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Abstract. In this paper, the mechanics of Eli Cartan is used, which is an alterna-

tive to the Lagrange-Hamiltonian formalism, has certain advantages in the for-

mulation of quantum electrodynamics. To demonstrate this fact, it was described 

as the interaction of fermions with an electromagnetic field.  

We demonstrated the possibility of using the mechanics of E. Cartan in quan-

tum field theory. Based on the use of these mechanics, additional conditions can 

be introduced directly into the Cartan equations. Such conditions include, for ex-

ample, switching conditions between pulses and coordinates, as well as Lorentz 

calibration conditions 

Keywords: Cartan mechanics; quantum electrodynamics, fermions, electro-

magnetic interaction. 

1 Introduction 

The mechanics of Eli Cartan, which is an alternative to the Lagrange-Hamiltonian for-

malism, has certain advantages in the formulation of quantum electrodynamics. To 

demonstrate this fact, we describe the interaction of fermions with an electromagnetic 

field. 

All particles that make up the Universe fall into two groups: fermions and bosons. 

Graduate students of Leiden University (Holland) Samuel Gaudsmith and George Uh-

lenbeck introduced this distinction. Gaudsmith, who was more engaged in research, 

noticed an additional splitting of the emission spectrum of helium atoms. Uhlenbeck, 

who knew better classical physics, saw the reason for this splitting in some internal 

property of the electron. Together they concluded that the electron initially has a certain 

angular momentum - spin [1-4]. 

The foundations of quantum mechanics were only then laid, so this idea led to the 

addition of a fourth quantum number (in addition to the main, orbital, and magnetic), 

called the spin quantum. The electron is depicted as a tiny, rapidly spinning top, but 
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such a description does not need to be taken literally. In 1928, the development by the 

British physicist P. Dirac of relativistic quantum mechanics created a theoretical basis 

for the spin of an electron; the guess of Gaudsmith and Uhlenbeck turned out to be very 

successful [5-7]. 

2 Main content. Interaction of fermions with an 

electromagnetic field based on Cartan mechanics 

In 1925, the Austrian physicist Wolfgang Pauli concluded that two electrons couldn’t 

be in the same quantum state in the same place. This principle of Pauli's prohibition lies 

at the heart of the Periodic Table of Chemical Elements. 

In studying the statistical behavior of electrons, the Italian-American physicist En-

rico Fermi and Dirac developed the Fermi-Dirac statistics theory. Its provisions were 

subsequently extended to other particles with a half-integer spin. These particles, called 

fermions, encompass all leptons and quarks. Thus, the mass of the universe is made up 

of fermions [8-10]. 

The study of particles with zero or integer spin in 1924 was carried out by the Indian 

physicist Chatyatranat Bose. While working at the University of Dhaka (Bangladesh), 

Bose sent the results of his research for review to Einstein. He translated his work into 

German and strongly advised him to publish it. The following year, Einstein expanded 

the Bose results to include all particles that are not fermions. The statistical behavior of 

such particles came to be called Bose-Einstein statistics. Particles obeying these statis-

tics, Dirac called bosons [11-13]. The carriers of all interactions — the photon in the 

electromagnetic, the gluons in the strong, and the W and Z particles in the weak — are 

bosons. 

If two fermions cannot be in the same quantum state, then there is no such restriction 

for bosons. Indeed, the more bosons are in a certain energy state, the greater the likeli-

hood that all other bosons will be in this state. This phenomenon underlies stimulated 

emission in lasers when photons are brought into the same energy state. This kind of 

"herd" helps to explain the superfluidity of helium and even superconductivity when 

the electrons collide in pairs and act like bosons. In 1995, it was possible to reduce the 

temperature of gaseous rubidium in such a way that all atoms found the same quantum 

state. Such a cluster is called the Bose-Einstein condensate [9, 10]. 

The tendency to “loneliness” in fermions and the “sociability” of bosons make them 

so dissimilar. However, this difference turns out to be decisive for the nature of the 

universe. For example, if fermions united like bosons, all the electrons in the atom 

would collect at the lowest energy level, and then there could be no talk of chemical 

reactions, and therefore, of life. 

The electromagnetic interaction is one of four fundamental interactions. It exists be-

tween particles with an electric charge [14-17]. According to the generally accepted 

view, such an interaction between charged particles does not occur directly, but only 

using an electromagnetic field. 

In the framework of quantum field theory [11, 16], such an interaction is carried by 

a massless boson — a photon. 



209 

Fermions are among the fundamental particles that have an electric charge and par-

ticipate in electromagnetic interaction. 

Along with electromagnetic, there are also weak [3, 7, 9] and strong interactions. 

The electromagnetic interaction is distinguished by its long-range nature. According to 

Coulomb's law, the force of interaction between charges decreases only as of the second 

power of the distance. Gravitational interaction also complies with this law, but it is 

much weaker than electromagnetic [17-19]. 

According to the classical (non-quantum) approach, electromagnetic interaction is 

described by classical electrodynamics [17-20]. 

First, we quantize the electromagnetic field. 

Consider a 2-form Ω of the form: 

𝛺 = ∫ 𝑑𝑉′ {𝑑 (
1

2

𝜕𝐴𝜈

𝜕𝑥′𝛼

𝜕𝐴𝜈

𝜕𝑥′𝛽
𝑔𝛼𝛽) ∧ 𝑑𝑡} = 

∫ 𝑑𝑉′ 𝜕2𝐴𝜈

𝜕𝑥′𝛼𝜕𝑥′𝛽 𝑑 𝐴𝜈𝑔𝛼𝛽 ∧ 𝑑𝑡, 𝜈, 𝛼, 𝛽 = 0,3̅̅ ̅̅  (1) 

The equation of E. Cartan for her has the form: 

 0 =
𝛿𝛺

𝛿𝑑𝐴𝜈 = ∫ 𝑑𝑉′ 𝜕2𝐴𝜈

𝜕𝑥′𝛼𝜕𝑥′𝛽 𝛿(�⃗�′ − �⃗�)𝛿𝜈
𝛾

𝑔𝛼𝛽𝑑𝑡 =
𝜕2𝐴𝛾(𝑥)

𝜕𝑥𝛼𝜕𝑥𝛽 𝑔𝛼𝛽𝑑𝑡 = 0 

The equation: 
𝜕2𝐴𝛾(𝑥)

𝜕𝑥𝛼𝜕𝑥𝛽 = 0 – is the equation of the dynamics of the electromagnetic 

field vector potential. 

