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Abstract

The paper considers methods for estimating stability using Lyapunov
functions, which are used for nonlinear polynomial control systems.
The apparatus of the Gröbner basis method is used to assess the sta-
bility of a dynamical system. To apply the method, the canonical rela-
tions of the nonlinear system are approximated by polynomials of the
components of the state and control vectors. The equilibrium states of
a nonlinear polynomial system are determined as solutions of a non-
linear system of polynomial equations. An example of determining the
equilibrium states of a nonlinear polynomial system using the Gröbner
basis method is given. The application of the Gröbner basis method
for estimating the attraction domain of a nonlinear dynamic system
with respect to the equilibrium point is considered. The coordina-
tion of input-output signals of the system based on the construction of
Gröbner bases is considered.

Introduction

The most of the dynamical systems in technology and nature are nonlinear dynamical systems. The canonical
relations of a nonlinear system can be approximated by polynomials of the components of the state and control
vectors. Stability testing using the method of Lyapunov functions is widely applied to nonlinear systems.

There are several methods in the literature to identify candidates for Lyapunov functions [Krasovsky59]:
decomposition of the sum of squares [Papach02];
using the Gröbner basis to select parameters [Forsman91];
use of homotopy operators for decomposition of the vector field of states of the system [Chukanov12, Edelen85];
the assumption that the derivative of the Lyapunov function is negative definite, and then obtain by integra-

tion and check the positive definiteness (gradient method).
Gröbner bases are used to solve problems in the theory of nonlinear systems. Some of the applications of the

Gröbner basis can be named: estimation of equilibrium states of a nonlinear system; finding the critical points
of a given nonlinear system with the Lyapunov function; coordination of input-output signals of the system.

Gröbner bases facilitate the solution of a system of multidimensional polynomial equations in the same way as
the Gaussian elimination algorithm makes it possible to solve a system of linear algebraic equations. In lexical
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ordering the Gröbner basis has a triangular structure, reminiscent of the triangular structure in the Gaussian
elimination method.

The theory of control of dynamic objects can be divided into two subgroups [Khalil02]:
(1) systems in which the principle of superposition operates, and linear control methods can be used;
(2) systems in which the superposition principle does not work, and it is necessary to use nonlinear control

methods. To improve the quality of the dynamic object control system, it is necessary to take into account the
nonlinear features of the system.

1 Gröbner bases

The objects in the theory of Gröbner bases are polynomial ideals and algebraic varieties [Nesic02]. Let
p1, ..., ps be multidimensional polynomials in variables x1, ..., xn, whose coefficients lie in the field k (we will
consider the field of real numbers R). The variables x1, ..., xn are considered ”place markers” in the polynomials:
p1, . . . , ps ∈ R[x1, . . . , xn]. Algebraic variety defined by the polynomials p1, . . . , ps is the collection of all solutions
in Rn of the system of equations:

p1 (x1, ..., xn) = 0,
. . .
ps (x1, ..., xn) = 0.

(1)

Formally:

V (p1, ..., ps) := {(a1, ..., an) ∈ Rn : pi(x1, ..., xn) = 0, i = 1, ..., s} (2)

The polynomial ideal I, which is generated by p1, ..., ps, is a set of polynomials obtained by combining these
polynomials by multiplying and adding with other polynomials:

I = ⟨p1, ..., ps⟩ :=

{
f =

s∑
i=1

gipi : gi ∈ R[x1, ..., xn]

}
(3)

The polynomials pi, i = 1, . . . , s form the basis of the ideal I. A useful interpretation of the polynomial ideal
I is in terms of the equations (3). Multiplying gi by arbitrary polynomials gi ∈ R[x1, ..., xn] and adding them,
we get the consequence from (1):

f = g1p1 + . . .+ gsps = 0,

and f ∈ I. Therefore, I = ⟨p1, . . . , ps⟩ the ideal contains all ”polynomial consequences” of the equations (3).
The Gröbner basis method is based on the concept of monomial ordering (a monomial is a polynomial consist-

ing of one term), since it introduces a corresponding extension of the concept of a leading term and a leading coeffi-
cient, familiar for one-dimensional polynomials, to multidimensional polynomials. Let’s consider lexicographic or
lex order [Nesic02]. Let α, β be two n - tuples of integers α = (α1, . . . , αn) ∈ Nn , β = (β1, . . . , βn) ∈ Nn. n -tuple
α follows β (in lex order), which is denoted as α ≻ β, if in the difference of vectors α−β = (α1 − β1, . . . , αn − βn)
the leftmost nonzero element is positive. For the polynomial f = x3

