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ABSTRACT
In this paper, we focus on large set intersection, which is a pivotal
operation in information retrieval, graph analytics and database
systems. We aim to experimentally detect under which condi-
tions, using a graphics processing unit (GPU) is beneficial over
CPU techniques and which exact techniques are capable of yield-
ing improvements. We cover and adapt techniques initially pro-
posed for graph analytics, while we investigate new hybrids for
completeness. Finally, we present a comprehensive evaluation
highlighting the main characteristics of the techniques examined
when both a single pair of two large sets are processed and all
pairs in a dataset are examined.

1 INTRODUCTION
Set intersection is an essential operation in numerous application
domains, such as information retrieval for text search engines us-
ing an inverted index [2, 5], graph analytics for triangle counting
and community detection [11, 17, 19], and database systems for
merging RID-lists [15] and performing fast (potentially bitwise)
operations on data in columnar format [9].

Modern GPUs offer a high-level parallel environment at low
cost. As a result, over the past years, there has been a considerable
research work on improving graph analytics on a GPU, mostly
in the context of graph triangle counting, where set intersection
dominates the running time [4, 7, 8, 10, 13, 18]. The majority
of these studies focus on improving the level of parallelism by
reducing redundant comparisons and distributing the workload
evenly among GPU threads. Set intersection on GPUs has also
been examined in the context of set similarity joins [3].

In this work, we compare and evaluate state-of-the-art GPU
techniques for set intersection, when the sets are large, i.e., they
contain millions of elements. More specifically, we gather to-
gether techniques belonging to five different rationales, namely
intersect path, optimized binary search, hash, bitmap and set sim-
ilarity join-based solutions, while we include novel promising
hybrid solutions that combine existing techniques to better fit
into our setting.

We perform experiments both when the intersection of one
pair of sets (single-instance problem) and the intersections among
all set pairs in a database are computed (multi-instance problem).
We derive useful insights, and more specifically we provide ex-
perimental evidence about the superiority of two intersection
path flavors for the single-instance problem and of either bitmap-
based or similarity join-based solutions for the multi-instance
problem depending on the size of the sets.1

The rest of the paper is organized as follows. Section 2 gives
a background on the problem and an overview of the related
work. Section 3 describes the evaluated GPU techniques for set
intersection. In Section 4, we present the experiments and discuss

1The source code is available at https://github.com/chribell/set_intersection
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the results. Last, in Section 5 we conclude and discuss possible
future work.

2 PRELIMINARIES
In this section, we first give a formal notation for the set inter-
section problem. Next, we give an overview of the related work
about set intersection after explaining the exact scope of this
paper.

2.1 Set Intersection Problem Description
Single-instance set intersection (SISI) problem: given i) a finite
universe of elements 𝐸, and ii) a set 𝐴 = {𝑒𝐴1 , . . . , 𝑒

𝐴
𝑛 } of size

𝑛 and a set 𝐵 = {𝑒𝐵1 , . . . , 𝑒
𝐵
𝑚} of size 𝑚, where 𝑒 {𝐴,𝐵 }

𝑖
∈ 𝐸, set

intersection𝐴∩𝐵 produces a new set 𝑆 containing all the common
elements among 𝐴 and 𝐵.

Multi-instance set intersection (MISI) problem: in the multi-
instance set intersection problem, we are given a collection of
𝑘 sets 𝐶 = {𝑆1, . . . , 𝑆𝑘 }, and we aim to find the set intersection
among all

(𝑘
2
)
of pairs (𝑆𝑖 ,𝑆 𝑗 ), where 0 < 𝑖 < 𝑗 ≤ 𝑘 .

Obviously, the solutions of SISI are of Ω(𝑛 +𝑚) complexity,
whereas MISI solutions are of quadratic complexity in 𝑘 without
allowing for any pair pruning, as, for example, in problems such
as set similarity joins [3]. Therefore, the focus is not on evaluating
the behavior of algorithms differing in asymptotic complexity,
since all techniques are of similar complexity; rather, we aim to
assess the impact of different potentially low-level engineering
techniques when 𝑛 and𝑚 are at the order of millions and the
size of 𝐸 is orders of magnitude larger.