We introduce the vectors �⃗⃗� and �⃗⃗⃗�, which also describe the electromagnetic field: 

 �⃗⃗� = −∇⃗⃗⃗𝐴0 −
1

𝑐

𝜕�⃗�

𝜕𝑡
 (2) 

 �⃗⃗⃗� = ∇⃗⃗⃗ × 𝐴. (3) 

Then for �⃗⃗⃗� and �⃗⃗� we obtain the equations: 

 ∇⃗⃗⃗ ∙ �⃗⃗⃗� = ∇⃗⃗⃗ ∙ ∇⃗⃗⃗ × 𝐴 = 0 

 ∇⃗⃗⃗ ∙ �⃗⃗� = −∆𝐴0 −
1

𝑐

𝜕

𝜕𝑡
∇⃗⃗⃗ ∙ 𝐴 = −∆𝐴0 +

1

𝑐2

𝜕2𝐴0

𝜕𝑡2 = 𝑔𝛼𝛽 𝜕2𝐴0

𝜕𝑥𝛼𝜕𝑥𝛽 = 0 (4) 

Lorentz calibration used here: 

 
𝜕𝐴0

𝑐𝜕𝑡
+ ∇⃗⃗⃗ ∙ 𝐴 = 0 =

𝜕𝐴𝛼

𝜕𝑥𝛼 (5) 

 ∇⃗⃗⃗ × �⃗⃗� = −
1

𝑐

𝜕

𝜕𝑡
∇⃗⃗⃗ ∙ 𝐴 = −

1

𝑐

𝜕�⃗⃗⃗�

𝜕𝑡
 (6) 

 ∇⃗⃗⃗ ∙ �⃗⃗⃗� = ∇⃗⃗⃗ × (∇⃗⃗⃗ × 𝐴) = ∇⃗⃗⃗ ∇⃗⃗⃗ ∙ 𝐴 − ∆𝐴 = −∇⃗⃗⃗
1

𝑐

𝜕𝐴0

𝜕𝑡
− ∆𝐴 = 



210 

 = −∇⃗⃗⃗
1

𝑐

𝜕𝐴0

𝜕𝑡
−

1

𝑐2

𝜕2�⃗�

𝜕𝑡2 =
1

𝑐

𝜕

𝜕𝑡
(−∇⃗⃗⃗𝐴0 −

1

𝑐

𝜕�⃗�

𝜕𝑡
) =

1

𝑐

𝜕�⃗⃗�

𝜕𝑡
. (7) 

This is the continuity equation for the energy of an electromagnetic field [21-23]. 

To record the energy of the electromagnetic field in the secondary quantization rep-

resentation, we express �⃗⃗� and �⃗⃗⃗� through the generalized coordinates and momenta of 

the electromagnetic field: 

The energy of the electromagnetic field is: 

 ℋ =
1

8𝜋
∫ 𝑑𝑉 (�⃗⃗�2 + �⃗⃗⃗�2). (8) 

Really: 

 
𝜕ℋ

𝜕𝑡
=

1

4𝜋
∫ 𝑑𝑉 (�⃗⃗� ∙

𝜕�⃗⃗�

𝜕𝑡
+ �⃗⃗⃗� ∙

𝜕�⃗⃗⃗�

𝜕𝑡
) =

1

4𝜋
(𝑐E⃗⃗⃗ ∙ (∇⃗⃗⃗ × �⃗⃗⃗�) − 𝑐H⃗⃗⃗ ∙ (∇⃗⃗⃗ × �⃗⃗�)) = 

 −∇⃗⃗⃗ ∙
𝑐

4𝜋
�⃗⃗� × �⃗⃗⃗� 

 
𝜕

𝜕𝑡
∫ 𝑑𝑉

𝑉
ℋ = ∫ −

𝑐

4𝜋𝑑𝑉
𝑉(E⃗⃗⃗ × �⃗⃗⃗�, ⋯ , ⋯ ) 

This is the continuity equation for the energy of an electromagnetic field. To record 

the energy of the electromagnetic field in the secondary quantization representation, we 

express �⃗⃗� and �⃗⃗⃗� through the generalized coordinates and momenta of the electromag-

netic field: 

 �⃗⃗⃗� = ∫ 𝑑�⃗⃗⃗� ∑ 𝑃�⃗⃗⃗�𝛼(𝑡)ℎ⃗⃗�⃗⃗⃗�𝛼𝛼 (𝑟)√4𝜋; �⃗⃗� = ∫ 𝑑�⃗⃗⃗� ∑ 𝜔�⃗⃗⃗��⃗��⃗⃗⃗�𝛼𝛼 (𝑡)𝑒�⃗⃗⃗�𝛼(𝑟)√4𝜋 

 And 𝑃 ̇_ (𝐾 ⃗𝛼)  =  − 〖𝜔 ^ 2〗 _𝐾 ⃗ 𝑞_ (𝐾 ⃗𝛼) 