1x2x
3
3 + 2x3

1x
4
3 using lex order x1 ≻ x2 ≻ x3

results in x3
1x2x

3
3 follows x3

1x
4
3, since the multidegrees of monomials satisfy: (3, 1, 3) ≻ (3, 0, 4). In this order, the

leading coefficient and the leading term are respectively LC(f) = 1 and LT (f) = x3
1x2x

3
3. When using lex of

order x3 ≻ x2 ≻ x1 senior term: LT (f) = 2x3
1x

4
3, since (4, 0, 3) ≻ (3, 1, 3).

The ideal I has no unique basis, but for any two different bases ⟨p1, ..., ps⟩ and ⟨g1, ..., gm⟩ of the ideal I,
the varieties V (p1, . . . , ps) and V (g1, . . . , gm) are equal; the variety depends only on the ideal generated by its
defining equations. If all polynomials in a given basis of an ideal have a degree lower than the degree of any other
polynomial in an ideal, then this basis is the simplest. For an ideal I and a given monomial order, we denote the set
of leading terms of elements I as LT (I). The ideal generated by elements from LT (I) is denoted by ⟨LT (I)⟩. The
Gröbner basis is formally defined as a set of polynomials g1, . . . , gm, for which ⟨LT (I)⟩ = ⟨LT (g1), . . . , LT (gm)⟩.
When calculating Gröbner bases, a monomial order is specified. We note two properties of Gröbner bases for a
given monomial order:

1. Each ideal I ⊂ R[x1, ..., xn], different from the trivial ⟨0⟩, has a Gröbner basis.
2. For the ideal I ⊂ R[x1, ..., xn], different from the trivial ⟨0⟩, the Gröbner basis of the ideal I can be

calculated using a finite number of algebraic operations.
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For a given set of polynomials P , there is an algorithm that computes the Gröbner basis for the (ideal
generated by) P in a finite number of steps [Buchberger70]. Buchberger’s algorithm generalizes algorithms:
Gaussian elimination for a system of linear algebraic equations and Euclid’s algorithm for calculating the greatest
common divisor of a set of one-dimensional polynomials. This algorithm was implemented on computers in
symbolic computation programs using Gröbner bases for solving systems of polynomial equations [?, Wolfram03,
Demenkov15].

2 Finding equilibrium states of a nonlinear dynamical system

The use of the Gröbner basis in finding solutions to a nonlinear system of polynomial equations is similar to
the application of the Gauss method for solving a quadratic system of linear equations. Consider an example
of reducing a nonlinear system of polynomial equations: p1 = x1 − x2

2 = 0, p2 = x2 + x2
3 = 0, p3 = x3 − 2x2

1 =
0, to a triangular form using the Gröbner basis method for lex order: x1 ≻ x2 ≻ x3. In the WOLFRAM
MATHEMATICA package, the function call

GroebnerBasis[{p1, p2, p3}, {x1, x2, x3}, {}]
leads to a triangular Gaussian form of polynomial equations:

x1 − x4
3 = 0,

x2 + x2
3 = 0,

−x3 + 2x8
3 = 0,

which allows us to get a solution to this system.
Consider a nonlinear system without inputs ẋ(t) = f(x(t));x, f ∈ Rn, t ∈ R, where f(x) = 0 is a vector of

polynomials in x. The equilibrium states for this polynomial system are obtained as solutions of a nonlinear
system of polynomial equations: f(x) = 0.

Example 1

Equilibrium states of the [Nesic02] polynomial system:

ẋ1 = x1 + x2 − x2
3,

ẋ2 = x2
1 + x2 − x3,

ẋ3 = −x1 + x2
2 + x3,

can be obtained as solutions of system polynomial equations:

p1 := x1 + x2 − x2
3 = 0,

p2 := x2
1 + x2 − x3 = 0,

p3 := −x1 + x2
2 + x3 = 0.

The Gröbner basis for the ideal (p1, p2, p3) using lex order: x1 ≻ x2 ≻ x3, has the form:

g1 := 4x1 − 2x2
1 − 4x3

1 + x4
1 + x6

1,
g2 := −x2

1 + x4
1 − 2x2 + 2x2

1x2,
g3 := −x1 + x2

1 + x2 + x2
2,

g4 := −x2
1 − x2 + x3.

