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Abstract. In this paper, the mechanics of Eli Cartan is used, which is an alterna-
tive to the Lagrange-Hamiltonian formalism, has certain advantages in the for-
mulation of quantum electrodynamics. To demonstrate this fact, it was described
as the interaction of fermions with an electromagnetic field.

We demonstrated the possibility of using the mechanics of E. Cartan in quan-
tum field theory. Based on the use of these mechanics, additional conditions can
be introduced directly into the Cartan equations. Such conditions include, for ex-
ample, switching conditions between pulses and coordinates, as well as Lorentz
calibration conditions
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1 Introduction

The mechanics of Eli Cartan, which is an alternative to the Lagrange-Hamiltonian for-
malism, has certain advantages in the formulation of quantum electrodynamics. To
demonstrate this fact, we describe the interaction of fermions with an electromagnetic
field.

All particles that make up the Universe fall into two groups: fermions and bosons.
Graduate students of Leiden University (Holland) Samuel Gaudsmith and George Uh-
lenbeck introduced this distinction. Gaudsmith, who was more engaged in research,
noticed an additional splitting of the emission spectrum of helium atoms. Uhlenbeck,
who knew better classical physics, saw the reason for this splitting in some internal
property of the electron. Together they concluded that the electron initially has a certain
angular momentum - spin [1-4].

The foundations of quantum mechanics were only then laid, so this idea led to the
addition of a fourth quantum number (in addition to the main, orbital, and magnetic),
called the spin quantum. The electron is depicted as a tiny, rapidly spinning top, but
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such a description does not need to be taken literally. In 1928, the development by the
British physicist P. Dirac of relativistic quantum mechanics created a theoretical basis
for the spin of an electron; the guess of Gaudsmith and Uhlenbeck turned out to be very
successful [5-7].

2 Main content. Interaction of fermions with an
electromagnetic field based on Cartan mechanics

In 1925, the Austrian physicist Wolfgang Pauli concluded that two electrons couldn’t
be in the same quantum state in the same place. This principle of Pauli's prohibition lies
at the heart of the Periodic Table of Chemical Elements.

In studying the statistical behavior of electrons, the Italian-American physicist En-
rico Fermi and Dirac developed the Fermi-Dirac statistics theory. Its provisions were
subsequently extended to other particles with a half-integer spin. These particles, called
fermions, encompass all leptons and quarks. Thus, the mass of the universe is made up
of fermions [8-10].

The study of particles with zero or integer spin in 1924 was carried out by the Indian
physicist Chatyatranat Bose. While working at the University of Dhaka (Bangladesh),
Bose sent the results of his research for review to Einstein. He translated his work into
German and strongly advised him to publish it. The following year, Einstein expanded
the Bose results to include all particles that are not fermions. The statistical behavior of
such particles came to be called Bose-Einstein statistics. Particles obeying these statis-
tics, Dirac called bosons [11-13]. The carriers of all interactions — the photon in the
electromagnetic, the gluons in the strong, and the W and Z particles in the weak — are
bosons.

If two fermions cannot be in the same quantum state, then there is no such restriction
for bosons. Indeed, the more bosons are in a certain energy state, the greater the likeli-
hood that all other bosons will be in this state. This phenomenon underlies stimulated
emission in lasers when photons are brought into the same energy state. This kind of
"herd" helps to explain the superfluidity of helium and even superconductivity when
the electrons collide in pairs and act like bosons. In 1995, it was possible to reduce the
temperature of gaseous rubidium in such a way that all atoms found the same quantum
state. Such a cluster is called the Bose-Einstein condensate [9, 10].

The tendency to “loneliness” in fermions and the “sociability” of bosons make them
so dissimilar. However, this difference turns out to be decisive for the nature of the
universe. For example, if fermions united like bosons, all the electrons in the atom
would collect at the lowest energy level, and then there could be no talk of chemical
reactions, and therefore, of life.