Using Maxwell's equations 

 ∇⃗⃗⃗ ∙ �⃗⃗� = ∇⃗⃗⃗ ∙ �⃗⃗⃗� = 0    ∇⃗⃗⃗ × �⃗⃗� = −
1

𝑐

𝜕�⃗⃗⃗�

𝜕𝑡
    ∇⃗⃗⃗ × �⃗⃗⃗� =

1

𝑐

𝜕�⃗⃗�

𝜕𝑡
, 

we get ∇⃗⃗⃗ ∙ ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) = ∇⃗⃗⃗ ∙ 𝑒�⃗⃗⃗�𝛼(𝑟) = 0.  (9) 

 ∇⃗⃗⃗ × �⃗⃗� = ∫ 𝑑�⃗⃗⃗� ∑ 𝜔�⃗⃗⃗�𝑞�⃗⃗⃗�𝛼𝛼 (𝑡)∇⃗⃗⃗ × 𝑒�⃗⃗⃗�𝛼(𝑟) = −
1

𝑐

𝜕�⃗⃗⃗�

𝜕𝑡
= ∫ 𝑑�⃗⃗⃗� ∑ −

1

𝑐
�̇��⃗⃗⃗�𝛼𝛼 (𝑡)ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) 

Hence: ∇⃗⃗⃗ × 𝑒�⃗⃗⃗�𝛼(𝑟) =
𝜔

�⃗⃗⃗⃗�

𝑐
ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟)  (10) 

and �̇��⃗⃗⃗�𝛼 = −𝜔2
�⃗⃗⃗�𝑞�⃗⃗⃗�𝛼  (11) 

 ∇⃗⃗⃗ × �⃗⃗⃗� = ∫ 𝑑�⃗⃗⃗� ∑ 𝑃�⃗⃗⃗�𝛼(𝑡)∇⃗⃗⃗ × ℎ⃗⃗�⃗⃗⃗�𝛼𝛼 (𝑟) =
1

𝑐

𝜕�⃗⃗�

𝜕𝑡
=∫ 𝑑�⃗⃗⃗� ∑

𝜔
�⃗⃗⃗⃗�

𝑐
�̇��⃗⃗⃗�𝛼𝛼 (𝑡)𝑒�⃗⃗⃗�𝛼(𝑟). 

Hence: ∇⃗⃗⃗ × ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) =
𝜔

�⃗⃗⃗⃗�

𝑐
𝑒�⃗⃗⃗�𝛼  (12) 

and 𝑃�⃗⃗⃗�𝛼(𝑡) = �̇��⃗⃗⃗�𝛼(𝑡).  (13) 
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Thus, 𝑃�⃗⃗⃗�𝛼(𝑡) и 𝑞�⃗⃗⃗�𝛼(𝑡) are canonical Hamilton variables, their equation: 

 {
�̇��⃗⃗⃗�𝛼 = 𝑃�⃗⃗⃗�𝛼

�̇��⃗⃗⃗�𝛼 = −𝜔2
�⃗⃗⃗�𝑞�⃗⃗⃗�𝛼

 (14) 

It describes a mathematical pendulum for each momentum ћ�⃗⃗⃗� and polarization 𝛼.  

Let us prove that ℎ⃗⃗�⃗⃗⃗�𝛼 are orthogonal to ℎ⃗⃗�⃗⃗⃗�′𝛼′  for �⃗⃗⃗� ≠ �⃗⃗⃗�′, α≠α', as well as 𝑒�⃗⃗⃗�𝛼: Using 

(10) we obtain [22-25]:  

 ∇⃗⃗⃗ × (∇⃗⃗⃗ × 𝑒�⃗⃗⃗�𝛼(𝑟)) = −∆𝑒�⃗⃗⃗�𝛼(𝑟) =
𝜔

�⃗⃗⃗⃗�

𝑐
∇⃗⃗⃗ × ℎ⃗⃗�⃗⃗⃗�𝛼 = (

𝜔
�⃗⃗⃗⃗�

𝑐
)2𝑒�⃗⃗⃗�𝛼(𝑟). (15) 

Using (13) we obtain:  

 ∇⃗⃗⃗ × (∇⃗⃗⃗ × ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟)) = −∆ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) =
𝜔

�⃗⃗⃗⃗�

𝑐
∇⃗⃗⃗ × 𝑒�⃗⃗⃗�𝛼(𝑟) = (

𝜔
�⃗⃗⃗⃗�

𝑐
)2ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟). (16) 

Equations (15) and (16) show that 𝑒�⃗⃗⃗�𝛼(𝑟) and ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) are eigenfunctions of the op-

erator - ∆ (self-adjoint) with eigenvalues(
𝜔

�⃗⃗⃗⃗�

𝑐
)2. 

Hence: ∫ 𝑑𝑉 𝑒�⃗⃗⃗�𝛼 ∙ 𝑒�⃗⃗⃗�′𝛼′ = ∫ 𝑑𝑉 ℎ⃗⃗�⃗⃗⃗�𝛼 ∙ ℎ⃗⃗�⃗⃗⃗�′𝛼′ = 𝛿�⃗⃗⃗��⃗⃗⃗�′𝛿𝛼𝛼′ . 

Therefore: 

 ℋ =
1

2
∫ 𝑑𝑉 (∫ 𝑑�⃗⃗⃗� 𝑑�⃗⃗⃗�′ ∑ 𝜔�⃗⃗⃗�𝛼𝛼′ 𝜔�⃗⃗⃗�′𝑞�⃗⃗⃗�𝛼(𝑡)𝑞�⃗⃗⃗�′𝛼′(𝑡) × 𝑒�⃗⃗⃗�𝛼(𝑟) ∙ 𝑒�⃗⃗⃗�′𝛼′(𝑟) +

∫ 𝑑�⃗⃗⃗� 𝑑�⃗⃗⃗�′ ∑ 𝑃�⃗⃗⃗�𝛼(𝑡)𝑃�⃗⃗⃗�′𝛼′(𝑡) × ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) ∙ ℎ⃗⃗�⃗⃗⃗�′𝛼′(𝑟)𝛼𝛼′ ) = 

