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ABSTRACT
The advances of mobile technologies have led tomassive amounts
of trajectory data, i.e. data about tracked routes of moving ob-
jects. The detection of anomalies in trajectory data is an evolving
research domain, which has applications in traffic management
and in public safety, but also in climate research and in animal
habit analysis. It is a challenging task due to the existence of non-
linear spatiotemporal dependencies. In this work we propose the
combination of deep learning techniques with a traditional out-
lier detection methodology for detecting anomalous trajectories.
Two variants of denoising sequential autoencoder architectures
are applied for unsupervised anomaly detection in vehicle trajec-
tories, an LSTM-based autoencoder and a Sequence to Sequence
LSTM autoencoder. A weighted distance-based loss function is
optimized during the training phase, taking into account the im-
pact of trajectory length on the detection outcome. We propose
a hybrid architecture for the detection phase, which combines
each of the autoencoders with the Local Outlier Factor algorithm
– a density–based anomaly detection method – in order to detect
anomalies. Our models are evaluated on different variants of
synthetic anomalies generated by our dataset. The results indi-
cate a clear performance advantage of our approach compared
to competitive baselines.
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1 INTRODUCTION
The rapid advances in Global Positioning Systems (GPS), com-
bined with those in computation and storage systems allow the
large-scale collection and analysis of the digital traces obtained
from GPS devices. The knowledge extracted from vehicle or hu-
man trajectory data can offer important insights in the fields of
traffic monitoring and management, public safety and surveil-
lance. A relevant research domain, which has lately been attract-
ing interest, is anomaly detection in trajectory data.

An anomalous trajectory is one that appears to be different
compared to others with respect to some kind of similarity [3]. It
is really difficult to uniformly define abnormality, as it is usually
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context dependent [25]. For instance, vehicle trajectory outliers
may happen because of anomalies in traffic, caused by various
events, like protests, accidents, physical disasters or because of
errors in the GPS devices or of unexpected drivers’ behaviors.

In this work, we propose the use of deep learning based un-
supervised outlier detection and its combination with a density-
based outlier detection algorithm, during the detection phase.
Two types of autoencoder architectures are applied, both variants
of LSTM-based networks. The aim is the detection of abnormal
trajectories, defining them as the ones that the autoencoder fails
to reconstruct. Our models are trained using real-world data,
including both normal and abnormal trajectories. Since there is
no ground truth in our task, in order to evaluate our models on
unseen data and compare their performance, we generate differ-
ent types of abnormal data based on our test set and incorporate
them in it. Anomalous trajectories are detected based on their
reconstruction errors.

The proposed methods can address the problems of mixed dis-
tribution densities in a dataset and the dependencies on suitable
similarity metrics. These are common drawbacks of traditional
outlier detection approaches, in which user-defined parameters,
like distance or density parameters, affect the outcome and are
not easily defined for sequence data. In general, deep learning
models have several advantages over other methods for outlier de-
tection in sequences as they can effectively address the challenges
of feature extraction, high dimensionality and non-linearity [18].
Moreover, there is no need to explicitly describe a normal pattern
for a trajectory and to define the type of the anomaly (e.g. a
trajectory with not so many neighbors or with small density).

Instead, the proposed method detects trajectories that differ
from the normal patterns in a rather abstract manner. In spe-
cific, the model is trained to reconstruct most of the trajectories
included in a dataset, while it fails on the more irregular ones,
which are classified as anomalies.

What is more, the applied architectures are capable of captur-
ing the temporal dependencies in the trajectory data as they are
both based on recurrent neural networks (RNNs).

Several recent works have applied neural autoencoders in tra-
jectory outlier detection tasks [4, 9, 21, 25]. They either use feed
forward or sequential autoencoders in order to detect outliers in
trajectory data. In these works a threshold is set on the errors’
values for classifying a trajectory as outlier or not, or a qualita-
tive analysis is conducted on the trajectories with the highest
reconstruction errors. Moreover, the autoencoders are trained
minimizing a standard loss function, which does not account for
the trajectory length.

In this work we make the following contributions:



• We propose a hybrid architecture that combines a sequen-
tial denoising autoencoder with a density-based outlier de-
tectionmodel for unsupervised anomaly detection in trajec-
tories. We apply the Local Outlier Factor (LOF) algorithm
on the autoencoder’s reconstruction errors of unseen data.
In scoring outlier detection techniques an anomaly score is
assigned to each instance and the final output is a ranked
list of all instances with respect to their scores: those in
the highest ranks are detected as anomalies.

