
DRIFT: A Framework for Ontology-based
Design Support Systems

Yutaka Nomaguchi1 and Kikuo Fujita1

Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan

Abstract. This paper proposes a framework for ontology-based
design support systems, called DRIFT (Design Rationale Integration
Framework of Three layers), which records, structures and retrieves
reflective operations and their relationships in design process. Although
an ontology can provide concepts of static knowledge, such as knowledge
about first principles of physical phenomena or prescription of successful
design cases, a dynamic aspect of design process is usually out of
ontology support. DRIFT automatically captures and manages the
whole design argumentation through tracking design operations over an
ontology-based design support system. This paper states our position and
demonstrates a prototype system of DRIFT to show its performances and
effectiveness.

1 Introduction

Engineering design is the process for generating a concept of useful artifact
or product based on various kinds of scientific and engineering knowledge.
According to Schön’s assertion, it is insufficient only to apply the already-
systematized knowledge to solve a complicated design problem, but it is
important to dynamically, flexibly and adaptively acquire knowledge through
reflection-in-action [1], which is trial-and-error design process that includes
framing a problem, suggesting multiple alternatives, evaluating what-if and
accepting or rejecting. We have been developing a framework for an advanced
ontology-based design support system [2, 3], called DRIFT (Design Rationale
Integration Framework of Three layers). A DRIFT system can capture reflective
design process as a byproduct of inherent design operations that are defined
over an ontology. This paper states our positions and briefly demonstrates a
prototype system of DRIFT to show its performances and effectiveness.

2 Overview of DRIFT

2.1 Ontology and Reflection-in-action

An ontology gives a framework to manage various aspects of design
knowledge. For instance, Kitamura has been developed a meta-data schema for
systematically representing functionality of a product based on Semantic Web

2

technology for the management of the information content of engineering design
documents [4]. Grosse’s group has developed ontologies for knowledge-based
systems to support modeling optimization and modeling physical phenomena
[5, 6]. These ontologies provide concepts of static knowledge that is independent
from a specific design case, such as knowledge about first principles of physical
phenomena, typical patterns of modeling and optimization or prescription of
function modeling.

Dynamic knowledge depending on a design case can be represented on the
ontology, and can be reused and shared among different designers. On the other
hand, due to the open-ended nature of design problems, a designer should create
this dynamic knowledge through active design process. Schön stated that a
key concept to do this is reflection-in-action [1]. Reflection-in-action is trial-
and-error design process that includes framing a problem, suggesting multiple
alternatives, evaluating what-if and accepting or rejecting. An advanced design
support system should support this nature of design.

2.2 Architecture of DRIFT

DRIFT is a software module that is being developed to dynamically capture
such reflective design process as a by-product of inherent design operations that
are defined over an ontology. DRIFT facilitates a designer to compare multiple
alternatives concurrently during design process, and to review associated design
alternatives. Figure 1 shows the outline of the situation that a designer is
involved under a DRIFT system. Foundation of DRIFT consists of three
components; an interface for a designer to perform design operations, a simple
truth maintenance system [9] to efficiently record a state transition of design,
and an IBIS (Issue-based Information System) [10] based argumentation browser
that shows accepted and rejected alternatives.

Ontology of design methodology

Design information

Designer

Evaluation

Argumentation

Design information
Design information

Design information
Artifact model

Design operation
(Problem setting - Suggestion)

St
at

e
tr
an

si
tio

n

Model-independent ontology

Action

Fig. 1. Outline of reflective design process supported by DRIFT framework

Under the mechanism of DRIFT, each design operation is defined as a pattern
of problem setting and alternative solution in order to capture both design state
transition and an argumentation structure through an inherent design action.
For example, a design operation that details a customer need of a product is
defined as follows; a problem set by the operation is ‘what are sublevel customer
needs of it?’ and its alternative solution is a set of its sublevel customer needs.

3

Since the system records all alternatives suggested as solutions of the problem,
a designer can compare them and review one at any time.

An ontology is defined as a meta-data structure that enables capturing
design state transition and argumentation structures almost automatically
through designer’s inherent design actions. While the system includes a set
of fundamental ontologies for implementing basic functionality, another set of
subsidiary ontologies for capturing and managing practical and complicated
design operations must be configured for individual directions of design supports.
In other words, it is necessary and essential that a set of specific ontologies must
be formulated for supporting a particular type of design operations in order to
apply a design methodology under the corresponding context.