 =
1

2
(∫ 𝑑�⃗⃗⃗� 𝑑�⃗⃗⃗�′ ∑ 𝜔�⃗⃗⃗�𝛼𝛼′ 𝜔�⃗⃗⃗�′𝑞�⃗⃗⃗�𝛼(𝑡)𝑞�⃗⃗⃗�′𝛼′(𝑡) ∫ 𝑑𝑉 𝑒�⃗⃗⃗�𝛼(𝑟) ∙ 𝑒�⃗⃗⃗�′𝛼′(𝑟) +

+ ∫ 𝑑�⃗⃗⃗� 𝑑�⃗⃗⃗�′ ∑ 𝑃�⃗⃗⃗�𝛼(𝑡)𝑃�⃗⃗⃗�′𝛼′(𝑡) ∫ 𝑑𝑉 ℎ⃗⃗�⃗⃗⃗�𝛼(𝑟) ∙ ℎ⃗⃗�⃗⃗⃗�′𝛼′(𝑟)𝛼𝛼′ ) =
1

2
∫ 𝑑�⃗⃗⃗� ∑ (𝑃2

�⃗⃗⃗�𝛼(𝑡) +𝛼

+𝜔2
�⃗⃗⃗�𝑞2

�⃗⃗⃗�𝛼
(𝑡)).  (17) 

The energy of the electromagnetic field ℋ  is the Hamiltonian of the Hamilton equa-

tion for the electromagnetic field (14). And can be represented in a second quantized 

form [26]: 

 𝐻 =
1

2
∫ 𝑑�⃗⃗⃗� ∑ (𝜔2

�⃗⃗⃗�𝑞2
�⃗⃗⃗�𝛼

+ 𝑃2
�⃗⃗⃗�𝛼)𝛼 = ∫ 𝑑�⃗⃗⃗� ∑ ħ𝜔�⃗⃗⃗� (

𝜔
�⃗⃗⃗⃗�

2ħ
𝑞2

�⃗⃗⃗�𝛼
+

1

2ħ𝜔
�⃗⃗⃗⃗�

𝑃2
�⃗⃗⃗�𝛼)𝛼 = 

 = ∑ ∫ 𝑑�⃗⃗⃗�ħ𝜔�⃗⃗⃗� [(√
1

2ħ𝜔
�⃗⃗⃗⃗�

𝑃�⃗⃗⃗�𝛼 + 𝑖√
𝜔

�⃗⃗⃗⃗�

2ħ
𝑞�⃗⃗⃗�𝛼) × (√

1

2ħ𝜔
�⃗⃗⃗⃗�

𝑃�⃗⃗⃗�𝛼 − 𝑖√
𝜔

�⃗⃗⃗⃗�

2ħ
𝑞�⃗⃗⃗�𝛼) +

1

2
]𝛼 = 

 = ∑ ∫ 𝑑�⃗⃗⃗�ħ𝜔�⃗⃗⃗� (𝑎+
�⃗⃗⃗�𝛼𝑎�⃗⃗⃗�𝛼 +

1

2
)𝛼  (18) 

The following notation is introduced here: 

 𝑎+
�⃗⃗⃗�𝛼 = √

1

2ħ𝜔
�⃗⃗⃗⃗�

𝑃�⃗⃗⃗�𝛼 + 𝑖√
𝜔

�⃗⃗⃗⃗�

2ħ
𝑞�⃗⃗⃗�𝛼 (19) 
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 𝑎�⃗⃗⃗�𝛼 = √
1

2ħ𝜔
�⃗⃗⃗⃗�

𝑃�⃗⃗⃗�𝛼 − 𝑖√
𝜔

�⃗⃗⃗⃗�

2ħ
𝑞�⃗⃗⃗�𝛼 (20) 

As is well known, fermions obey the Dirac equation. 

To obtain it, it is enough to extract the square root from the Klein-Gordon equation. 

Klein-Gordon equation: 

 𝑔𝛼𝛽 𝜕2

𝜕𝑥𝛼𝜕𝑥𝛽 𝜑 +
𝑚2𝑐2

ħ2 𝜑 = 0 (21) 

Using equality [24-26]: 
1

2
(𝛾𝛼𝛾𝛽 + 𝛾𝛽𝛾𝛼) = 𝑔𝛼𝛽, we obtain from (21): 

 
1

2
(𝛾𝛼𝛾𝛽 + 𝛾𝛽𝛾𝛼)

𝜕2

𝜕𝑥𝛼𝜕𝑥𝛽 𝜑 +
𝑚2𝑐2

ħ2 𝜑 = 0 = (𝛾𝛼𝛾𝛽 𝜕2

𝜕𝑥𝛼𝜕𝑥𝛽 𝜑 +
𝑚2𝑐2

ħ2 𝜑) = 

 = (𝑖𝛾𝛼 𝜕

𝜕𝑥𝛼 +
𝑚𝑐

ħ
) (𝑖𝛾𝛽 𝜕

𝜕𝑥𝛽 −
𝑚𝑐

ħ
) 𝜑, from here: (𝑖𝛾𝛼 𝜕

𝜕𝑥𝛼 −
𝑚𝑐

ħ
) 𝛹 = 0. (22) 

This is the Dirac equation of the 𝛾𝛼- matrix 4х4, and 𝛹- is a 4-component column 

vector. This equation can also be obtained as the Cartan equation by taking the 2-form 

Ω in the form: 

 𝛺 = ∫ 𝑑�⃗� {𝑑�̅� ∧ 𝑑𝛹𝑖ħ − 𝑑𝐻 ∧ 𝑑𝑡} (23) 

taking H in the form: 

 𝐻 = ∫ �̅�{𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}𝛹𝑑𝑉 (24) 

Then the equations of E. Cartan give: 