• We train two variants of sequential denoising autoen-
coders as a first step in this hybrid setting, by minimizing a
Haversine distance-based weighted loss function, effectively
accounting for the overall length of each trajectory.

• We test on several anomaly detection tasks with synthetic
data, showing important gains in performance using the
proposed models against competitive baselines.

2 RELATEDWORK
Most trajectory anomaly detection methods rely on distance, den-
sity, historical similarity or classification [3, 11]. Distance-based
methods detect as outliers trajectories with insufficient number
of neighbors according to a similarity measure. They detect global
outliers and their results highly depend on the suitability of the
chosen similarity metric. Methods relying on density classify a
trajectory as an outlier if its density is lower than a threshold.
They can detect local abnormalities in datasets with varying
densities, but are computationally expensive. Historical similar-
ity approaches are applied for detecting temporal outliers based
on the calculation of changes in historical similarity between
data points. Classification-based methods include the detection
of anomalous trajectories using a motion-classifier (a classifier
applied on trajectories represented as sequences of motion fea-
tures) in a supervised setting, and also machine learning models,
either supervised or unsupervised. The latter include Isolation
Forests, One-Class SVMs and deep learning architectures, like
autoencoders, which have remarkable performance in sequential
outlier detection. In this section we present examples of each of
these approaches.

A density-based algorithm is used by Fontes et al. [10] for
trajectory anomaly detection between regions of interest. Spa-
tiotemporal outliers are detected among sub-trajectories based
on the concepts of neighborhood, ‘standard’ sub-trajectory (the
neighborhood of which has a minimum density) and synchro-
nization. Although spatiotemporal aspects are considered, this
approach refers to trajectories between specific regions, and its
outcomes are strongly related to user-specified parameters.

TRAOD [15] is a hybrid (distance/density-based) partition-and-
detect algorithm for trajectory outlier detection. After a trajectory
is partitioned, outliers are detected in its parts using distance and
density metrics, so that anomalies are detected both in dense and
sparse areas. A trajectory is considered as anomalous if its outly-
ing parts are more than a threshold. Though TRAOD alleviates
the problem of local density, its outcome depends on user-defined
parameters and it only considers spatial data, without capturing
the temporal sequence.

Methods using historical similarity between points detect tem-
poral, rather than spatial, outliers. Li et al. [17] propose a frame-
work for detecting temporal outliers in road segments. For every
segment and time step, a ‘temporal neighborhood vector’ is de-
fined, consisting of aggregated historical similarities between
specific variables in relation to all other segments. An outlier

is detected if there is a drastic change in the similarity values.
Though related to our task, this method analyses temporal out-
liers in road network links rather than outliers in trajectories.

Classification-based methods refer to outlier detection with
motion-classifiers or to machine learning classification models.
In ROAM [16] – a supervised trajectory anomaly detection algo-
rithm – trajectories are represented as pattern fragments, which
are transformed to a feature space of spatiotemporal attributes.
A hierarchical rule-based classifier is applied for classifying the
trajectories in one of the two classes (supervised setting).

iBAT [29] is a lazy isolation technique for trajectory outlier
detection. A grid is used to split the studied area, and all trajecto-
ries that share the same starting/ending grid cells are grouped
together to detect the anomalous trajectories among them. Thus,
this method focuses on discovering anomalous trajectories in
specific regions. Furthermore, trajectories are represented as se-
quences of discrete variables (cell id), which results in a loss of
spatial information. One Class SVM clustering is applied on a
dataset of trajectories, extracted from video sequences in the
work of Piciarelli et al.[23]. The aim is to detect the region in
the feature space that encloses the normal data and excludes the
anomalous ones. To address the problem of correctly choosing
the number of acceptable anomalies – unknown in unlabeled
data – the authors suggest a technique for removing the outliers
in the training set. They leverage geometric characteristics of
the feature space of the model. After clustering the trajectories,
the outliers are detected using geometric criteria in the model’s
feature space, without taking account of temporal dependencies.