3 DRIFT System for QFD-based Cost-worth Analysis

In order to demonstrate the validity and promise of DRIFT, a prototype
design support system under a QFD-based cost-worth analysis method [11] was
developed. This section briefly explains an ontology behind this system.

3.1 Ontology of DFX

The problem with defining an ontology for design support systems is how we
decide a borderline that distinguishes static knowledge from dynamic knowledge.
An effective and efficient guideline on this issue is that a design-for-X (DFX)
methodology can provide this.

A purpose of a design methodology is to have prescriptions that advocate
how design should be done in particular circumstances [7]. Various DFX
methodologies have been revealed and proposed under the trends of concurrent
engineering. Among various DFX methodologies, QFD (Quality Function
Deployment) is a typical and comprehensive one [8]. It is effective for exploring
and defining design requirements by a sequential procedure, for instance,
across customer’s requirements, functional realization, manufacturing modules,
production process, etc. By means of its reflective refinement, a designer gets
overall image of a product. While such an instruction is easy to understand for
designers, it consists of some general and abstract concepts by excluding its case-
dependent aspects. Therefore, it is suggested that QFD promotes more efficient
and effective information sharing and discussion among designers in practical
use. Although a DFX methodology is not a theory established by a scientific law
such as physics, it is often used in design practices as a rational prescription of
design contexts.

Because a purpose of a DFX methodology is to provide prescriptions that
advocate how design should be done in particular circumstances, taxonomy
of design and a pattern of design operations are tacitly included in a DFX
methodology. Their meaning is what an ontology is.

4

3.2 Ontology Definition

Before implementation of a DRIFT-based system, an ontology corresponding to
a set of DFX methodologies is configured as a base of a design support system.
An ontology of a DRIFT system consists of taxonomy to describe an artifact
and patterns of problem setting.

Taxonomy An ontology consists of two layers; model-independent layer,
which consists of concepts independent from any specific design methodology,
and model-dependent layer, which consists of concepts to represent specific
prescriptive design methodologies. In a prototype system, 15 concepts are defined
as shown in Figure 2. Element, hierarchy, relation, attribute and attribute
value are model-independent concepts. A concept for representing specific
methodology; value graph, function-structure mapping, QFD two-dimensional
tables and cost-worth graph, is defined as a subclass of a model-independent
concept. There is a possibility that other concepts are defined in addition to
concepts explained in this subsection when another methodology is integrated.

model independent

Concept

- ID: int
- name: String

Element Hierarchy Relation Attribute Attribute Value

- unit: String - value: String
- valueType: String

EntityFunctionCustomer need Weight Relation Factor Relative Worth Cost Relative Cost

Customer need - Function Relation Function - Entity Relation

Fig. 2. Ontology for QFD-based Cost-worth Analysis

Patterns of problem setting A sequence of design operations under the
implemented methodologies is, for example, executed in the following way;
making QFD two-dimensional tables of product, estimating cost of entities,
evaluating a balance of cost and worth, and go back to a former step if necessary.
These steps are not proceeded straight forward but in iterative way. Therefore,
a designer is required to reflectively consider elements, their relations, weights
of customer needs, and cost of entities represented in two dimensional tables of
QFD. The following ten patterns of problem setting are extracted for capturing a
whole design process in this methodology; what is a top customer need? , what is
a top function? , what is a top entity? , what are sublevel customer needs? , what
are sublevel functions? , what are sublevel entities? , how much is a customer
need important? , which functions are related to a customer need? , which entities
are related to a function? and how much is cost of entity?

5

3.3 Design operation

A pattern of problem setting is used to reflectively operate a state of design and
to make argumentation. This is implemented as a design operation performed
over a DRIFT system. For the QFD-based cost-worth analysis method, this
research defines ten design operations each of which corresponds to a pattern
of problem setting. For example, a design operation for ‘what are sublevel
functions?’ is defined as follows.

Operation name: Function development
Refereed nodes: Function f
Added nodes: Function [] subF, Hierarchy h
Problem setting: What are sublevel functions of f ?
Solution: subF
Operation primitives: 1. adding subF, 2. adding h, 3. adding justification

from f and subF to h

A design operation defines operation primitives, which are operations to
TMS. When a design operation is performed, operation primitives of the list
are performed. A design operation defines referred nodes, which are requisites of
an operation, and added nodes, which are added as a result of an operation. In
the definition of ‘function development,’ a function node is referred, and multiple
function nodes and a hierarchy node are added as a result of this operation.