 0 =
𝛿𝛺

𝛿𝑑�̅�
=

𝛿𝛺

𝛿𝑑𝛹
= 𝑖ħ𝑑𝛹 − {𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}𝛹𝑑𝑡 = 

 = −𝑖ħ𝑑�̅�−{𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}+�̅�𝑑𝑡 (25) 

Hence: 

 𝑖ħ
𝜕𝛹

𝜕𝑡
= {𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}𝛹 (26) 

Using �⃗�+ = �⃗�,     𝛽+ = 𝛽 , we obtain: 

 𝑖ħ
𝜕�̅�

𝜕𝑡
= −{𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}�̅� (27) 

We introduce new matrices to write these equations in covariant form: 

 𝛽 = 𝛾0     𝛽2 = (𝛼𝑘)2 = 1    𝛽�⃗� = 𝛾     𝑥𝜇 = (𝑐𝑡, 𝑟) 

Multiplying equation (26) by𝛾0 = 𝛽 and dividing by ħ𝑐, we obtain: 

 (𝑖𝛾𝛼 𝜕

𝜕𝑥𝛼 −
𝑚𝑐

ħ
) 𝛹 = 0 (28) 
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Thus, we again obtained the Dirac equation, and, therefore, proved the effectiveness of 

the 2-form and Cartan equations, that is, the Mechanics of E. Cartan [27-29]. 

To quantize the Dirac field a second time, we consider the eigenvectors and eigen-

values of the operator H of equation (26): 

 {𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2𝛽}𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′) = 𝐸�⃗⃗⃗�′𝑖′𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′) (29) 

We expand the solutions of equation (26) in these vectors: 

 𝛹(𝑟, 𝑡) = ∑ 𝒱(�⃗⃗⃗�, 𝑟, 𝑖)𝑎�⃗⃗⃗�𝑖(t)�⃗⃗⃗�,𝑖      𝑖 = 1,4̅̅ ̅̅  (30) 

 𝛹+(𝑟, 𝑡) = ∑ �̃�∗(�⃗⃗⃗�, 𝑟, 𝑖)𝑎+
�⃗⃗⃗�𝑖(t)�⃗⃗⃗�,𝑖      𝑖 = 1,4̅̅ ̅̅  (31) 

The energy of the fermion field is equal to the sum of the energies of its quanta. 

The momentum of the fermion field P ⃗ is equal to: 

𝒱 – 4 component spinor, �̃�∗- complex conjugated transposed spinor. 

 The operator of the number of fermions N has the form: 

 𝑁 = ∫ 𝑑𝑉 𝛹+𝛹 = ∫ 𝑑𝑉 ∑ 𝑎+
�⃗⃗⃗�𝑖𝐾,⃗⃗ ⃗⃗ �⃗⃗⃗�′,𝑖,𝑖′ 𝑎�⃗⃗⃗�𝑖�̃�∗(�⃗⃗⃗�, 𝑖, 𝑟)𝒱(�⃗⃗⃗�′, 𝑖′, 𝑟) = 

 = ∑ 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′ ,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′𝛿�⃗⃗⃗��⃗⃗⃗�′𝛿𝑖𝑖′ = ∑ 𝑎+

�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�𝑖  (32) 

The Hamiltonian of fermions H in the second quantization representation has the 

form: 

 𝐻 = ∫ 𝑑𝑉𝛹+{𝑐�⃗� ∙ 𝑝 + 𝑚𝑐2}𝛹 = ∑ ∫ 𝑑𝑉 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′�̃�∗(�⃗⃗⃗�, 𝑖, 𝑟){𝑐�⃗� ∙ 𝑝 +

+𝑚𝑐2𝛽}𝒱(�⃗⃗⃗�′, 𝑖′, 𝑟) = ∑ ∫ 𝑑𝑉 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′�̃�∗(�⃗⃗⃗�, 𝑖, 𝑟)𝒱(�⃗⃗⃗�′, 𝑖′, 𝑟)𝐸�⃗⃗⃗�′𝑖′ = 

 = ∑ 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′ ,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′𝐸�⃗⃗⃗�′𝑖′𝛿�⃗⃗⃗��⃗⃗⃗�′𝛿𝑖𝑖′ = ∑ 𝐸�⃗⃗⃗�𝑖𝑎

+
�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�𝑖 .    𝑖 = 1,4̅̅ ̅̅  (33) 

The energy of the fermion field is equal to the sum of the energies of its quanta. 

The momentum of the fermion field �⃗⃗� is equal to: 

 �⃗⃗� = ∫ 𝑑𝑉𝛹+ − 𝑖ħ∇⃗⃗⃗ 𝛹 = ∑ ∫ 𝑑𝑉 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′�̃�∗(�⃗⃗⃗�, 𝑟, 𝑖) − 𝑖ħ∇⃗⃗⃗𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′) =  

 = ∑ 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′ ,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′ħ�⃗⃗⃗�′ ∫ 𝑑𝑉 �̃�∗(�⃗⃗⃗�, 𝑟, 𝑖)𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′) = 

 = ∑ 𝑎+
�⃗⃗⃗�𝑖�⃗⃗⃗�,�⃗⃗⃗�′ ,𝑖,𝑖′ 𝑎�⃗⃗⃗�′𝑖′ħ�⃗⃗⃗�′𝛿�⃗⃗⃗��⃗⃗⃗�′𝛿𝑖𝑖′ = ∑ ħ�⃗⃗⃗�′𝑎+

�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�𝑖  

here we have used the explicit form𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′): 

 𝒱(�⃗⃗⃗�′, 𝑟, 𝑖′) = 𝐿−
3

2𝑈(�⃗⃗⃗�, 𝑖)𝑒−𝑖�⃗⃗⃗�′∙𝑟 . (34) 

The momentum of the Dirac field is equal to the sum of the momenta of its quanta. 