More recent works have started applying deep learning meth-
ods for detecting outliers in trajectory data. Roy & Bilodeau [25]
work on abnormal event detection by analyzing fixed length tra-
jectories in road intersections. A deep feed forward autoencoder
is trained on normal data, learning to reconstruct the input tra-
jectories from its latent-space representation. A threshold value
based on the reconstruction error in training/validation sets is
used for detecting outlying trajectories. A feed forward autoen-
coder is also used in the work of Olive et al. [21] to discover
outlying (fixed-length) trajectory patterns in flight routes. Tra-
jectories with high reconstruction errors are then analyzed to
find possible associations with urgent situations. Though feed
forward neural networks have shown good potential in anomaly
detection tasks, they fail at capturing temporal dependencies.

Instead, recurrent neural networks learn from sequential data
and can be effectively applied in outlier detection tasks with a
temporal dimension. They also have the advantage of captur-
ing the context of the entire trajectory. This makes them more
effective than methods based on trajectory segmentation [18].
Di Mauro & Ferilli [9] deploy a Seq2Seq architecture based on
an LSTM autoencoder in an unsupervised setting in order to
detect anomalous vehicle routes. The routes are represented as
sequences of gate ids, which ignores the spatial information, as
in [29]. A Sequence to Sequence real-time outlier detector in
human trajectories is proposed by Bouritsas et al. [4] aiming at
discovering suspicious behavior in video surveillance footage.
Focusing on localization of anomaly detection, each trajectory is
partitioned in sub-trajectories, represented as sequences of coor-
dinates. Synthetic data are used for evaluation and the training
is applied only on normal instances.

In this work, instead of applying one of the aforementioned
methods for trajectory anomaly detection, we propose a hybrid
approach, a combination of deep learning and density-based
anomaly detection techniques, while taking into consideration



the length of each trajectory during the training phase. The
performance of the proposed architecture is tested on synthetic
data, generated to account for different patterns of anomalies.

3 METHODS
3.1 Models
Autoencoders are used as the basis for unsupervised outlier detec-
tion method. Given an input sequence of vectors of spatial coordi-
nates (longitude, latitude) 𝑇𝑖 = {(𝑥1, 𝑦1), (𝑥2, 𝑦2), . . . , (𝑥𝑚, 𝑦𝑚)},
the autoencoder attempts to reproduce this input, by minimizing
a loss function. This loss function refers to the error of the recon-
structed outputs compared to the original input sequences. The
instances that the model failed to reconstruct successfully suffer
from high reconstruction error and are detected as anomalies. In
our work, we employ a Long Short-Term Memory (LSTM) net-
work [13] as the basis for our models due to its ability to capture
temporal dependencies in the data.

The autoencoder consists of two components – the encoder
and the decoder. During the encoding phase, the sequence is com-
pressed into a latent vector of lower dimension, which carries
all its spatiotemporal information in a compressed format (bot-
tleneck architecture). The decoder then reconstructs the input
using its latent representation. Both the encoder and the decoder
may consist of one or more layers. Dense layers are added on top
of the last decoder layer and produce the final reconstruction for
the𝑚 timesteps.

In our work, we use two variants of denoising LSTM autoen-
coders [28], which attempt to output the clean input data from a
partially corrupted input. As a result, the model learns represen-
tations which are robust to noise. This is accomplished by adding
to the input data a Gaussian noise function with zero mean and
unit variance.

LSTM: In our first variant, the last layer of the encoder returns the
encoder’s output, which is copied𝑚 times (equal to the number of
the sequence timesteps) before being fed to the decoder. Similar
model architectures have been used in anomaly detection tasks
in other areas of research, such as natural language processing
[27]. The decoder’s architecture is the same as the encoder’s and
dense layers added on the top produce the final output.

SEQ: Our second variant of autoencoders is a Sequence to Se-
quence network (Seq2Seq) [6, 26], which has shown good results
in the area of machine translation. LSTM layers comprise both
the encoder and the decoder. The encoder sequentially reads each
element of the sequence and encodes it in a hidden state, updated
at every timestep. Instead of copying the encoder’s output, as
with the LSTM autoencoder, this hidden state is used as the ini-
tial state of the decoder, which is trained to generate the output
sequence step by step. We train the model using teacher forcing,
so that the actual value at each timestep is used as input to the
decoder. The final reconstructed sequence is output by dense
layers. In our work, both architectures (LSTM, SEQ) consist of
one encoder, one decoder and one dense (output) layer.