2.2 Scope of our work
Over the past years, there has been a lot of research that encap-
sulates GPU techniques for the set intersection problem, as will
be discussed shortly. In the majority of cases, the problem of
set intersection is tackled in the context of triangle counting to
accelerate graph analytics. Triangle counting is a special case of
set intersection, which stems from the need to find quickly inter-
section counts among vertex adjacency lists of small lengths. As
a result, the techniques proposed are tailored to specific algorith-
mic optimizations. In the context of this work, we extract, adapt
and evaluate these techniques under a more demanding large
set intersection scenario performing also a comparison against
all methodologies proposed that can address the SISI and MIMI
problems for large sets.

2.3 Overview of existing solutions
We present the relevant techniques mostly in chronological or-
der. Ding et al. [6] were the first to implement a parallel GPU
set intersection algorithm. In their proposed solution, they use
the so-called Parallel Merge Find (PMF) algorithm to compute a
set intersection. In essence, given two sets, the shorter one is
partitioned into disjoint segments, with each segment assigned
to a different GPU thread. Then, the last element of each segment
is searched in the longer set to find the corresponding or closest



positions for the partitioning of the longer set. As a result, each
GPU thread becomes capable of computing its own intersection
among segments in parallel. In [20], Wu et al. highlight the inef-
ficiency of the approach followed in [6] for sets of smaller size.
Subsequently, they propose a GPU technique for set intersection
that takes advantage of the fast on-chip shared memory. First, an
empty array of size equal to the size of the shorter set is allocated
in shared memory. Next, each GPU thread is assigned with a
specific number of elements from the shorter set and conducts
binary searches in the longer set. If an element is found, its cor-
responding cell in the shared memory array is set to 1. Finally, a
scan operation on the shared memory array is performed along
with a stream compaction procedure, so that threads produce the
final intersection. In [21], Wu et al. extend their original work
described above by introducing heuristic strategies to balance
the workload across thread blocks more efficiently. Additionally,
the proposal in [1] further extends the original work in [21] by
introducing a linear regression approach to reduce the search
range of a binary search and a hash segmentation approach as
an alternative to binary search.

In [8], Green et al. present the Intersect Path (IP) algorithm for
set intersection, which is a variation of the well established GPU
Merge Path algorithm for merging lists. In addition, IP can be
considered as an extension of PMF since it encapsulates a similar
set partition logic. First, input sets are partitioned into segments
that can be intersected independently by multiple thread blocks.
Second, for each thread block, workload is distributed in such a
way that near equal number of elements to intersect are allocated
to threads. In [7], the authors extend the work of [8] by proposing
an adaptive load balancing technique and dynamically assign
work to GPU threads based on work estimations. The authors
of [14] and [18] follow a similar approach to set intersection.
More specifically, their main concept is, for each GPU thread, to
sequentially compute a set intersection by using a two-pointers
merge algorithm. In the context of triangle counting, such an
approach is applicable since the requirement is (i) for each GPU
thread to compute a two-set intersection count independently,
and (ii) these partial counts to be accumulated to compute the
final global count. However, in the setting of set intersection over
two large sets, their solution is inferior and similar to a sequential
CPU approach.

In [4], Bisson et al. propose a different approach, namely, GPU
set intersection to be based on bitmaps and atomic operations.
Given two sets, to compute their intersection, the GPU threads
create the bitmap representation of the first set in parallel and
then, iterate over the elements of the second set to search for
the corresponding set bits. Based on the average set size, the
workload allocation is per thread, per warp or per block.

In [10], Hu et al. demonstrate that set intersection is faster
employing efficient binary search-based techniques than IP-based
techniques, arguing that the latter suffer from nontrivial overhead
of partitioning the input sets and non-coalescedmemory accesses.
On the other hand, their proposed algorithm optimizes binary
search at a warp level to achieve coalesced memory access and to
alleviate the need for workload balancing. In addition, by caching
the first levels of the binary search tree they employ in the shared
memory, they can achieve additional speedup gains.

