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Abstract

The quasilinear system of a composite type describing the spatial un-
steady isothermal motion of a compressible fluid in a viscoelastic porous
medium is considered. In this formulation, the influence of gravity is
taken into account, the full equation of the balance of forces is consid-
ered, and the viscoelastic properties of the deformable porous skeleton
are also taken into account. The problem is reduced to a single third-
order equation for finding the porosity function in self-similar variables.
The system is reduced to a second-order differential equation in the case
of the predominance of viscous properties. A numerical study of this
case by the method of determination is carried out.

1 Introduction

The relevance of the theoretical study of filtration problems in porous media is associated with their wide
application in solving important practical problems. Examples are filtration near river dams, reservoirs and other
hydraulic structures [Bea72]; irrigation and drainage of agricultural fields; oil and gas production, in particular,
the dynamics of hydraulic fracturing cracks; problems of degassing coal and shale deposits to extract methane
[Fow99]; movement of physiological fluids in tissues; tumor growth processes [Fri12], [Ast07]. The construction
of mathematical models of such processes is complicated by the fact that the fluid flow is often considered in a
mobile inhomogeneous medium, which is characterized by the presence of variable porosity. A special feature of
the model of liquid filtration in a porous medium considered in this paper is the consideration of the mobility
of the solid skeleton and its poroelastic properties. Interest in this problem also arises in connection with the
widespread use of surface waves that occur in viscoelastic medium, when three waves propagate independently
of each other: fast and slow longitudinal, as well as transverse [Con98]. Surface waves are studied in detail in
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relation to the problems of seismology, non-destructive testing, acousto-electronics, and a number of other areas
[Bio56].

2 Problem statement

We consider the following quasilinear system of composite type describing the spatial nonstationary isothermal
motion of a compressible fluid in a viscoelastic porous medium [Mor07],[Fow11]:

∂(1− ϕ)ρs
∂t

+ div((1− ϕ)ρsv⃗s) = 0,
∂(ρfϕ)

∂t
+ div(ρfϕv⃗f ) = 0,

ϕ(v⃗f − v⃗s) = −kϕn

µ
(∇pf − ρf g⃗),

∇ · v⃗s = −a1(ϕ)pe − a2(ϕ)(
∂pe
∂t

+ v⃗s · ∇pe),

∇ptot = ρtotg⃗ + div

(
(1− ϕ)η

(
∂v⃗s
∂x⃗

+ (
∂v⃗s
∂x⃗

)∗
))

,

ρtot = ϕρf + (1− ϕ)ρs, ptot = ϕpf + (1− ϕ)ps, pe = (1− ϕ)(ps − pf ).

Here ϕ is the porosity; ρf , ρs, v⃗s, v⃗f are the true densities and velocities of the phases, respectively; pe is the
effective pressure, ptot is the total pressure ρtot is the total density; g⃗ is the density of mass forces;βϕ is the
compressibility coefficient of the solid skeleton, η is the dynamic viscosity of the solid phase, k is the permeability,
µ is the dynamic viscosity of the liquid, σ is the total stress tensor. The true density of the solid phase ρs is
assumed to be constant. The system is closed if ρs, ρf = const. The solvability of the self-similar problem for the
original system of equations is established in [Tok16] in the case of an incomplete forces balance equation ∇ptot =
−ρtotg⃗ and g⃗ = 0. The solvability of the initial-boundary value problem for the equations of nonisothermal
filtration in the case of the prevalence of the viscous properties of the skeleton was established in [Pap21]. Global
in time solvability in the case of isothermal filtration was proved in [Pap19].

We arrive to a closed system of equations for ϕ, vs, vf , ps, pf in the one-dimensional case, under the condition

ρs, ρf = const, a1 = ϕm

η , a2 = βϕϕ
b [Con98]:

∂ϕ

∂t
+

∂

∂x
(ϕvf ) = 0,

∂(1− ϕ)

∂t
+

∂

∂x
(vs(1− ϕ)) = 0,

ϕ(vf − vs) = −k

µ
ϕn(

∂pf
∂x

+ ρfg),

∂vs
∂x

= −ϕm

η
pe − βϕϕ

b(
∂pe
∂t

+ vs
∂pe
∂x

),

∂ptot
∂x

= −ρtotg +
∂

∂x

(
2η(1− ϕ)

∂vs
∂x

)
.