Traditionally the loss function minimized during training is
the mean squared error (MSE) between predicted and actual (loca-
tion) sequences. Here, we propose a weighted MSE loss function.
The weight variable is introduced in order to penalize the long
trajectories more, as they tend to have higher reconstruction er-
ror, regardless of their abnormality. The equation of the weighted

loss function is:
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where 𝑖 is a specific instance from a total number of instances |𝐼 |, 𝑡
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where 𝑥𝑘 and 𝑦𝑘 refer to the longitude and latitude of the point
𝑘 in radians, respectively. In our experiments, we employ both
models (LSTM, SEQ) with both loss functions (MSE, HVR).

3.2 Anomaly detection methods
After training the models, typically an anomaly threshold is set
in order to classify a trajectory as normal or not [2, 4, 20, 25]. We
employ two different methods to detect outliers in unseen trajec-
tories, both operating on the sequences of their reconstruction
errors (i.e. those derived by LSTM/SEQ models, as presented in
the previous subsection). The evaluation is conducted using a
test dataset and synthetic anomalous data.

AVG: The average values of errors are calculated on the se-
quences in the test set and are used as a proxy for measuring
the abnormality in a sequence of locations visited in a trajectory.
The test instances are then sorted based on these values, with the
most anomalous trajectories being placed at the highest ranks.

LOF: Instead of working with averages, we propose a hybrid
architecture, combining each autoencoder with the Local Outlier
Factor algorithm [5] (LOF). LOF is a density-based outlier de-
tection algorithm, which performs well even in case of different
outlying densities and detects both local and global anomalies.
Anomalies are detected by comparing their local densities with
the average local densities of their 𝑘 nearest neighbors. The al-
gorithm contains three steps:

(1) The 𝑘 nearest neighbors of each record are found, using
a distance metric (in our case, Euclidean distance on the
reconstruction errors of LSTM or SEQ models, trained
using MSE or HVR).

(2) The Local Reachability Density is computed for each record
p, using its 𝑘 nearest neighbors 𝑁𝑁𝑘 , according to the
equation:

𝐿𝑅𝐷𝑘 = 1/
∑
𝑜𝜖𝑁𝑁𝑘 (𝑝) 𝑟𝑑𝑘 (𝑝, 𝑜)

|𝑁𝑁𝑘 (𝑝)) |
(3)

where 𝑟𝑑𝑘 (𝑝, 𝑜) is the reachability distance of the object p
with respect to object o.

(3) The Local Outlier Factor score of a record is computed as
the ratio of the average local densities of its neighbors to
its local density. The equation for LOF score is:

𝐿𝑂𝐹 (𝑝) =
∑
𝑜𝜖𝑁𝑁𝑘 (𝑝)

𝐿𝑅𝐷𝑘 (𝑜)
𝐿𝑅𝐷𝑘 (𝑝)

|𝑁𝑁𝑘 (𝑝) |
(4)

Finally, LOF scores close to 1 are considered to be associated
with normal records, as their densities are similar to those of
their neighbors, while outliers have higher score values. The



LOF algorithm is applied on the sequences of the reconstruction
errors, predicted by the autoencoder. The test instances are then
sorted based on their LOF scores and outliers are detected as in
the AVG method.

4 EXPERIMENTS
4.1 Data
Dataset: We make use of the dataset released in the Prediction
Challenge of ECML PKDD 20151 [19], which contains 1,710,671
taxi trips made by all 442 taxis in the city of Porto, Portugal dur-
ing the time period from 01/07/2013 to 30/06/2014. This dataset
has been used in the past for related tasks, such as destination
prediction [8, 24] and travel time prediction [12].

The location of each trip is sampled every 15 seconds; we
sub-sample this signal so that we have one timestep per minute,
in order to test the performance of our models in low sampling
rates. Furthermore, we also observe that there are some dupli-
cates, which are removed from the dataset. In order to keep out
trajectories with very short length, we exclude trajectories for
which the sum of distances between the first, the middle and
the last point is less than 500 meters. We used only three points
of each trajectory instead of all of its points for computational
reasons. Trips with very low duration (lower than three minutes)
or very high duration (higher than two hours) are also excluded.
Since the autoencoders require the trajectories to have specific
number of points, we choose this number to be nine, so that 75%
of the total number of trajectories has more points. As a result,
we keep trajectories with more than nine points and keep the
first nine of them. We note that keeping the nine first points of
each trajectory may result in excluding some anomalies, which
require more of them to be expressed. However, we choose this
percentage (75% of all trajectories), so that we take into account
a large proportion of the total number of trajectories, while the
number of points is large enough for the task of detecting anoma-
lous trajectories to be meaningful. We end up with 1,218,657
sequences of nine spatial coordinates (longitude, latitude). The
features of the dataset (longitude, latitude) are standardized to
zero mean and unit variance, according to the equation:

𝑥 =
𝑥 − 𝜇 (𝑥)
𝜎 (𝑥) (5)

where 𝜇 (𝑥) and 𝜎 (𝑥) are the average and variance of all values
of each feature, respectively.

We use 80% of the trajectories of each of the 12 months of the
time period for training. From the remaining 20%, 10% is used in
order to define the end of the training process to avoid overfitting
(validation set) and 10% for evaluating our models (test set).

Synthetic Examples of Anomalies: We are interested in cap-
turing different types of anomalies in the trips made by the taxis
in our dataset. Due to the lack of labels in our test set, we generate
synthetic data by altering a small portion (1%) of the trajectories
in the test set. We therefore aim at capturing clear cases of anoma-
lous trips, as well as anomalies that correspond to certain driving
patterns. Thus, we generate artificial anomalies corresponding to
(a) noisy (distorted) trips (DSTRT) and (b) cyclic routes (CYCLE).
Table 1 summarises the two different approaches, their variants
and the exact pattern we have used to generate such synthetic tra-
jectories. In the experiments that are discussed next, we employ
each of these patterns independently in our test set.

1http://www.geolink.pt/ecmlpkdd2015-challenge/

Table 1: Overview of ourmethods for generating synthetic
anomalies in the test set. The ‘Pattern’ column refers to
the pattern we use to alter the locations of the actual trip
[0, ..., 8].

Method Variant Description Pattern

DSTRT DSTRT𝑐 Complete noise. [0,8,1,7,2,6,3,5,4]
DSTRT𝑝 Light noise. [0,1,2,4,3,5,6,7,8]

CYCLE CYCLE𝑐
Perform the same cycle twice
and then continue with the
rest of the trip.

[0,1,2,3,0,1,2,3,4]

CYCLE𝑏 Go back-and-forth all the time. [3,4,5,4,3,4,5,4,3]

4.2 Model Comparison
Task Definition: Our goal is to detect anomalous driving pat-
terns by analysing the trajectories. To this end, we first compare
the ability of our four variants to reconstruct the trajectories
in the test set against a non-sequential model (‘FF’, see next
paragraph). We then conduct our main evaluation task.
Anomaly Detection Task: We form this task in a rank-based man-
ner. We rank the trajectories based on their anomaly factor, as
derived by the models, aiming at ranking higher the (artificially
generated) anomalous trajectories compared to the ‘normal’ ones.
We compare the performance of our sequential models against
baseline methods, as detailed next.

Finally, we compare two of our model variants in a qualitative
way, to get insights on the advantages of using the Haversine-
weighted loss function compared to standard MSE, as well as the
hybrid (+LOF) approach operating on the reconstruction errors
compared to considering the average error.

Models: We contrast the two models defined in section 3.1, each
trained by minimising (a) the Mean Squared Error (MSE) and
(b) the Haversine-weighted (HVR) loss function. We denote the
models as {LSTM𝑚 , SEQ𝑚 } when they use the MSE loss function
and as {LSTMℎ , SEQℎ } when they use the HVR loss function
respectively. We further compare their performance by ranking
the trajectories based on the AVG or LOF method, as detailed in
section 3.2. All versions of our models have two hidden layers
of 16 units, followed by one dense layer for the final prediction,
since using these parameters offered the best performance in
terms of reconstruction error for all cases.