In [13], Pandey et al. propose a hash-based technique for set
intersection. In brief, first the algorithm hashes the shorter set
into buckets, and then iterates over the larger set and hashes
each element to the corresponding bucket. Afterwards, a linear
search is conducted within each bucket to find the intersections.
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Figure 1: Intersect Path example using 4 thread blocks.

Last, in the context of set similarity join, the authors of [16]
propose a technique for conducting set intersections by using
a static inverted index and atomic operations. By setting the
similarity degree equal to zero, their solution can be used to solve
the SISI and MISI problems.

As already mentioned, some of these works, such as [4, 8,
10, 14, 18] are more complete proposals targeting the triangle
counting problem; here we narrow down our attention only to
the part that is relevant to the SISI and MISI problems.

3 TECHNIQUES
In the previous section, we have identified five different method-
ologies, based on (1) IP, (2) optimized binary search, (3) bitmap
operations, (4) hashing and (5) set similarity joins, respectively.
Here, we present five different state-of-the-art GPU techniques
for set intersection, one for each methodology, in more detail. In
addition, we discuss some modifications to these techniques to
target large set intersection yielding two novel hybrid solutions.
We do not consider, works such as [14, 18] that mostly rely on the
preprocessing of input data and conduct intersection with a sim-
ple merge fashion algorithm. In contrast, we evaluate techniques
that are more adaptable in a general set intersection scenario. We
give a concise presentation for each evaluated technique below.

Intersect Path (IP) [8]. Given two ordered sets 𝐴 and 𝐵, IP
considers the traversal of a grid, noted as Intersect Matrix, of size
|𝐴| × |𝐵 |. Beginning from the top left corner of the grid, the path
can move downwards if 𝐴[𝑖] > 𝐵 [ 𝑗], to the right if 𝐴[𝑖] < 𝐵 [ 𝑗],
and diagonally if 𝐴[𝑖] = 𝐵 [ 𝑗], until it eventually reaches the
bottom right corner. There are two partitioning stages, one on
kernel grid level and the other on block level. On grid level,
equidistant cross diagonals are placed on the Intersect Matrix.
The number of diagonals is equal to the number of thread blocks
plus one, in order to delimit the boundaries of each block. Using
binary search, the point of intersection between a cross diagonal
and the path is found. As a result, each thread block is assigned
to intersect disjoint subsets of the input. In case a cross diagonal
intersects with the path inside amatrix cell, a count augmentation
is required beforehand, since this intersection is not assigned to
any thread block. An example of this scenario is shown in Figure 1.
On block level, the same cross diagonal approach applies in order
to distribute workload among threads. Each thread may conduct
a serial or binary search based intersection.
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Figure 2: Optimized Binary Search example.
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Figure 3: Naive Bitmap-based Intersection example.
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Figure 4: Dynamic Bitmap-based Intersection example.

Optimized Binary Search (OBS) [10]. Given two ordered sets
𝐴 and 𝐵, OBS caches the first levels of the binary search tree
of the larger set in shared memory to reduce expensive global
memory reads. For example, as shown in Figure 2, the higher
level nodes of the binary tree reside in shared memory, whereas
the leafs are located in global memory. The smaller set, which
is 𝐵 in the example, is used for lookup and as a result there are
|𝐵 | total binary search lookups. Each thread is assigned a lookup
and, in each iteration, up to 32 (i.e., the size of warp) lookups
are executed simultaneously. For the multi-instance problem, a
simple optimization is to cache each set to shared memory one
at a time, and then iterate every subsequent one to perform the
intersection for every pair. This requires sets to be sorted by their
size.

Hash-based Intersection (HI) [13]. Given two sets 𝐴 and 𝐵, HI
first hashes the shorter set and constructs buckets in parallel,
and then, iterates and hashes every element of the larger set into
the corresponding bucket as already described in Section 2. The
initial hashing of the smaller set is preferred in order to reduce
the number of collisions. Buckets are statically allocated once
in linear global memory space. The size of each bucket, i.e. the
number of entries from the shorter set in the bucket, is stored in
shared memory. Thus, to ensure correctness for theMISI problem,
we only need to clear the buckets sizes in shared memory, and
let every next short set hashing overwrite the previous one.