The electromagnetic interaction is one of four fundamental interactions. It exists be-
tween particles with an electric charge [14-17]. According to the generally accepted
view, such an interaction between charged particles does not occur directly, but only
using an electromagnetic field.

In the framework of quantum field theory [11, 16], such an interaction is carried by
a massless boson — a photon.
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Fermions are among the fundamental particles that have an electric charge and par-
ticipate in electromagnetic interaction.

Along with electromagnetic, there are also weak [3, 7, 9] and strong interactions.
The electromagnetic interaction is distinguished by its long-range nature. According to
Coulomb's law, the force of interaction between charges decreases only as of the second
power of the distance. Gravitational interaction also complies with this law, but it is
much weaker than electromagnetic [17-19].

According to the classical (non-quantum) approach, electromagnetic interaction is
described by classical electrodynamics [17-20].

First, we quantize the electromagnetic field.

Consider a 2-form Q of the form:

n—fdv{dCaAvm% ap Am}—
- 20x@0xBY ) -

2%4v

!
de ax'aax'B

dA,g** ndt, v,a, =0,3 (1)

The equation of E. Cartan for her has the form:

_ 6 ,  9%av 21 _ 28V af _ 3%4Y (x) af _
0=05= [av ey O —X)8y g¥Pdt = = g*Fdt = 0
L 0%AY (%) : . . .
The equation: porr 0 — is the equation of the dynamics of the electromagnetic

field vector potential.

We introduce the vectors E and H, which also describe the electromagnetic field:

= = 194
E = —VAO - ;E (2)
H=VxA. ©)

B A0 10T, 2 _Ag0, 10°4 p_o2a°  _
V-E=-AA atV A=—-AA +C2 5 axaaxﬁ_o 4
Lorentz calibration used here:

94 o 2 4%

E-'_V'A_O_ax_a (5)
= = 19 = = 10H
VXE__EEV.A__ZE (6)

VH=Ux(TxA) =V A-ad=-v:2% pj=
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=104 1024 10 = 194 10E
= i =12 (Va0 12 1% (7

¢ T czoz  cot c ot cat’

This is the continuity equation for the energy of an electromagnetic field [21-23].

To record the energy of the electromagnetic field in the secondary quantization rep-

resentation, we express Eand H through the generalized coordinates and momenta of
the electromagnetic field:
The energy of the electromagnetic field is:

H =—[dv (E? + H?). (8)

Really:

%y (B2 4 - 2) = (B (Fx ) - - (T B)) =

c

—V-ZExH
41

This is the continuity equation for the energy of an electromagnetic field. To record
the energy of the electromagnetic field in the secondary quantization representation, we

express Eand H through the generalized coordinates and momenta of the electromag-
netic field:

H = [dK Y4 Pgy(Ohge VAT E = [ dK Yo wpig, (£)ég, (VAT
AdP_(Ka) = — [w”2)] K q_(K a)

Using Maxwell's equations

V-E=V-H=0 VUxE=-—22 §xpg=212
c ot cdt
we get V- by () = V- &5, () = 0. 9)
— - — — - - a" — . - -
VX E = [ dK Sq wpry (OV X 8z, (F) = =220 = [dK T0 =~ P (Dhgy(F)
Hence: V x &g, (7) = ?ﬁﬁa(?’) (10)
and Pz, = 0%z qr, (11)
— — — — - e aﬁ — 72 N N
VxH = [dR %o Pra(OV X hgo () = 25=[ dK Lo =K 4, (£)Eg, ().
Hence: V X hg, (7)) = wc—? CRa (12)

and Pg, (t) = Gigq (D).

(13)
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Thus, P, (t) u gz, (t) are canonical Hamilton variables, their equation:

{P I%a = PRa (14)

Ra = —0°RARq

It describes a mathematical pendulum for each momentum hK and polarization .
Let us prove that kg, are orthogonal to hgr,s for K # K', azof, as well as &g, : Using
(10) we obtain [22-25]:

w

£V x Rigg = (K)2ég,(P). (15)

c

V x (Vx &8z, (7)) = -8z, () =

Using (13) we obtain:

w

LV x 8z, (D = (—K)Zh o« (16)

Vx (¥ g, (M) = —Ahig, (7) =

Equations (15) and (16) show that &z, (7) and ki, (7) are eigenfunctions of the op-
erator - A (self-adjoint) with eigenvalues(?)z.