To test the importance of the temporal component in our mod-
els for the Anomaly Detection task, we compare them against a
denoising autoencoder implemented via a Feed-Forward Neural
Network with two hidden layers (FF) and a Local Outlier Factor
(LOF) algorithm trained on the raw trajectory data instead of the
sequences of reconstruction errors derived by one of our models.
Both of these baseline models treat the different timesteps as dif-
ferent features, ignoring their temporal dimension. FF is trained
in the same data and using the same noise as our models. LOF is
trained straight away on the test set to detect the anomalies and
we select the number of neighbors (trials: [10,50,100,500,1000])
on the basis of its performance on the test set, as to provide
it with a strong advantage against our models. Our sequential
models as well as the FF baseline are trained using the Adam
optimizer [14], an L2 regularization norm equal to 0.1, a learning
rate equal to 0.0001 and a batch size equal to 512. Finally, we
provide the evaluation metrics (see next subsection) of a naïve
random ranking model (NRR), by averaging the performance
after 10K experiments with random scores on the test set. For the

http://www.geolink.pt/ecmlpkdd2015-challenge/


case of the Trajectory Reconstruction subtask, we also compare
our models against FF.

We implement neural network architectures based on the
Keras library [7] and the LOF algorithm using the Scikit-learn
library [22], both in Python.

Anomaly Scores. In the Anomaly Detection task, once our mod-
els (LSTM𝑚 , LSTMℎ , SEQ𝑚 , SEQℎ) and the FF baseline make
predictions on the test set2, we measure the MSE between the
model predictions and the actual location of each timestep of
every trip in the test set. We then rank the trips of the test set by
employing any of the methods described in section 3.2. For LOF,
we rank trips in the test set based on their LOF scores in order to
identify (i.e. rank higher) the synthetic ones.

Evaluation. We make use of three evaluation metrics that are
suited for ranking tasks and widely used in related work. In spe-
cific, we use two common classification-based metrics, adjusted
for the needs of ranking tasks: Recall at k (𝑟@𝑘) measures the
portion of the anomalous trips that are present in the top-k trips
ranked by ourmodel;Precision at k (𝑝@𝑘) measures the portion
of the top-k trips ranked by our model that are indeed anomalous.
We finally calculate the F1 Measure at k as our main evaluation
metric, defined as follows:

𝐹1 =
2 · 𝑟@𝑘 · 𝑝@𝑘

𝑟@𝑘 + 𝑝@𝑘
(6)

We set 𝑘 to be equal to 5% of the size of our test set. This
value is larger than the percentage of the artificial anomalies we
aim at detecting (1%), since we expect that there will be more
(non artificial) anomalies in our test set. Nevertheless, we further
experiment with different values of 𝑘 (range: [0.1%-50%]).

To help with the reproducibility of our experiments, we make
available the implementation of the proposed methods and the
conducted experiments on GitHub3.

5 RESULTS
In this section we present the results from our models’ compari-
son. The reconstruction errors of our sequential models – ametric
of their ability to accurately reconstruct the trajectories – is com-
pared to the FF model error in our test set. Then, we present the
comparison between the performance of our hybrid LOF models
against the AVG method (described in section 3.2). The impact
of using a Haversine-weighted loss function is also examined
next. Finally, we present our empirical insights by comparing the
anomalies detected in our test set by SEQ𝑚 with AVG against
SEQℎ with LOF, to test the advantages of the latter approach.

5.1 Base Task – Trajectory Reconstruction
The mean absolute and mean squared error in the test set are
computed as metrics of the reconstruction error. The results are
shown in Table 2. The two sequential models show better recon-
struction ability than the FF model, demonstrating the advantage
ofmodels that consider the temporal dimension of the trajectories.
We also find that the incorporation of the Haversine-weighted
(HVR) loss function further improves the results consistently
across the two models (SEQ, LSTM).

2Note that the 1% of the trips in the test set have been altered according to one of
the four patterns described in section 4.1.
3https://github.com/marialiatsikou/BMDA_anomaly_detection

Table 2: Mean Absolute and Mean Squared Error of our
fourmodels and the FF baseline. Performance ismeasured
via the reconstruction errors in the test set.

MAE MSE
FF 0.00200 8.726 · 10−6
LSTM𝑚 0.00130 4.112 · 10−6
SEQ𝑚 0.00156 4.968 · 10−6
LSTMℎ 0.00130 3.908 · 10−6
SEQℎ 0.00144 4.286 · 10−6

5.2 Main Task – Anomaly Detection
Table 3 shows the results of our models and baselines on the
anomaly detection task across all experiments (i.e. across all
synthetic datasets, as summarised in Table 1). In the following,
we examine the effects of the different components of our models
for the anomaly detection task.