Bitmap-based Intersection (BI). Given two sets 𝐴 and 𝐵, BI
conducts the set intersection on their bitmap representations,
with each bitmap requiring |𝐸 |/8 bytes of memory regardless
of the set sizes. More specifically, there are two flavors of BI,
namely (i) naive, where all bitmaps fit in global memory, and
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Figure 5: Static-index Intersection example using 4 GPU
threads (Adapted from [3]).

(ii) dynamic, where bitmaps are built on the fly in the case that
we cannot store all of them in the available global memory. The
latter is similar to the work of [4]. Bitmaps are constructed in
parallel using the atomicOr function. In the naive scenario, each
GPU thread fetches two bitmap words, one from each set, and
conducts a popcount operation on the resulting logical AND
word to compute the subset intersection. An example of the
naive scenario is shown in Figure 3. In the dynamic scenario,
each GPU thread block first constructs the bitmap representation
of the current set, and then, for every next set, the threads iterate
over its elements and check whether the respective bits are set
(see the example in Figure 4).

Static-index Intersection (sf-gssjoin) [16]. Given𝑘 sets, sf-gssjoin
first constructs a static inverted index over all set elements. For
each set, the inverted lists for all its elements are concatenated
in a logical vector. Next, this vector is partitioned evenly with
each partition assigned to a specific GPU thread. Thus, each
thread processes independently its corresponding partition and
contributes to the intersections of the current set with the next
ones. To ensure correctness, threads increment the intersection
counts by using atomic operations. An example of sf-gssjoin is
shown in Figure 5.

All of the presented techniques with the exception of BI-naive
and IP, conduct a single instance set intersection on a single block
or warp. This results in severe GPU underutilization, especially
for sets of size in the order of millions, since a single execution
unit is assigned with the complete workload. To tackle this issue,
we investigate the integration of the kernel grid level partitioning
of IP with OBS and HI, which have not been proposed previously
in the literature. We denote these novel hybrid techniques as IP-
OBS and IP-HI respectively. For the single instance scenario, in
BI-dynamic, we modify the algorithm by constructing the bitmap
of the first set across multiple blocks and then we partition evenly
the second set into disjoint subsets with each one assigned to a
specific block.

4 EVALUATION
In this section, we evaluate the techniques in the previous section,
while, in our experiments, we also include CPU variants for
completeness. More specifically, we compare the GPU techniques
against three CPU alternatives, namely, (i) SIMD, which performs
intersection on sorted integers using SIMD instructions [12], (ii)
std::set_intersection, which uses the C++ standard library and (iii)
boost::dynamic_bitset which uses the Boost library in a similar
fashion as BI-dynamic. We measure the total intersection time
for the CPU techniques using the std::chrono library. For the GPU
operations, we measure the total time, including transfers and



Dataset Cardinality Avg set size # Element Universe
ENRON 1.0 · 104 794 1.1 · 106
ORKUT 1.0 · 104 1001 8.7 · 106
TWITTER 1.0 · 104 150 3.7 · 104

Table 1: Real world dataset characteristics.

memory allocations, by using the CUDA event API. We do not
measure any preprocess time. The experiments were conducted
on a machine with an Intel i7 5820k clocked at 3.3 GHz, 32 GB
RAM at 2400 MHz and an NVIDIA Titan XP on CUDA 11.0. This
GPU has 30 Streaming Multiprocessors, with a total of 3840 cores,
12 GB of global memory and a 384-bit memory bus width.

We experiment with artificial datasets, where set elements fol-
low the normal, uniform and zipf like distribution. To distinguish
each dataset, we use the notation Distribution-Element universe-
Average set size. We vary the element universe from 108 up to
109. Respectively, we vary the average set size from 106 up to 107.
For the multi-instance scenario, we also experiment with three
real world datasets previously employed in [3]. More specifically,
for each sorted dataset we extract the last 𝑘 = 10000 sets, i.e. the
largest sets. Table 1 gives an overview of the real-world datasets’
characteristics.

4.1 SISI experiments
We examine the single instance scenario using twelve artificial
datasets (combinations of 3 distributions, 2 element universe sizes
and 2 set sizes). We have also experimented with several block
sizes, but due to lack of space, we present the results of the best
configuration for each technique.