Hence: de é}ga . 51710/ = de Hl?a : Hﬁlar = 0w/ 0y

Therefore:
= —de (f dK dK' Yaa' O OgrQra () qgrr () X g, (F) - €gr () +
de dK Zaa’ PKa(t)PK a’(t) X hl?a(r) . hl?,ar(r)) =
= %(f dl_() dl?' Zaa’ wg wl?’ql?a(t)ql?’a’(t) f av é)l?a(f:) . é)l?rar(T_Z) +
+ [ dR AR’ Saar PPy (8) [ AV R () - Rigrr (7)) = 5  dK T (PP, (6) +
+w2§q2ia (t)). (17)

The energy of the electromagnetic field H is the Hamiltonian of the Hamilton equa-
tion for the electromagnetic field (14). And can be represented in a second quantized
form [26]:

1 = — w— 1
= EdeZa(wzl?qzl?a + le?a) = de Z(x hwl? (z_ngl?a + 2h PZI?a) =

WK

= To [ dRhog [( F P1(¢z+l\[7 qm) (F Ka_l\[; qK”‘) ]=

=Y, | dKhog (a Ra%a + E) (18)

The following notation is introduced here:

1 . Wy
= {@Pﬁa-l_l z—qu‘a (19)
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1 P
Aga = ’Zhwﬁpia - l,’z_;{ql?a (20)

As is well known, fermions obey the Dirac equation.
To obtain it, it is enough to extract the square root from the Klein-Gordon equation.
Klein-Gordon equation:

aB 62 m2 2

Cc
97 e Pt e # = 0 (21)

Using equality [24-26]: %(y’)‘yﬁ +yFy®) = g, we obtain from (21):

1 92 m2c? 92 m2c?
E(yayﬁ + Vﬁya) 9x%oxB P + w2 ¢7 0= (yayﬁ 9x%oxB P + h2 (p) =

a mc a mc

= (iy“ % + %) (iyﬁ P ?) @, from here: (iy“ P ?) Y = 0. (22)

This is the Dirac equation of the y%- matrix 4x4, and ¥- is a 4-component column
vector. This equation can also be obtained as the Cartan equation by taking the 2-form
Q in the form:

0 = [dx{d¥ Ad¥ih — dH A dt} (23)
taking H in the form:
H = [¥P{cd-p +mc?pI¥dV (24)

Then the equations of E. Cartan give:

0= =20 = ihd¥ — {cd - p +mc2pYWdt =
= —ihdP—{cd - p + mc?B}+*¥Pdt (25)
Hence:
ih2 = {cd-p+mc2B}¥ (26)

Usingd®™ =a, B =p,weobtain:
ihZ = —{cd - f + mc*B}P @7)
We introduce new matrices to write these equations in covariant form:
B=y" p*=@@9H*=1 pa=y xt=(ct7)
Multiplying equation (26) byy° = g and dividing by hc, we obtain:

(iyaaj—a—%) =0 (28)
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Thus, we again obtained the Dirac equation, and, therefore, proved the effectiveness of
the 2-form and Cartan equations, that is, the Mechanics of E. Cartan [27-29].

To quantize the Dirac field a second time, we consider the eigenvectors and eigen-
values of the operator H of equation (26):

{ca-p+ mczﬂ}V(E’, 7i') = EﬁzirV(I?’,?, i) (29)

We expand the solutions of equation (26) in these vectors:

i 6) =3z, V(K 7 i)ag(t) i=14 (30)

r# ) =Xg, V(K 7, Datg () i=14 (31)

The energy of the fermion field is equal to the sum of the energies of its quanta.
The momentum of the fermion field P  is equal to:
V — 4 component spinor, V*- complex conjugated transposed spinor.