Anomaly Detection Methods: Our sequential models outper-
form the FF and LOF baseline models in almost all cases. The
application of LOF on the sequences of reconstruction errors in
all cases of synthetic datasets improves the performance of all
four sequential autoencoders compared to the AVG method, in
which the ranking of trajectories is determined by the average
error values. The relative improvements in F1 measure (averaged
over the corresponding values in the four datasets) of LSTM𝑚

and LSTMℎ models are 18.3% and 15.1% respectively. The corre-
sponding numbers for Seq𝑚 and Seqℎ are much higher (50.2%
and 33.2% respectively). The hybrid approach gives much higher
F1 score values even in the predictions made by the FF model
(i.e., comparing FF+AVG vs FF+LOF). It is worth noting that FF
with LOF outperforms the other models in the case of CYCLE𝑏 ,
while its performance in this case is much lower compared to all
other models (except for NRR) in the case of AVG method. These
findings show the clear and consistent benefit we gain via the
hybrid architecture proposed in this work.

Loss Functions: We examine the performance of the models
with respect to the loss functions used. The Haversine-weighted
loss function (HVR) outperforms Mean Squared Error loss (MSE)
with respect to F1 measure in 13 out of total 16 cases shown in
Table 3 (the cases refer to the predictions of the two Sequential
models for the four different datasets). The relative gains in per-
formance by using the Haversine-weighted loss are 1.32% and
4.14% for the LSTM and SEQ models, respectively.

To further examine the performance of the four variants (the
SEQ/LSTM models (a) trained using the MSE/HVR loss function
and (b) using the AVG/LOF method for their final ranking), Fig-
ures 1, 2 show the variation of F1measure over different threshold
values of 𝑘 for LSTM and SEQ model respectively. It becomes
clear that our hybrid approach combined with the Haversine
weighted loss function (HVR+LOF) gives better results for LSTM
and SEQ in most cases, providing a strong boost in performance
compared to the common MSE+AVG approach.

5.3 Qualitative Analysis
As a final step, we employ SEQ𝑚 with AVG method and SEQℎ

with LOF method to rank all the trajectories of our original test
set. As opposed to the quantitative analysis conducted thus far
on the artificially generated anomalies, here we are interested in
gaining qualitative insights on the detected anomalies by each

https://github.com/marialiatsikou/BMDA_anomaly_detection


Table 3: Evaluation (in %) of all models in all runs for the Anomaly Detection task for k=5%. Blue cells indicate the best-
performing anomaly detection method (AVG vs LOF) for each model, per synthetic dataset. Green cells indicate the best
performing model per synthetic dataset. Bold scores show the best-performing loss (MSE vs HVR) when comparing the
two variants of each of our sequential models.

DSTRT CYCLE
DSTRT𝑐 DSTRT𝑝 CYCLE𝑐 CYCLE𝑏

AVG LOF AVG LOF AVG LOF AVG LOF

Pr
ec
is
io
n

NRR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
LOF – 17.23 – 2.69 – 4.43 – 4.43
FF 10.98 16.43 1.74 3.53 0.94 3.58 1.72 9.29
LSTM𝑚 16.72 18.22 3.02 5.15 3.68 4.41 4.91 5.73
SEQ𝑚 15.08 18.12 2.48 4.94 2.48 5.22 3.15 6.53
LSTMℎ 16.90 18.38 3.10 4.73 4.00 4.56 5.12 5.86
SEQℎ 16.02 18.78 2.79 5.05 3.33 5.10 3.76 5.55

R
ec
al
l

NRR 5.00 5.00 5.00 5.00 5.00 5.00 5.00 5.00
LOF – 86.21 – 13.46 – 22.17 – 22.17
FF 54.93 82.18 8.70 17.65 4.68 17.90 8.62 46.47
LSTM𝑚 83.66 91.13 15.11 25.78 18.39 22.09 24.55 28.65
SEQ𝑚 75.45 90.64 12.40 24.71 12.40 26.11 15.76 32.68
LSTMℎ 84.56 91.95 15.52 23.65 20.03 22.82 25.62 29.31
SEQℎ 80.13 93.92 13.96 25.29 16.67 25.53 18.80 27.75

F1
M
ea
su

re

NRR 1.67 1.67 1.67 1.67 1.67 1.67 1.67 1.67
LOF – 28.72 – 4.49 – 7.39 – 7.39
FF 18.30 27.38 2.90 5.88 1.56 5.96 2.87 15.48
LSTM𝑚 27.88 30.37 5.03 8.59 6.13 7.36 8.18 9.55
SEQ𝑚 25.14 30.20 4.13 8.23 4.13 8.70 5.25 10.89
LSTMℎ 28.18 30.64 5.17 7.88 6.67 7.60 8.54 9.77
SEQℎ 26.70 31.30 4.65 8.43 5.55 8.51 6.26 9.25

Figure 1: F1 Measure for different values of 𝑘 (x-axis) for LSTM model.