Under the above definition of design operations, the following procedure
generates IBIS description after a design operation On is performed. The detail
of this algorithm is explained in our articles [2, 3].

1. Creating a new issue node In, which has referred nodes of On in its focused
node list, and has operation name of On in its operation type.

2. Searching an issue node Is which is the same as In. If Is is found, In := Is.
3. Creating a new position node Pn, which has added nodes of On in its focused

node list, and has operation name of On in its operation type.
4. Searching a position node Ps which is same as Pn. If Ps is found, Pn := Ps.
5. Searching a position node Pn−1, whose focused node list contains at least

one of focused nodes of In.
6. Connecting raised relation from Pn−1 to In.
7. Connecting respond-to relation from In to Pn.

Here, the same IBIS node is defined as a node which has the same operation
type and the same focused node list.

4 Demonstration

4.1 Implementation

The DRIFT system for a QFD-based cost-worth analysis method was developed
in Java programming language (jdk 1.4.1) on Windows XP. Figure 3 shows its
architecture.

6

Value graph editor
D

e
s
ig

n
 o

p
e

ra
ti
o
n

IBIS model

Design state
transition model

Designer

Client computer

DB
server

Design tool manager

C
h
a
n

g
e

d
e

s
ig

n
 s

ta
te

R
e

c
o

rd

d
e

s
ig

n
 s

ta
te

In
d
e

x

d
e

s
ig

n

s
ta

te

G
e

n
e

ra
te

IB

IS
 n

o
d
e

C
a

ll
o

p
e

ra
ti
o

n

O
p

e
ra

ti
o
n

to

 m
o
d
e

l

State transition browser

IBIS editor

B
ro

w
s
e

/e
d

it

a
rg

u
m

e
n

ta
ti
o
n

S
e

le
c
t

d
e

s
ig

n
 s

ta
te

B
ro

w
s
e

/e
d

it

 d
e

s
ig

n
 i
n
fo

.X
M

L
 P

a
rs

e
r

TMS
Design Information

Manager

Design process manager

F-S mapping editor

Cost/worth browser

QFD matrix editor

Ontology of DFX Methodology

Provide concepts and design operations

Fig. 3. System architecture

Under the implemented prototype system, a designer carries out
identification of design target by tools of design methodologies; value graph,
function-structure mapping, QFD two-dimensional tables and cost-worth graph.
The system sends design operations to a truth maintenance system when a
designer inputs design information on the tools. Design process is automatically
recorded along designer’s actions and operations over the embedded tools. A
designer can edit description of an argumentation structure. A recorded design
process is stored in database in XML format.

4.2 Design Example

This subsection illustrates an application to designing a cellular phone for
demonstrating the capabilities of the implemented system. In this example, it
is assumed that a product is aimed to Japanese market and that it is equipped
with many value-adds such as camera, music player, electric money, bar-code
scanner, etc.

A designer enumerates customer needs, functions and entities of a cellular
phone by using value graph and function-structure mapping. Figure 4-⃝1 shows
a hierarchical structure of customer needs on a value graph.

7

1

2

added anew

Fig. 4. Alternatives of hierarchical structure of customer needs

Then, a designer uses QFD table to set weights of customer needs (see Figure
5-⃝1). The weights are deployed to weights of entities by automatic calculation
of QFD two-dimensional tables. A designer also sets cost of each entity, and
evaluates balance of relative cost and relative worth of each entities that cost-
worth graph shows (see Figure 6-⃝1). This graph reveals that cost of camera
lens would be higher than its worth.

In order to dissolve this unbalance of cost and worth, a designer has to choose
either from among two; (A) reducing relative cost or (B) increasing relative worth
as shown in Figure 6. A possible solution can be enumerated according to the
patterns of problem setting. According to problem setting ‘how much is cost of
entity?,’ reducing cost of camera lens can be proposed as an alternative solution
of (A). Otherwise, according to a problem setting ‘how much is a customer
need important?,’ targeting customers who care good quality of camera can be
proposed as an alternative solution of (B). In this case, a designer chose to
increase relative worth of a camera lens. By a problem setting ‘what are sublevel
customer needs?,’ a designer added ‘barcode reader’ as a sublevel customer need
of ‘good value-adds’(see Figure 4-⃝2). Then, he/she revised customer needs
weights by a problem setting ‘how much is a customer need important?’ as
shown in Figure 5- ⃝2 . A relative worth of a camera lens is increased by these
operations (see Figure 6-⃝2).