To determine the type of current of charged fermions, we use the Hermitian conju-

gation of the Dirac equation: 
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 (𝑖𝛾𝜇 𝜕

𝜕𝑥𝛼 −
𝑚𝑐

ħ
) 𝛹 = 0 = 𝑖𝛾0 𝜕𝛹

𝜕𝑐𝑡
+ 𝑖𝛾𝐾 𝜕𝛹

𝜕𝑥𝐾 −
𝑚𝑐

ħ
𝛹 

Hermitian mating: 

 −
𝑖

𝑐

𝜕𝛹+

𝜕𝑡
𝛾0 − 𝑖

𝜕𝛹+

𝜕𝑥𝐾
(−𝛾𝐾) −

𝑚𝑐

ħ
𝛹+ = 0 (35) 

Multiplying (35) on the right by 𝛾0 and using: 𝛾𝐾𝛾0 = −𝛾0𝛾𝐾 , we obtain: 

 𝑖
𝜕𝛹+

𝜕𝑥0 𝛾0𝛾0 + 𝑖
𝜕𝛹+

𝜕𝑥𝐾 𝛾0𝛾𝐾 −
𝑚𝑐

ħ
𝛹+𝛾0 = 0 = 𝑖

𝜕�̅�

𝜕𝑥0 𝛾0 + 𝑖
𝜕�̅�

𝜕𝑥𝐾 𝛾𝐾 +
𝑚𝑐

ħ
�̅� = 0 = 

 = 𝑖
𝜕�̅�

𝜕𝑥𝜇 𝛾𝜇 +
𝑚𝑐

ħ
�̅� = 0 (36) 

Here �̅� ≡ 𝛹+𝛾0. 

Replacing the ordinary derivative with the covariant derivative in equation (28), we 

obtain a fermion interacting with the electromagnetic field: 

 [𝑖𝛾𝛼 (
𝜕

𝜕𝑥𝛼 − 𝑖𝑒𝒜𝛼) −
𝑚𝑐

ħ
] 𝛹 = 0 (37) 

Taking the density of the Lagrange function (Bethe G., 1964) in the form: 

 ℒ = �̅� [𝑖𝛾𝛼 (
𝜕

𝜕𝑥𝛼 − 𝑖𝑒𝒜𝛼) −
𝑚𝑐

ħ
] 𝛹 = �̅� [𝑖𝛾𝛼 𝜕

𝜕𝑥𝛼 −
𝑚𝑐

ħ
] 𝛹 + 𝑖 − 𝑖𝑒�̅�𝛾𝛼𝛹𝒜𝛼 = 

 = 𝐿0 + 𝑒�̅�𝛾𝛼𝛹 (38) 

𝐿0- is the standard Lagrangian of the Dirac equation and 𝑒�̅�𝛾𝛼𝛹𝒜𝛼 interaction po-

tential with an electromagnetic field: 𝑈 = −𝑒�̅�𝛾𝛼𝛹𝒜𝛼. 

The Hamiltonian of the interaction of a fermion with an electromagnetic field is: 

 𝐻1 = ∫ 𝑑𝑉[−𝑒�̅�𝛾𝜇𝛹𝒜𝜇] = 

 = ∑ (𝑔�⃗⃗��⃗⃗⃗�𝑖𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑎�⃗⃗�𝑖𝑏𝑛�⃗⃗⃗�

+ + 𝑔∗
�⃗⃗�𝐾𝑖

𝑎
�⃗⃗�𝑖
+ 𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖𝑏𝑛�⃗⃗⃗�)�⃗⃗�,�⃗⃗⃗�,𝑛𝑖

 (39) 

The obtained results of the second quantization of fermions can be combined by 

writing in form 2 the forms of E. Cartan for the Cartan equation: 

 𝛺 = 𝑑𝜉1
𝑖 ∧ 𝑑ɳ1

𝑗[𝑎𝑖, 𝑎𝑗]
+

+ 𝑑𝜉2
𝑖 ∧ 𝑑ɳ2

𝑗 [𝑎𝑖
+, 𝑎𝑗

+]
+

+ 𝑑𝜉3
𝑖 ∧ 𝑑ɳ3

𝑗
([𝑎𝑖, 𝑎𝑗

+]
+

− 𝛿𝑖𝑗) + 

 +𝑑𝜁1
𝑖 ∧ 𝑑ɳ𝛳1

𝑗[𝑏𝑖 , 𝑏𝑗]
−

+ 𝑑𝜁2
𝑖 ∧ 𝑑𝛳2

𝑗[𝑏𝑖
+, 𝑏𝑗

+]
−

+ 𝑑𝜁3
𝑖 ∧ 𝑑𝛳3

𝑗
([𝑏𝑖, 𝑏𝑗

+]
−

− 𝛿𝑖𝑗) + 

 +𝑑𝜇 ∧ {𝑖ћ𝑑∣ 𝑡1⟩ − (∑ 𝐸�⃗⃗⃗�𝑖𝑎+
�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�,𝑖 + ∑ ∫ 𝑑�⃗⃗⃗�ћ𝜔�⃗⃗⃗� (𝑏+

�⃗⃗⃗�𝛼𝑏�⃗⃗⃗�𝛼 +
1

2
)𝛼 +

+ ∑ 𝑔�⃗⃗��⃗⃗⃗�𝑖𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑎�⃗⃗�𝑖𝑏�⃗⃗⃗�𝛼

+ + 𝑔∗
�⃗⃗�𝐾𝑖

𝑎
�⃗⃗�𝑖
+ 𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖𝑏�⃗⃗⃗�𝛼�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖 ) × ∣ 𝑡1⟩𝑑𝑡} (40) 

The equations of E. Cartan for 2 forms (40) have the form: 