As shown in Figure 6, IP and IP-OBS are the clear winners for
the SISI epxeriments, in the sense that one of them is the best
overall performing technique across every dataset. Moreover, the
differences between their performance is relatively small: up to
12% for the normal and zipf distribution, and up to 35% for the
uniform distribution. Overall, these techniques achieve average
2.3X speedup compared to the best performing CPU technique;
the best performing CPU technique differs between the cases,
but in average, SIMD is the most robust. In general, the speedup
is similar for all distributions types and increases with higher
universe and average set size, reaching 2.92X. The speedup of
IP or IP-OBS over the worst performing CPU or GPU technique
exceeds an order of magnitude; we have observed speedups up
to 48.67X over a CPU technique and up to 10.97X over a GPU
technique.

In addition, IP-HI exhibits the worst performance regarding
GPU techniques and seems unable to perform better than CPU for
many settings; this shows that simply relying on the IP workload
allocation rationale is not adequate. Finally, BI -based techniques
behave better for smaller universe sizes.

4.2 MISI experiments
For the multi-instance evaluation, we conduct two sets of ex-
periments. In the first one, we use artificially generated datasets
consisting of large sets that follow the zipf distribution, which
is the closest to real world. In the second one, we use real world
datasets and evaluate the intersection techniques on smaller set
sizes.

As shown in Figure 7, in both artificial datasets with 𝑘 =

1000, BI-dynamic is the best performing technique and achieves
average 35X speedup compared to the best performing CPU

technique. Furthermore, sf-gssjoin is the second best performing
technique, when manages to launch, i.e. when the static index
fits in the global memory, which is not the case when the element
universe is 109 in our experiments. On the other hand, IP-OBS
is more robust and its performance is the closest to BI-dynamic
across both datasets. In addition, we observe a 80% performance
increase for the hybrid IP-OBS technique over the standalone
OBS. Last, even though IP and IP-HI are the worst performing
GPU techniques, they manage to achieve average 5.7X speedup
compared to the best performing CPU technique.

As shown in Figure 8, for real world datasets with 𝑘 = 10000,
sf-gssjoin is the most efficient technique across every dataset and
achieves average 147X speedup over the best performing CPU
technique. Moreover, the small average set size leads in small
static indices, which yields an optimal workload distribution
among GPU threads and overall, results in better GPU utilization.
In contrast, BI-dynamic, OBS and HI conduct set intersection
at block level. Thus, there is an inherent workload imbalance
among GPU thread blocks. We note that IP, and consequently
its two workload allocation rationales, IP-OBS and IP-HI cannot
always execute due to memory constraints. More specifically,
the required memory to store the diagonals for the grid level
partitioning of IP is 2 ×

(𝑘
2
)
× (𝑏𝑙𝑜𝑐𝑘𝑠 + 1). As a result, there

is an upperbound to the number of blocks to comply with the
global memory restriction. However, due to the small set sizes,
we consider IP partitioning as an excessive approach to conduct
set intersection on these datasets.

Based on our experimental evaluation, we conclude that for
large MISI problems, BI-dynamic and IP-OBS are preferable. On
the other hand, when dealing with multiple instance small set
intersections, the grid level partitioning of IP adds overhead and
results in severe GPU underutilization. In such cases, standalone
OBS and HI perform better but are surpassed by sf-gssjoin, which
achieves optimal GPU utilization.

5 CONCLUSION
In this work, we adapt and evaluate GPU set intersection tech-
niques that were previously applied to graph analytics. Although
these techniques are better suited for intersecting sets of smaller
size, we experimentally show that, through certain enhance-
ments, they can be easily adapted for large set intersection. We
explain which are the best approaches in the single- and multi-
instance cases, and we introduce a novel hybrid, namely, com-
bining 𝐼𝑃 with 𝑂𝐵𝑆 , which proves to be a dominant solution
for the former cases, and competitive in the latter ones. Also,
employing bitmap-based solutions pays off in the multi-instance
case. Finally, if the set sizes are relatively smaller, multi-instance
set intersection stands to benefit from adapting a set similarity
join technique.
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