We pass in this system to dimensionless variables:

t = t1t
′, x = x1x, vf = v1v

′
f , vs = v1v

′
s, pf = p1p

′
f ,

ptot = p1p
′
tot, pe = p1p

′
e, ps = p1p

′
s,

(hereinafter, the primes are omitted), and also put:

t1 =
x1

v1
, α =

kp1
µv21t1

, β =
kρfg

µv1
, γ =

p1t1
η

, λ = βfp1, ζ =
2η

x1t1ρfg
, ρ =

ρs
ρf

, κ =
p1

gx1ρf
.

Then equations can now be written in the form
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∂ϕ

∂t
+

∂(vfϕ)

∂x
= 0,

∂(1− ϕ)

∂t
+

∂(vs(1− ϕ))

∂x
= 0,

ϕ(vf − vs) = −ϕn

(
α
∂pf
∂x

+ β

)
,

∂vs
∂x

= −ϕmpeγ − ϕbλ

(
∂pe
∂t

+ vs
∂pe
∂x

)
,

κ
∂ptot
∂x

= ζ
∂

∂x

(
(1− ϕ)

∂vs
∂x

)
− ϕ− (1− ϕ)ρ.

Next, we consider a self-similar solution of the ”traveling wave” type. Assuming that all the required functions
depend only on the variable ξ = x− ct(ξ > 0, c is a constant parameter). After some transformations, we arrive
to the following system of equations:

dϕvf
dξ

− c
dϕ

dξ
= 0, (1)

d

dξ
((1− ϕ)vs)− c

d(1− ϕ)

dξ
= 0, (2)

ϕ(vf − vs) = −αϕn dpf
dξ

− βϕn, (3)

dvs
dξ

= −γϕmpe + λcϕb dpe
dξ

− λϕbvs
dpe
dξ

, (4)

κ
dptot
dξ

= ζ
d

dξ

(
(1− ϕ)

dvs
dξ

)
− ϕ− ρ(1− ϕ). (5)

The system is supplemented with boundary conditions:

vs(0) = v0s , vf = v0f , ϕ(0) = ϕ0, lim
ξ→∞

ϕ(ξ) = ϕ+,

lim
ξ→∞

vf (ξ) = u+, lim
ξ→∞

ϕ(ξ) = ϕ+,

where v0s , v
0
f , ϕ

0, ϕ+ are given constants satisfying the conditions

v0s ̸= v0f , ϕ
0 ̸= ϕ+.

From the equations (1) – (2) of the system, we obtain:

c =
ϕ+(1− ϕ0)v0s − ϕ0(1− ϕ+)v0f

ϕ+ − ϕ0
,

u+ = v0fϕ
0 + (1− ϕ0)v0s ,

A2 =
(1− ϕ+)ϕ0(1− ϕ0)(v0f − v0s)

ϕ+ − ϕ0
,

A1 =
ϕ+

1− ϕ+
A2.

Thus, the system is converted to the following form for finding functions ϕ, pf , ptot:

ϕ(
A1

ϕ
− A2

1− ϕ
) = −ϕn(α

dpf
dξ

+ β), (6)
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A2
d

dξ

(
1

1− ϕ

)
= −γϕm(ptot − pf )−

λA2ϕ
b

1− ϕ

dpe
dξ

, (7)

κ
dptot
dξ

= ζA2
d

dξ

(
(1− ϕ)

d

dξ
(

1

1− ϕ
)

)
− ϕ− ρ(1− ϕ). (8)

Next, we obtain the equation for the porosity function. We express from equations (6) and (8) the resulting

system
dpf

dξ and dptot

dξ , respectively. Then we divide (7) by ϕm, differentiate it, and substitute the expressed
derivatives. Thus, we obtain a third-order equation for finding the function ϕ:

ζλA2

κγ

ϕb−m

(1− ϕ)2
d3ϕ

dξ3
+

1

1− ϕ

(
1

γ

1

ϕm(1− ϕ)
+

ζ

κ

)
d2ϕ

dξ2
+

+
λ

γ

ϕb−m

1− ϕ

(
A1

(
b−m− n

ϕ1+n
+

1

ϕn(1− ϕ)

)
− 1− ρ

κ

(
b−m+ 1 +

1

ϕ(1− ϕ)

)
−

−A2

(
1− n+ b−m

ϕn
+

1

ϕn−1(1− ϕ)

)
+

(
βκ− αρ

ακ

)(
b−m

ϕ
+

1

1− ϕ

))
dϕ

dξ
+

+
ζλA2

κγ

ϕb−m

(1− ϕ)3

(
b−m

ϕ
+ 3

1

1− ϕ

)(
dϕ

dξ

)3

+
λζA2

κγ

ϕb−m

(1− ϕ)2

(
b−m

ϕ
+

4

1− ϕ

)
d2ϕ

dξ2
dϕ

dξ
+

+
1

(1− ϕ)2

(
ζ

κ
+

2

γ

1

ϕm(1− ϕ)
− m

γ

1

ϕ1+m

)(
dϕ

dξ

)2

+

+
A1

A2
ϕ−n − 1− ρ

κA2
ϕ− ϕ1−n

1− ϕ
+

β

αA2
− ρ

κA2
= 0.