 0 =
𝜕2𝛺

𝜕𝑑𝜉1
𝑖 𝜕𝑑ɳ1𝑗 =

𝜕2𝛺

𝜕𝑑𝜉2
𝑖 𝜕𝑑ɳ2𝑗 =

𝜕2𝛺

𝜕𝑑𝜉3
𝑖 𝜕𝑑ɳ3

𝑗 =
𝜕2𝛺

𝜕𝑑𝜉3
𝑖 𝜕𝑑ɳ3

𝑗 =
𝜕2𝛺

𝜕𝑑𝜁1
𝑖 𝜕𝑑𝛳1

𝑗 =
𝜕2𝛺

𝜕𝑑𝜁2
𝑖 𝜕𝑑𝛳2

𝑗 = 
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 =
𝜕2𝛺

𝜕𝑑𝜁3
𝑖 𝜕𝑑𝛳3

𝑗 =
𝜕𝛺

𝜕𝑑𝜇
= [𝑎𝑖, 𝑎𝑗]

+
= [𝑎𝑖

+, 𝑎𝑗
+]

+
= [𝑎𝑖, 𝑎𝑗

+]
+

− 𝛿𝑖𝑗 = [𝑏𝑖 , 𝑏𝑗]
−

= 

 = [𝑏𝑖
+, 𝑏𝑗

+]
−

= [𝑏𝑖 , 𝑏𝑗
+]

−
− 𝛿𝑖𝑗 = 𝑖ћ𝑑∣ 𝑡1⟩ − (∑ 𝐸�⃗⃗⃗�𝑖𝑎+

�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�,𝑖 +

+ ∑ ∫ 𝑑�⃗⃗⃗�ћ𝜔�⃗⃗⃗� (𝑏+
�⃗⃗⃗�𝛼𝑏�⃗⃗⃗�𝛼 +

1

2
)𝛼 + ∑ 𝑔�⃗⃗��⃗⃗⃗�𝑖𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖

+ 𝑎�⃗⃗�𝑖𝑏�⃗⃗⃗�𝛼
+ +�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖

+𝑔∗
�⃗⃗�𝐾𝑖

𝑎
�⃗⃗�𝑖
+ 𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖𝑏�⃗⃗⃗�𝛼) ∣ 𝑡1⟩𝑑𝑡  (41) 

All equations (41), except [25, 26] the last, are permutation relations between the 

operators, indicating that the operators 𝑎𝑖, 𝑎𝑗
+ - are fermionic, and 𝑏𝑖 , 𝑏𝑗

+ - are bosonic 

operators. The last equation is the Schrödinger equation for interacting fields: fermionic 

with electromagnetic (bosonic) fields. 

We rewrite it in the form: 

 𝑖ћ
𝑑∣𝑡1⟩

𝑑𝑡
= (𝐻0 + 𝐻1)∣ 𝑡1⟩, (42) 

where: 

 𝐻0 = ∑ 𝐸�⃗⃗⃗�𝑖𝑎+
�⃗⃗⃗�𝑖𝑎�⃗⃗⃗�𝑖�⃗⃗⃗�,𝑖 + ∑ ∫ 𝑑�⃗⃗⃗�ћ𝜔�⃗⃗⃗� (𝑏+

�⃗⃗⃗�𝛼𝑏�⃗⃗⃗�𝛼 +
1

2
)𝛼  

 𝐻1 = ∑ 𝑔�⃗⃗��⃗⃗⃗�𝑖𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑎�⃗⃗�𝑖𝑏�⃗⃗⃗�𝛼

+ +𝑔∗
�⃗⃗�𝐾𝑖

𝑎
�⃗⃗�𝑖
+ 𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖𝑏�⃗⃗⃗�𝛼�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖 . 

Representing ∣ 𝑡1⟩ = 𝑒−
𝑖𝐻0𝑡

ћ ∣ 𝑡⟩, we obtain: 

 𝑖ћ −
𝑖𝐻0

ћ
𝑒−

𝑖𝐻0𝑡

ћ ∣ 𝑡⟩ + 𝑒−
𝑖𝐻0𝑡

ћ 𝑖ћ
𝑑∣𝑡⟩

𝑑𝑡
= 𝐻0𝑒−

𝑖𝐻0𝑡

ћ ∣ 𝑡⟩ + 𝐻1𝑒−
𝑖𝐻0𝑡

ћ ∣ 𝑡⟩ 

 Or 𝑖ћ
𝑑∣𝑡⟩

𝑑𝑡
= 𝑒

𝑖𝐻0𝑡

ћ 𝐻1𝑒−
𝑖𝐻0𝑡

ћ ∣ 𝑡⟩ (43) 

 𝑒
𝑖𝐻0𝑡

ћ 𝐻1𝑒−
𝑖𝐻0𝑡

ћ = ∑ 𝑔�⃗⃗��⃗⃗⃗�𝑖𝑒
𝑖

ћ
(𝐸

�⃗⃗⃗�−ħ�⃗⃗⃗⃗�,𝑖
−𝐸

�⃗⃗⃗�,𝑖
+ћ𝜔

�⃗⃗⃗⃗�
)𝑡

𝑎
�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑎�⃗⃗�𝑖𝑏�⃗⃗⃗�𝛼

+ +�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖  

 +𝑔∗
�⃗⃗�𝐾𝑖

𝑒
𝑖

ћ
(𝐸

�⃗⃗⃗�,𝑖
−𝐸

�⃗⃗⃗�−ħ�⃗⃗⃗⃗�,𝑖
−ћ𝜔

�⃗⃗⃗⃗�
)𝑡

𝑎
�⃗⃗�𝑖
+ 𝑎�⃗⃗�−ħ�⃗⃗⃗�,𝑖𝑏�⃗⃗⃗�𝛼 (44) 

We represent the differential equation: 

 𝑖ћ
𝑑∣𝑡⟩

𝑑𝑡
= 𝐻1 ∣ 𝑡⟩, (45) 

in the form of an integral equation: 

 ∣ 𝑡⟩ = ∣ 0⟩ +
1

𝑖ћ
∫ 𝐻1(𝛳)𝑑𝛳 ∣ 𝛳⟩

𝑡

0
 (46) 

In the first order of perturbation theory, its solution has the form: 

 ∣ 𝑡⟩ ≈ ∣ 0⟩ +
1

𝑖ћ
∫ 𝐻1(𝛳)𝑑𝛳 ∣ 0⟩

𝑡

0
 (47) 



216 

In the first order of the perturbation theory, we calculate the probability of sponta-

neous emission of a photon by an electron. To do this, take: ∣ 0⟩ = 𝑎
�⃗⃗�0𝑖
+ ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩. 