Algebraic equations gi = 0, i = 1, 2, 3, 4 has the same solutions as pj = 0, j = 1, 2, 3. The polynomial g4
depends only on x3; from the algebraic equation g4(x3) = 0, you can determine x3. If the numerical value of x3

substitute in g3(x2, x3) = 0, then you can define x2; from g2(x1, x2, x3) = 0 you can define x1.
In the WOLFRAM MATHEMATICA package: Form an ideal of polynomials:

p1 = x1 + x2− x32; p2 = x12 + x2− x3; p3 = −x1 + x22 + x3.
Let us define the Gröbner basis:

grbas = GroebnerBasis[{p1, p2, p3}, {x3, x2, x1}, {}],
grbas = {4x1− 2x12 − 4x13 + x14 + x16,−x12 + x14 − 2x2 + 2x12x2,
−x1 + x12 + x2 + x22,−x12 − x2 + x3}.
To find the roots of x1, we define the reduced Gröbner basis:

grbas = GroebnerBasis [{p1, p2, p3} , {x3, x2, x1} , {x3, x2}] ,
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grbas =
{
4x1− 2x12 − 4x13 + x14 + x16

}
.

Let’s execute: Roots[4x1− 2x12 − 4x13 + x14 + x16 == 0, x1].
To find the roots of x2 with known x1, we define the reduced Gröbner basis:

grbas = GroebnerBasis [{p1, p2, p3} , {x3, x2, x1} , {x3}] ,
grbas =

{
−x1 + x12 + x2 + x22

}
.

Let’s execute: Roots[−x1 + x12 + x2 + x22 == 0, x2].
To find the roots of x3 with known x1, x2, execute:

Roots[−x12 − x2 + x3 == 0, x3]. The results are shown in Table 1.

Table 1.

x1 x2 x3

Solution 1 : x1 = −1, x2 = 0.5− 1.32i, x3 = 0.5− 1.32i,
Solution 2 : x1 = 0, x2 = 0, x3 = 0,
Solution 3 : x1 = 1, x2 = 0, x3 = 1,
Solution 4 : x1 = 1.18, x2 = −0.69, x3 = 0.70,
Solution 5 : x1 = −0.59− 1.74i, x2 = −2.35 + 1.03i, x3 = −5.04 + 3.09i,
Solution 6 : x1 = −0.59 + 1.74i, x2 = 1.35− 1.03i, x3 = −1.35− 3.09i,
Solution 7 : x1 = −1, x3 = −0.5 + 1.32i, x3 = 0.5 + 1.32i,
Solution 8 : x1 = 0, x2 = −1, x3 = −1,
Solution 9 : x1 = 1, x2 = −1, x3 = 0,
Solution 10 : x1 = 1.18, x2 = −0.31, x3 = 1.08,
Solution 11 : x1 = −0.59− 1.74i, x2 = 1.35− 1.03i, x3 = −1.35 + 1.03i,
Solution 12 : x1 = −0.59 + 1.74i, x2 = −2.35 + 1.03i, x3 = −5.04− 1.03i.

�

3 Application of the Gröbner basis method in the theory of the method of Lya-
punov functions

3.1 Estimation of the area of attraction

The set of all initial conditions of a dynamical system, which converge to the same equilibrium state, is
called the area of attraction of this equilibrium state [Forsman91, Sidorov19]. One way to get an estimate of the
domain of attraction is to use the Lyapunov functions.

The standard result of Lyapunov’s theory is that if x = 0 is an equilibrium point for a system with continuous
time: ẋ = f(x), x ∈ D ⊂ Rn, is a domain containing x = 0 and V : D → R is a continuously differentiable
Lyapunov function such that V (0) = 0 and V (x) > 0, V̇ = Vxf(x) < 0, ∀x ∈ D − {0} ; then the point x = 0
is asymptotically stable. For such a Lyapunov function, consider the sets Ω = {x ∈ Rn : Vxf(x) < 0} and
Bd = {x ∈ Rn : V (x) ≤ d} . If there is a value d > 0 such that Bd ⊂ Ω, then the set Bd is an estimate of the
domain of attraction.