Figure 2: F1 Measure for different values of 𝑘 (x-axis) for SEQ model.

of these methods on our actual test set. We obtained the two
sets of the top-0.1% (i.e., most anomalous) of the trajectories
detected by each of the two models in the test set and focused
on those that are predicted by one model only (i.e., we excluded
the intersection of the two sets).

Two annotators labelled these trajectories as ‘normal’ or ‘ab-
normal’ (or ‘NA’, if they could not tell). To familiarise themselves
with the task, the annotators (one author, one PhD graduate with
no domain knowledge) were first provided with examples of
normal and abnormal trajectories in the test set and were then



Figure 3: The types of anomalies detected by the SEQℎ with LOF method. The patterns from left to right are: GPS device
error, unreasonably long covered distance, cyclic route, back and forth movement.

Figure 4: The types of anomalies detected by the SEQ𝑚 with AVG method. The patterns from left to right are: One back
and forth movement and three routes with cyclic parts.

Figure 5: Four typical trajectories classified as normal by the SEQℎ with LOF method.

asked to label the trajectories in our dataset of interest in a sim-
ilar manner. There was an agreement on 73/86 cases, with the
inter-annotator agreement in Cohen’s kappa terms being 0.72
(i.e. ‘substantial agreement’). For SEQ𝑚 with the AVG method, 4
trajectories out of the 42 (accuracy=9.5%) for which the annota-
tions coincide (excluding ‘NA’), were labelled as ‘abnormal’; for
SEQℎ with the LOF approach the anomalous trajectories were

15 out of 29 (accuracy=51.7%), certifying the superiority of our
hybrid model.

In Figure 3 four patterns of anomalies detected by the SEQℎ

with LOF method are displayed. The first corresponds to error of
the GPS device, while the rest possibly refer to driving patterns:
unreasonably long covered distance, a cyclic trip and a trip in-
cluding back and forth movement. For comparison purposes we



present the four trajectories annotated as anomalies by both an-
notators for SEQ𝑚 with the AVGmethod in Figure 4. It is obvious
that the types of anomalies detected with this approach are more
restricted and they refer to a trip which includes back and forth
movement and three trips with cyclic parts. Finally, some typi-
cal trajectories that our hybrid model (SEQℎ with LOF method)
classified as normal are displayed in Figure 5. The findings of
this qualitative analysis show that the proposed approach can
capture different types of anomalies, despite not being tailored to
any of them explicitly. Annotating a larger dataset of trajectories
based on their pattern of anomaly could lead to further insights
on the performance of our models in future work.

6 CONCLUSION
In this work we introduce a hybrid architecture, which combines
a sequential denoising autoencoder with a density-based out-
lier detection algorithm, for trajectory anomaly detection. We
propose two variants of sequential models, a denoising LSTM
autoencoder and a denoising Seq2Seq autoencoder. They are both
trained by optimizing a Haversine distance-based weighted loss
function, in order to take into account the overall distance cov-
ered in a trajectory. During the detection phase, the Local Outlier
Factor algorithm is applied on the sequences of reconstruction
errors of unseen trajectory data. The evaluation is conducted
on four different types of synthetic data, generated by altering
a small portion of the trajectories of our test set. We show that
the hybrid architectures outperform other anomaly detection
methods. Regarding the proposed loss function, results for both
detection methods (AVG and LOF) are in most cases improved
by the introduction of the weighted loss function.

In the future, we intend to apply our methodology in datasets
of different trajectory length and type, including bike sharing
data from the i-CHANGE platform [1], and to collaborate with
domain experts to obtain annotations for anomalous trajectories.
We also intend to test other variants of loss functions during
training and also test transfer learning approaches across dif-
ferent datasets and domains as well as to try out different deep
learning architectures.
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