Then: 

 ∣ 𝑡⟩ ≈ 𝑎
�⃗⃗�0𝑖
+ ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ + 

 +
1

𝑖ћ
∫ 𝑑𝛳

𝑡

0
∑ 𝑔�⃗⃗��⃗⃗⃗�𝑖𝛼𝑒

𝑖

ћ
(𝐸

�⃗⃗⃗�−ħ�⃗⃗⃗⃗�,𝑖
−𝐸

�⃗⃗⃗�,𝑖
+ћ𝜔

�⃗⃗⃗⃗�
)𝛳

𝑎
�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑎�⃗⃗�𝑖𝑏�⃗⃗⃗�𝛼

+
�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖 𝑎

�⃗⃗�0𝑖0

+ ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ = 

 = 𝑎
�⃗⃗�0𝑖0

+ ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ − 

 − ∑
𝑔

�⃗⃗⃗��⃗⃗⃗⃗�𝑖𝛼
𝑒

𝑖
ћ

(𝐸
�⃗⃗⃗�−ħ�⃗⃗⃗⃗�,𝑖

−𝐸
�⃗⃗⃗�,𝑖

+ћ𝜔
�⃗⃗⃗⃗�

)𝑡
−1

𝐸
�⃗⃗⃗�−�⃗⃗⃗⃗�,𝑖

−𝐸
�⃗⃗⃗�,𝑖

+ћ𝜔
�⃗⃗⃗⃗�

𝑎
�⃗⃗�−ħ�⃗⃗⃗�,𝑖
+ 𝑏

�⃗⃗⃗�𝛼
+ 𝛿�⃗⃗��⃗⃗�0�⃗⃗�,�⃗⃗⃗�,𝛼,𝑖 𝛿𝑖𝑖0

∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ = 

 = 𝑎
�⃗⃗�0𝑖
+ ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ − ∑

𝑔
�⃗⃗⃗�0�⃗⃗⃗⃗�𝑖

𝑒

𝑖
ћ(𝐸

�⃗⃗⃗�0−ħ�⃗⃗⃗⃗�,𝑖
−𝐸

�⃗⃗⃗�0,𝑖
+ћ𝜔

�⃗⃗⃗⃗�
)𝑡

−1

𝐸
�⃗⃗⃗�0−ћ�⃗⃗⃗⃗�,𝑖0

−𝐸
�⃗⃗⃗�0,𝑖

+ћ𝜔
�⃗⃗⃗⃗�

𝑎
�⃗⃗�0−ħ�⃗⃗⃗�,𝑖0

+ 𝑏
�⃗⃗⃗�𝛼
+

�⃗⃗⃗�,𝛼 ∣ 𝑣𝑎𝑐𝑢𝑢𝑚⟩ (48) 

Thus, the probability for an electron to emit a photon with momentum ħ�⃗⃗⃗� is equal 

to: 

 

|𝑔
�⃗⃗⃗�0,ћ�⃗⃗⃗⃗�,𝑖0

|
2

|sin2
(𝐸

�⃗⃗⃗�0−ћ�⃗⃗⃗⃗�,𝑖0
−𝐸

�⃗⃗⃗�0,𝑖
+ћ𝜔

�⃗⃗⃗⃗�
)

2
𝑡|

2

|
𝐸

�⃗⃗⃗�0−ћ�⃗⃗⃗⃗�,𝑖0
−𝐸

�⃗⃗⃗�0,𝑖
+ћ𝜔

�⃗⃗⃗⃗�

2
|

2  (49) 

At t≫1, this value is equal to: 

 |𝑔�⃗⃗�0,ћ�⃗⃗⃗�,𝑖0
|

2
𝜋2𝛿2(𝐸�⃗⃗�0−ħ�⃗⃗⃗�,𝑖 − 𝐸�⃗⃗�0,𝑖 + ћ𝜔�⃗⃗⃗�) = 

 = |𝑔�⃗⃗�0,ћ�⃗⃗⃗�,𝑖0
|

2
𝜋2𝛿(𝐸�⃗⃗�0−ħ�⃗⃗⃗�,𝑖 − 𝐸�⃗⃗�0,𝑖 + ћ𝜔�⃗⃗⃗�)

1

2𝜋
∫ 𝑒𝑖∆𝐾𝑑𝐾 =

𝑇

−𝑇
 

 = |𝑔�⃗⃗�0,ћ�⃗⃗⃗�,𝑖0
|

2
𝜋𝛿(𝐸�⃗⃗�0−ħ�⃗⃗⃗�,𝑖 − 𝐸�⃗⃗�0,𝑖 + ћ𝜔�⃗⃗⃗�)𝑇 (50) 

The probability of radiation per unit time W is equal to: 

 𝑊 = |𝑔�⃗⃗�0,ћ�⃗⃗⃗�,𝑖0
|

2
 𝜋𝛿(𝐸�⃗⃗�0−ħ�⃗⃗⃗�,𝑖 − 𝐸�⃗⃗�0,𝑖 + ћ𝜔�⃗⃗⃗�) 

3 Conclusions 

We demonstrated the possibility of using the mechanics of E. Cartan in quantum field 

theory. Based on the use of these mechanics, additional conditions can be introduced 

directly into the Cartan equations. Such conditions include, for example, switching con-

ditions between pulses and coordinates, as well as Lorentz calibration conditions. 
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