For polynomial systems with a polynomial Lyapunov function V , the Gröbner basis can be used to determine
Bd. You can determine the largest Bd by finding a d such that Bd ⊂ Ω. For polynomial systems with polynomial
Lyapunov functions, V (x)− d and Vxf(x) are polynomials and the boundaries of the sets Bd and Ω are varieties
Z(V − d) and Z(Vxf(x)), respectively. At the points of contact Z(V − d) and Z(Vxf(x)), the gradients V and
Vxf(x) are parallel [Luenberger16]. Using this information, we obtain a system of n+2 polynomial equations in
n+ 2 variables (x1, . . . , xn, d, λ), where λ is the Lagrange multiplier (see Appendix):

V − d = 0,
Vxf = 0,
∇(Vxf)− λ∇V = 0.

(4)

In the case of the vector of Lagrange multipliers λ = (λ1, . . . , λm)T ∈ Rm we obtain a system of n + m + 1
equations from n+m+ 1 variables x1, ..., xn, d, λ1, . . . , λm.

Calculating the Gröbner basis for this system, where the variable d has the lowest rank in the lex order, we
obtain a polynomial equation for d. The smallest positive solution of this equation (the value dmin > 0), is the
best estimate of the area of attraction.
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Example 2

Consider a second-order system:

ẋ = f(x) =

(
−x1

−x2 + 2x1x
2
2

)
and choose the Lyapunov function V (x) = xT

(
4 2
2 3

)
x = 4x2

1+4x1x2+3x2
2, therefore: Vx =

(
8x1 + 4x2

4x1 + 6x2

)
;

V̇ = Vxf = −8x2
1 + 12x1x

3
2 − 8x1x2 + 8x2

1x
2
2 − 6x2

2.
The fact that the gradients are parallel (∇(Vxf)− λ · ∇V = 0) gives additional equations:{

g1 = 8x1 + 4x2 − λ(−16x1 + 12x3
2 − 8x2 + 16x1x

2
2),

g2 = 4x1 + 6x2 − λ(36x1x
2
2 − 8x1 + 16x2

1x2 − 12x2).

Let us calculate the Gröbner basis for four polynomials {V − d, Vxf, g1, g2} in ordering: d ≺ x1 ≺ λ < x2.
This reduces the system to a polynomial: 4d4 − 147d3 + 768d2 + 2048d, which results in the values of the

roots:
{

0 29.71 −1.92 8.97
}
. The smallest nonzero positive value of d for which there is a solution to the

system is d ≈ 8.97.
In the WOLFRAM MATHEMATICA package: V d = 4x12 + 4x1x2 + 3x22 − d;
V xf = −8x12 − 8x1x2− 6x22 + 8x12x22 + 12x1x23;
g1 = 8x1 + 4x2− lam(−16x1− 8x2 + 16x1x22 + 12x23);
g2 = 4x1 + 6x2− lam(−8x1− 12x2 + 16x12x2 + 36x1x22).
grbas = GroebnerBasis[{V d, V xf, g1, g2}, {d, x1, lam, x2}, {x1, lam, x2}],
grbas =

{
2048d+ 768d2 − 147d3 + 4d4

}
,

Roots[2048d+ 768d2 − 147d3 + 4d4 == 0, d] ⇒ d =
{

0 29.71 −1.92 8.97
}
. �

3.2 Decomposition of the dynamical system vector field ẋ = f(x)

For a dynamic system: ẋ = f(x);x ∈ Rn, f(x) ∈ Rn, f(0) = 0, form a vector field X = f(x)
∂

∂x
. Form

the corresponding differential form ω = f(x)dx in the dual basis

⟨
dxi,

∂

∂xj

⟩
= δij . Let us construct a scalar

potential from the vector field X by using the homotopy operator centered at the point x0 = 0 for the form
ω = f(x)dx :

H(ω) =
1∫
0

(
x
∂

∂x

)
| (f(λx)dx) dλ =

1∫
0

xT f(λx)dλ.

We will assume that φ(x) = Hω(x) is a scalar potential.

Example 3

Consider an example of dynamic equations:

ẋ1 = −x1 + x2
2,

ẋ2 = −x2 − x2
1.

Let’s construct a dual differential form:

ω = (−x1 + x2
2)dx1 + (−x2 − x2

1)dx2,

to which we apply the homotopy operator with x0 = 0 :

φ(x) = H(ω(x)) =
1∫
0

xT f
(
λ̃x

)
dλ̃ =

1∫
0

(
x1 x2

)( −λ̃x1 + λ̃2x2
2

−λ̃x2 − λ̃2x2
1

)
dλ̃ =

= −1

2
(x2

1 + x2
2) +

1

3
(x1x

2
2 − x2x

2
1).