The operator of the number of fermions N has the form:

N=[dV¥*¥ = [dV Sepr 0 atg ag V(K i, 7)V(K', i, 7) =
= 21?,1?’,1',1" a*g agrySggr8ir = L ' giag; (32)

The Hamiltonian of fermions H in the second quantization representation has the
form:

H=[dV¥*{ca-p+mc?W¥ =Sgpr v [ dV a* g agyV*(K,i,7){cd p +
+me?BYV (K, i',7) = Sggr v [ AV a* gy agryV* (K, i, F)V(K', ', #)Egry =

— N + - - e — - ~nto Ao R
= ZK,K’,i,i’ a Ri aK/i,EK/i,(YKK:5ii/ = ZKi EKL-a KiaKL-. L= 1,4 (33)

The energy of the fermion field is equal to the sum of the energies of its quanta.
The momentum of the fermion field P is equal to:

P=[dV¥* —inV¥ =Yg o, [ dV a* g agryV* (K, 7,1) — ilVV(K',7,i") =
=Yex i@ g agyhK' [ av V(K 70 V(K 7i) =
= Sk griir @ g G K SgprSyy = Ny K a* gag
here we have used the explicit formV(K’, #,i"):
V(&' 7,i") = L2U(R, i)e ', (34)

The momentum of the Dirac field is equal to the sum of the momenta of its quanta.
To determine the type of current of charged fermions, we use the Hermitian conju-
gation of the Dirac equation:
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a mc oy o mc
hn__ _ - = = jy0 2= iyK— — —
(]/ ax“® h)gj 0 d 6ct+ly dx hlp
Hermitian mating:
i gwt
— Ly i S () = W =0 (35)

Multiplying (35) on the right by y° and using: y¥y°® = —y %X, we obtain:

cowt L opt

lmy°y°+lax—,{y°y’( ‘z”+ O—O—Lﬁy +i )/ +2 B”—O—
=i£y”+—¥_’= (36)

Here ¥ = w+y°,

Replacing the ordinary derivative with the covariant derivative in equation (28), we
obtain a fermion interacting with the electromagnetic field:

[l)/ (L—leﬂ )—%]‘on (37
Taking the density of the Lagrange function (Bethe G., 1964) in the form:
= 1. a . mc = . a mc . .
L=Y [ly“ (6x_0‘_ lecﬂa) _T] Y = B”[Ly“ax—a—?]l}’ +i—iey*YA, =
= Lo+ ePy*¥ (38)

Lo- is the standard Lagrangian of the Dirac equation and ePy* WA, interaction po-
tential with an electromagnetic field: U = —eWy*¥ A,
The Hamiltonian of the interaction of a fermion with an electromagnetic field is:

= [aV[-ePyr¥A,| =

= Zﬁ,l?,ni (gﬂ ;5 hKlaPlan + g PKi aplaP hK lan) (39)

The obtained results of the second quantization of fermions can be combined by
writing in form 2 the forms of E. Cartan for the Cartan equation:

0 = dgi ndn)[ay a)], + ags Adn[af,af], +agi Aand([ap o], - 8,) +

+d¢i Adne][b, b +dciade)bf, bt +diiade] ([bl, bi] 5i,-) +

+du A {ihdl t1) — (ZI?L EmaJ’,?iam + Za f dI_()ha),? (b+l?abl?a + %) +
+ Y5 R ai IFRi05-ng, i WD + 9 *ﬁKiagiaﬁ—hI?,ibl?a) x|t 1>dt} (40)
The equations of E. Cartan for 2 forms (40) have the form:

920 9% _  9%20 _ 9%a _ 320 _ 9%
od¢fodnY)  odgjodn?  pagiadn)  ddgiedn) ad¢iadel  oagiodel
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%0
~ 9agiaae’ - @_ [ Qi a]] [ o af+]+ = [ai' a;r]+ =6y = [bi'bj]_ =
= [b#,57]_ = [bbf]_ - 8 = ihdl 1) - (Zg, Egia* giai, +
+ 3o [ dKhag (b+z?ab1?a + ;) + Zﬁ,ﬁ,a,i 9PRi% 1,1 % ibga
+9*ﬁma§,-aﬁ-hﬁ,ibza) | t1)dt (41)

All equations (41), except [25, 26] the Iast are permutation relations between the
operators, indicating that the operators a;, a; - are fermionic, and b;, b;" - are bosonic
operators. The last equation is the Schré’)dmger equation for interacting fields: fermionic
with electromagnetic (bosonic) fields.

We rewrite it in the form:

i M = (Hy + Hy)I t1), (42)
where:
— + 74 + 1
Ho =X, Ezia* g0z + 2o | dKhog (b Rabka + 5)

+ * +
z:PKougPKzaﬂ hKLaPl.b +g ﬁKiaﬁiaﬁ—hI?,ibl?a'

iHpt
Representing | t1) = e_Tol t), we obtain:

iHot iHot iHot
h—LH—Oe h | ty+e n i dl—z) Hoe_TOI t)+H1e_T0| t)
iHot iHot
Orihi2 = ¢ v Hie™ 1 | 1) (43)
iHot iHot i
Y Hie™ N = Zﬁﬁ'a'igﬁﬁieﬁ(Eﬁ—hE,i‘Eﬁ,i"'h“’E) a+ hKLaPlb+a +
+g*ﬁKieﬁ(Eﬁ'i_Eﬁ_hE'i_hwﬁ)ta;?—iaﬁ—hl?_ibl?a (44)
We represent the differential equation:
G = Hy 1 ¢), (45)
in the form of an integral equation:
1 pt
1t) =10)+- [ H,(6)dO | 6) (46)

In the first order of perturbation theory, its solution has the form:

|6}~ 10+ ,H1(6)d6 1 0) (47
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In the first order of the perturbation theory, we calculate the probability of sponta-
neous emission of a photon by an electron. To do this, take: | 0) = a;goil vacuum).

Then:

~ +
| t) = aﬁoil vacuum) +

1t i Eg .z .—Ez.+thw3)0 + + o+
il N ooy P-hK,i “P, K T a=bE: a* =
+o INCLEDF I gPKiaeh( L PL ) A5 _nig (Apibge 5, ) vacuum)

— ot _
= aﬁoiol vacuum)

. eﬁ(EF—hﬁ,i"EF,iJrh‘“E)t_l . .
— [ la S = = .y =
YPRai T a5_ng D055, Oiiy| vacuum)
P-K,i P,i K

i
gs = N L
PoKi
=al | vacuum) - Y. —° a
Pyl K,a

Po-hRio EPgi IR

+ +
By—hi.ig PR | vacuum) (48)

Thus, the probability for an electron to emit a photon with momentum hK is equal
to:

2

Eg .. —E5 +ho
( Po-hKig "Pgit wK),_
t

2
|95 gk | [5i0° 2
49
|EBo-tR.io EPoi* k[ (49)
I 2 I
At t>>1, this value is equal to:
2
95,17 i0| 776 (Ey—nics — Ey i + hoog) =
= |95, | 20 (Ep, ngi — Es, ; + hoog) = [ eiKdk =
= 19BnRigl T By-nki — LB, K) o7 d-r =
2
= |95, nz10| T6(Epytii — Epy i + hg)T (50)

The probability of radiation per unit time W is equal to:

2
W = |gpnzi| ™0(Ep _ng;i — Ep,; + hog)

3 Conclusions

We demonstrated the possibility of using the mechanics of E. Cartan in quantum field
theory. Based on the use of these mechanics, additional conditions can be introduced
directly into the Cartan equations. Such conditions include, for example, switching con-
ditions between pulses and coordinates, as well as Lorentz calibration conditions.
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