In the case of the predominance of the viscous properties of the medium, only the first term in the right part
will remain in the second equation of this system. Then, in the same way, we can obtain a second-order equation
for finding the function ϕ:

A(ϕ)
d2ϕ

dξ2
+B(ϕ)

(
dϕ

dξ

)2

+ C(ϕ) = 0,

where

A(ϕ) =

(
ϕ−m

γ(1− ϕ)2
+

ζ

κ(1− ϕ)

)
,

B(ϕ) =

(
ζ

κ(1− ϕ)2
+

2ϕ−m

γ(1− ϕ)3
− m

γ

ϕ−m−1

(1− ϕ)2

)
,

C(ϕ) =
A1

αA2
ϕ−n − ϕ1−n

α(1− ϕ)
− ϕ+ (1− ϕ)ρ

κA2
+

β

αA2
.

3 Numerical study

The search for a solution to this equation is performed by the method of determination [Kha08]. The solution
of a boundary value problem can be interpreted as an equilibrium state, which is approached by the solution of
a non-stationary problem. Sometimes there is a situation when it is more convenient and more efficient, from
a computational point of view, to solve such a unsteady problem than to directly search for a solution to the
original boundary value problem. This problem can be solved by reducing semi-infinite interval [0;+∞) to the
finite [0; ξ∗], where ξ∗ is found from the condition:

|ϕ(ξ∗)− ϕ+| ≤ ε, (9)

where ε – is the desired accuracy of the solution. The search for a solution is performed with the necessary
accuracy using the condition |ϕn+1

i − ϕn
i | ≤ ε and in the case under consideration, ε = 0.005.

In the region [0, ξ∗]× [0, 1] we construct a uniform grid ω̄hτ = ω̄h× ω̄τ : ω̄h = {ξi = ih, i = 0, 1, ...N, Nh =
ξ∗}, ω̄τ = {tn = nτ, n = 0, 1, ...M, Mτ = 1}, h is the step in spatial coordinate, τ is the time step.
Numerical solutions at grid nodes (xi, tn) are denoted by ϕn

i = ϕ(xi, tn).
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The iterative process is carried out using the following difference scheme

ϕn+1
i − ϕn

i

τ
= A(ϕn

i )

[
ϕn+1
i−1 − 2ϕn+1

i + ϕn+1
i+1

h2

]
+B(ϕn

i )

[
ϕn
i+1 − ϕn

i−1

2h

]2
+ C(ϕn

i ) = 0. (10)

The equation (10) is supplemented with the following conditions: ϕ0 = 0.5, ϕ+ = 0.75. The initial condition
can be selected in two ways:

ϕ(x, 0) = 1/2, ϕ(x, 0) =
ϕ+ − ϕ0

ξ∗
ξ + ϕ0.

To implement equation (10) by the sweep method, it is necessary to set the boundary conditions, and ξ∗ is
determined in the course of numerical experiments according to condition (9).

Figures 1 – 2 show the dependence of the change in the porosity function on the self-similar variable.
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Figure 1: Dependence of the porosity function on the self-similar variable in the case of the following values of
the parameters that determine the constants g = 9.8m/s2; µ = 0.009Pa · s; η = 108Pa · s; ρf = 1000kg/m3;
ρs = 916kg/m3; βϕ = 10−8Pa−1; k = 10−8m2; p1 = 105Pa; t1 = 1000s; v1 = 0, 01m/s; x1 = 10m.

Conclusion

A self-similar problem of filtration of a viscous fluid in a viscoelastic porous skeleton is considered. The original
system is reduced to a third-order differential equation for the porosity function in the case of a viscoelastic
medium. If the viscous properties of the skeleton prevail over the elastic ones, the original system of governing
equations is reduced to a second-order differential equation for the porosity function. A numerical study of the
second case is carried out. In the future, it is planned to study the equation for a medium with both viscous
and elastic properties.
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