Let us choose the function as the scalar Lyapunov function:
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V (x) = −6 · ϕ (x) = 3
(
x2
1 + x2

2

)
+ 2

(
x1x

2
2 − x2x

2
1

)
,

V̇ = Vxf =
(
6x1 + 2x2

2 − 4x1x2 6x2 − 2x2
1 + 4x1x2

)( −x1 + x2
2

−x2 − x2
1

)
=

= −6x2
1 − 6x2

2 − 6x2
2x1 + 6x2

1x2.

Let’s find the solution of the system V d = V (x)− d = 0 in the WOLFRAM MATHEMATICA package:

V d = 3x2
1 + 3x2

2 + 2x2
2x1 − 2x2

1x2 − d,
Vxf = −6x2

1 − 6x2
2 − 6x2

2x1 + 6x2
1x2,

g1 = 6x1 + 2x2
2 − 4x1x2 + lam(−12x1 − 6x2

2 + 12x1x2),
g2 = 6x2 + 4x2x1 − 2x2

1 + lam(−12x2 − 12x2x1 + 6x2
1),

grb = GroebnerBasis[{V d, Vxf, g1, g2} , {d, x1, lam, x2} , {x1, lam, x2}],
grb =

{
54d− 29d2 + d3

}
.

The roots of the polynomial 54d− 29d2 + d3are : d1 = 0, d2 = 2, d3 = 27.
The smallest nonzero positive value d, for which there is a solution to the system: dmin = 2.

4 Conversions of input-output signals of a nonlinear system

Consider a differential ring - a ring on which the differentiation operation is defined. It is assumed that
differentiation is carried out with respect to the implicit variable t. A differential ideal is an ideal that is closed
under differentiation.

A polynomial system in the state space is a system of differential equations:

ẋ1 = f1(x, u), . . . , ẋn = fn(x, u), y = h(x, u),

where h, fi ∈ R[x, u], ∀i.
Thus, every polynomial system in the form of a state space corresponds to a differential ideal in R[x, u, y] :

I = [φ1, . . . , φn, y − h],

where φi = ẋi − fi(x, u), i = 1, . . . , n.
The problem of transformation from the state space to the input-output form: let I be a differential ideal;

find a generator for the differential ideal I ∩ R[u, y].

Example 4

Suppose that it is necessary to find a differential relationship between u and y from the description in the
state space of the system:

ẋ1 = −2x1 + x2
2; ẋ2 = −x1x2 + u; y = x2.

Differentiating the equations of the system with respect to t and replacing ẋi by fi, we get:
g1 = y − x2; g2 = ẏ − (u− x1x2); g3 = ÿ − (u̇− (x2

2 − 2x1)x2 − x1(u− x1x2)).
Replace y → y0, ẏ → y1, ÿ → y2, u → u0, u̇ → u1 in gi, calculate the Gröbner basis G for:

(y0 − x1, y1 − u0 + x1x2, y2 − u1 + (x2
2 − 2x1)x2 + x1(u0 − x1x2)) relative to lex order: u0 ≺ u1 ≺ y0 ≺ y1 ≺

y2 ≺ x1 ≺ x2.
Therefore, the input signals u, u̇ and the output signals y, ẏ, ÿ are related by:

(−2u− u̇+ 2ẏ + ÿ + yẏ)y3 + (−3u2
0 + 3uẏ − ẏ2)ẏ + u3

0.

In the WOLFRAM MATHEMATICA package:
g1 = y0− x1,
g2 = y1− u0 + x1 ∗ x2,
g3 = y2− u1 + (x22 − 2 ∗ x1) ∗ x2 + x1 ∗ (u0− x1 ∗ x2).
grbas = GroebnerBasis[{g1, g2, g3} , {u0, u1, y0, y1, y2, x1, x2}, {x1, x2}],
grbas = (−2u0 − u1 + 2y1 + y2 + y0y1)y

3
0 + (−3u2

0 + 3u0y1 − y21)y1 + u3
0.

�

6



Conclusion

The paper considers methods for estimating stability using Lyapunov functions, applied to nonlinear systems.
The canonical relations of a nonlinear system are approximated by polynomials of the components of
the state and control vectors. To assess the stability, Gröbner bases are used. A method for finding the critical
points of a given nonlinear system is proposed. The coordination of input-output signals of the system based on
the construction of Gröbner bases is considered.
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