8

1 2

added anew

Fig. 5. Alternatives of weighting customer needs

A

B

1 2

Fig. 6. Revision of cost-worth balance

9

The design process over the system is automatically captured as a byproduct
of a sequence of design operations. Figure 7 shows a screen shot of a part of the
captured process of the cellular phone design. A designer reviews and evaluates
multiple alternatives of target customer needs by the QFD-based cost-worth
analysis method.

Issue node:

 automatically

 generated

Position node:

 automatically

 generated

Argument node:

 manually added

Alternative that does not

adopt bar code reader

Alternative that adopts

bar code reader

Fig. 7. A part of captured design process

An issue node (a node with a question mark) and a position node (a node
with an exclamation mark) are automatically generated. A crossed node is a
rejected position. An argument node (a node with a words balloon mark) is added
manually by a designer to explain the branch of position nodes. In Figure 7,
two positions are suggested for an issue of detailing a customer need for many
value-adds, and a position that adopts bar-code reader is active now. Since all
operations and all design states are recorded under a truth maintenance system,
a designer can review discarded positions at any time for evaluating alternatives
if he/she wants to review any of them again, and he/she can go back to any
former design state. Such functionality facilitates designer’s reflective refinement
of alternatives over the prototype system through making full use of related
methodologies.

10

5 Conclusion

This paper briefly introduces a DRIFT system, which is a new framework to
capture reflective design process of practical products, and demonstrates an
example of DRIFT-based implementation for QFD-based design operations. It
helps a designer acquire dynamic knowledge through reflection-in-action over
an ontology of DFX. Because any design stage contains reflective refinement of
alternatives, the same expansion can be done for the other DFX methodologies
and the other design methods when their ontologies and design operations are
integrated to DRIFT. This expansion is included in our future works.

References

1. Schön, D. A.: The Reflective Practitioner - How Professionals Think in Action.
(1982) Basic Books Inc.

2. Nomaguchi, Y., Ohnuma, A. and Fujita, K.: Design rationale acquisition in
conceptual design by hierarchical integration of action, model and argumentation.
Proc. DETC’04 ASME 2004 Design Engineering Technical Conf. and Computers
and Information in Engineering Conf. (2004) DETC2004/CIE-57681

3. Nomaguchi, Y. and Fujita, K.: Ontology building for design knowledge
management systems based on patterns embedded in design-for-X methodologies,
Proc. of 16th International Conf. on Engineering Design (ICED ’07). (2007) Paper
No. 442

4. Kitamura, Y., Washio, N., Koji, Y., Sasajima, M., Takafuji, S. and Mizoguchi,
R.: An ontology-based annotation framework for representing the functionality of
engineering devices. Proc. DETC’06 ASME 2006 Design Engineering Technical
Conf. and Computers and Information in Engineering Conf. (2006) DETC2006-
99131

5. Grosse, I. R., Milton-Benoit, J. M. and Wileden, J. C.: Ontologies for supporting
engineering analysis models. AI EDAM. (2005) 19(1) 1–18

6. Witherell, P. Krishnamurty, S. and Grosse, I. R.: Ontologies for supporting
engineering design optimization. Journal of Computing and Information Science
in Engineering. (2007) 7(2) 141–150

7. Dixon, J. R.: On research methodology towards a scientific theory of engineering
design. AI EDAM. 1(3), (1987) 145–157

8. Clausing, D.: Total Quality Development. A Step-By-Step Guide to World-Class
Concurrent Engineering. (1994) ASME Press

9. Doyle, J.: A truth maintenance system. Artificial Intelligence. 12(3) (1979) 231–272
10. Kunz, W. and Rittel, H.: Issues as elements of information systems. Working

Paper No. 131, University of California, Berkeley, Institute of Urban and Regional
Development. (1970)

11. Fujita, K. and Nishikawa, T.: Value-adds assessment method for product
deployment across life stages through quality function deployment. Proc. 13th
International Conf. on Engineering Design - ICED ’01, Design Methods for
Performance and Sustainability. (2001) 405–412

