ex vivo and in vitro [2]. This motivates the usage of OCT
for identification of brain structure which is of interest in other neurosurgery ap-
plications. As white matter provides a high-contrast structure in brain tissue, it
is one of the best candidates for OCT-based identification. This contribution con-
centrates on an automated identification of white matter based on OCT-signals.
Based on a simplified signal model of OCT and spike detection algorithms from
neural acitivity analysis, a two-stage identification process is proposed. Capabil-
ity of the algorithm is shown by identifying white matter in a coronal section of
a rat brain.

2 State of the art and new contribution

Although OCT has been widely used to image tissue structures, little work has
been done on brain imaging. Possible identification of white matter in OCT
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images has been shown for rat brains in vitro [3]. The authors analyzed the light
intensity and attenuation coefficient of the backscattered signal based on Beer’s
law

I(z) = I0e
−2µtz (1)

where I0 is the initial intensity, µt denotes the attenuation coefficient and z
corresponds to the penetration depth. Results showed that I0 and µt for a wave-
length of 1300nm differ for various tissue structures (e.g cortex, external capsule)
allowing a clear distinction of white and grey matter. In [4], the authors used a
catheter-based OCT probe to examine the possibility of optical guidance in plac-
ing a deep brain stimulation electrode. OCT images were acquired by advancing
the probe on characteristic tracks in human brains in vitro. Their results show
that myelinated fibres are strong backscatterers of light and that penetration of
light is shallow. Evaluation of OCT scans in both cases has been done manu-
ally and only for exclusive areas of white or grey brain matter. In areas where
structures with different optical properties are scanned, Beer’s law in equation
(1) does not hold for the entire scan range. If multiple fibres of white matter
are embedded into gray matter the signal features multiple peaks which are
superimposed to the exponential decay. This establishes a backscattered signal
featuring spiking intensity characteristics. Unfortunately, OCT images are sub-
ject to speckle noise which considerably distorts the acquired signal. Speckle
noise is usually modeled as multiplicative Rayleigh distributed noise causing a
signal-to-noise ratio (SNR) with a value of up to 1. This motivates the use of
spike sorting and classification algorithms developed for analysis of neural ac-
tivity where the signal-to-noise ratio is very low. Based on the model given in
equation (1), a method of automated identification of white matter brain struc-
tures is proposed. It significantly improves the processing of OCT images of brain
structures. This can be used to support an online validation of a desired path,
to detect important areas or to improve consecutive steps like segmentation and
registration to e.g. histology informations. Automated identification therefore
leads to a better integration of OCT into neuronavigation settings.

3 Methods

Brain from a freshly decapitated rat was dissected in an ice-cold Krebs-bicar-
bonate buffer. A coronal section crossing the cortex, the external capsule and the
striatum was scanned by a Swept Source OCT Microscope System (Thorlabs,
Inc., Newton, USA) with a center wavelength of 1325nm and an axial scan rate
of 16kHz. The field of view was was 2.14mm in depth (y), 3mm in transverse
direction (x) and 5mm in dorsal direction (z). Figure 1 shows the coronal section
and the intensities of a lateral OCT B-scan crossing the cortex, the external
capsule and the striatum. Figure 2 shows an OCT scan at a lateral position of
x = 615µm and the corresponding filtered and baseline-corrected signal. It can be
seen that white matter corresponds to peaks in the local intensity neighborhood.
As trauma reduction in neurosurgery applications is crucial, OCT probes are
required to be as small as possible leading to a relatively small field of view.



416

Fig. 1. Coronal section and B-Scan of rat brain. Arrows mark corresponding structures

Fig. 2. (top) Log intensity versus penetration depth of a single A-scan and the corre-
sponding baseline (bottom) baseline corrected and filtered signal
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Peak identification in A-scans therefore presents a promising approach to find
candidates for automated identification of white matter structures. Detection
and sorting of spikes in noisy signals under very low signal-to-noise ratios has
been extensively researched in the analysis of neural activity. In [5], the authors
use a nonlinear energy operator (NEO) in order to extract action potentials from
a recorded signal. The NEO-operator is given as

ψNEO(x(n)) = x2(n)− x(n + 1)x(n− 1) (2)

where x(n) denotes the measured signal at time or location n. Another extraction
operator is introduced in [6]. The shift and multiply operator (SAM) is given by

ψSAM(x(n)) = x(n− 3)x(n− 2)x(n− 1)x(n) (3)

Both operators have been used for the analysis of spiky waveforms in neural
recordings which motivates the use of NEO and SAM to identify candidates of
white matter structures in OCT signals. The subsequent classification of a spike
is done by thresholding.
The proposed algorithm consists of 3 steps where the first step preprocesses
the data by baseline correction. The baseline was determined by fitting a linear
regression curve into the linear descent of the intensity curve. The baseline before
and after the descent was calculated by taking the mean within a window of
117.2µm. In a second step, the proposed operators are used to identify spikes
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Fig. 3. Detection of white matter: (top) proposed peaks; (bottom) validated peaks
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(a) NEO
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(b) SAM

in the baseline-corrected signal. This leads to a set of potential candidates for
white matter structures. The third step is used to validate a potential spike
and to determine the size of the structure by analyzing the slope in a local
neighborhood of the spike candidate. Applying the log-operator on equation (1)
yields a linear dependency of the log-intensity and the attenuation coefficient
µ. For white matter, µt takes a characteristic value. The value µt,ref for white
brain matter which can be identified by evaluating a set of test images where
the white brain matter is classified manually. The parameters I0 and µt at the
position z = z1 are subsequently identified by a fitting a linear regression curve
into the intensity curve within a local neighborhood of z1 e.g. in the interval
[z1− c1 . . . z1 + c1] where c1 denotes the size of the local neighborhood. Now, the
regression result µt is compared to the manually classified µt,ref . If µt lies in a
user defined interval [µ− σ, µ + σ], position z1 is classified as white matter.

4 Results

The proposed algorithm was tested with the following parameter settings
σNEO = σSAM = 0.02, c1 = 1 and µ = 0.005. Figure 3 shows the results of
the detection by the NEO for one A-scan. It can be seen that both operators are
able to identify peaks in noisy environment. The subsequent classification via
slope identification excludes wrong propositions (e.g. the first proposition which
corresponds to a negative spike in the baseline corrected signal). Figure 4 shows
an automated identification for all A-scans of the acquired B-scan for the SAM
operator. Identified white matter is shown as white dots in the total image. It
can be seen that the detected white matter shows good correspondence to the
manual classification.

5 Discussion

The proposed algorithm is able to detect white brain matter reliably in speckle
noise corrupted OCT A-scans. Tuning of the parameters, essentially the respec-
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Fig. 4. White matter detection for all A-scans: (left) original image with circles in-
dicating white matter areas (right) automatically identified white matter with white
dots indicate detection

tive thresholds, based on heuristic experiences might lead to better performance.
It is important to note that the algorithm is signal-based. Peaks resulting from
the stochastic speckle distribution in the A-scan image might therefore be pro-
posed falsely in the first place. The second step, however, provides a validation
of a proposition by analysing the correspondance of the local neighborhood to a
simplified OCT-intensity model. This results in a robust classification of white
structures.
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