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Abstract
Many open sources of binaries, including malware, have emerged in the landscape in recent years. Their
quality compares very favourably with commercial sources, as emphasised by Thibaud Binetruy (Twit-
ter influencer under a pseudonym, Société Générale CERT, 2020): “Integrating operational threat intel
in your defense mechanisms doesn’t mean buying Threat Intel. You can start by using the [mass] of
open source indicators available for free.” Some are provided by official sources (Abuse.ch, with data
supplied by the Swiss national CERT, among others), while others are made available in more obscure
ways, sometimes anonymously (VirusShare, VX-Underground, etc.). Our examination of these sources
underlines the wide disparity in quality and quantity between them. We have had to take this diversity
into account in our research, designing a dedicated platform that enables us to supply information to
our binary analysis products and to conduct daily analyses of correlations between and within malware
families on a large scale. This work can then be applied to concrete cases such as Babuk, Ryuk and
Conti. We have been able to highlight links for these families by immediately identifying correlations,
with additional manual analysis then confirming the genealogy of the samples precisely.

Keywords
Cybersecurity, Machine Learning, Threat Intelligence, CTI, Malware, Detection, Classification.

1. Introduction

When an attack takes place, there is an urgent need to find out who the attacker is, and how
they operate. But the heat of the moment is not the time to examine the details. This is when
you need the services of a threat intelligence analyst, whose job it is to answer these questions.
Analysts work over long time scales, and their constant monitoring gives them an up-to-date
understanding of how families of attackers are evolving. But they themselves need to be well-
equipped in order to pick up the weak signals providing news about these groups. How can
we use public data (files, virus databases, etc.) to derive a better understanding of attackers’
TTPs (tactics, techniques and procedures)? How can a threat intelligence analyst’s tools provide
useful information about how to respond to an incident?

To our knowledge, the academic sector has not so far covered the subject of the large-scale
automation of end-to-end malware analysis. But the problems we have encountered in our
work have led us to the conclusion that the whole chain (from collection to analysis) must
be taken into account if we want to achieve a high-quality end result. Here we report on the
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infrastructure and techniques we have put in place to respond to this problem – how can we fuel
cyber threat intelligence with precise knowledge about malware families and their relationships,
reliably, quickly and fully automatically? We will use a correlation method based on concept
code, as this is well suited to correlating large numbers of binaries. This is not an exclusive
property of this method, though – other methods can also deliver similar results [1, 2] (SSDEEP,
percentage of basic code blocks in common, etc.).

2. Data sources

This section provides a detailed inventory of the open sources of binaries we have identified.
The list is not intended to be exhaustive, and focuses primarily on data accessible publicly
with no subscription or registration, combined with a validation or peering process (except
VirusTotal, which is listed because it is a standard reference).

Table 1
Summary table of used data sources.

Source name

G
oo

dw
ar

e

M
al

w
ar

e

So
ur

ce
co

de

H
is

to
ry

N
um

be
r

of
fil

es

A
cc

es
si

bi
lit

y1

A
ss

oc
ia

te
d

ta
gs

D
eb

ug
gi

ng
sy

m
bo

ls

Linux repository X X +10 years +10M ++ X
Opensource repository (Github, . . . ) X X2 +10 years +10M + X
Proprietary binaries X 1-3 years +10M 0
Conan.io X X 1-3 years 100k-1M + X
Chocolatey X 1-3 years 100k-1M +
Malware-Bazar X 2 years 10k-100k ++ +3

VirusShare X 9 years +10M - -4

VirusTotal X X +10 years +10G - -5

VX-Underground X (leaks) 2-3 years 1k-10k + ++6

1 Accessibility levels from very easy (++) to very difficult (- -). 0 represents a neutral level.
2 Compilation often requires manual work.
3 Manual tags allocated by the researchers supplying the data.
4 Tag quality fairly poor, often containing only the numbers of antivirus detections and names.
5 Paid-for access.
6 Tags assigned directly by the VX-Underground team.
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3. Collection and processing

3.1. Constraints

Our research has led us to develop capacity for the mass processing of open sources, from
automatic collection to generating the daily Docker images that constitute our products. In this
section, we will present our methods and the collection infrastructure, which are built around
three major contraints:

• respect for sources: it is important to prioritise local cache capacity as much as possible,
avoid sending multiple requests to servers and respect a reasonable rate of requests. Failing
to do this leads to multiple risks, including being blacklisted from a server, but above all
it has a negative impact on the ecosystem and endangers the model of open-source data
sharing that contributes so effectively to the cyber ecosystem.

• control data volumes: our goal is to collect and store relevant data without exceeding our
storage capacity. This makes it important to take account of future needs and availability
of sources: what is it essential to conserve? What needs to be duplicated to guard against
data loss? What can we allow ourselves to collect again in the future if necessary?

• manage computing time and deadlines: the goal is to be able to ingest data continuously.
But we still need to to have the possibility (availability of data) and the capacity (vol-
ume/computing time) to submit all the files for reanalysis if we update the computation
method we use. Otherwise, we run two risks: having to reduce the update frequency,
or having to deliberately exclude data that is too old, which could ultimately impair our
detection and analysis capacity.

3.2. Process implemented

To collect malware, we use a pipeline (see Figure 1) consisting of three major stages: ingestion,
tagging and conversion into concept code. These stages take place in the form of a CI flow on a
GitLab CI orchestrator. The orchestrator starts jobs regularly and automates the whole process.
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Figure 1: Binary collection and processing steps.
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3.2.1. Ingestion

The first phase, which manages ingestion, is itself divided into the following steps: download,
extraction, filtering and finally storage of the data.

Download During this first step, we use web collection (Beautiful Soup1) to find download
links in the pages of various data sources. We implement a number of mechanisms to avoid
overloading the source servers: minimal parallelisation, resuming interrupted downloads from
the point where they stopped, using mirrors (or torrent links) whenever possible, etc. 99% of
the time, the links point to archives – we maintain a cache of downloaded URLs to avoid ever
having to download the same data twice. These measures enable us to limit our own load, but
also and above all the load on the source services.

Extraction The extraction phase is specific to each data source. It allows us to extract
additional information depending on the source. For example, for files downloaded from VX-
Underground, we can retrieve information on the malware type when it is included in the file
name. The way the links are organised on the collection page also allows us to extract the
attacker family (APTxx, etc.), which we can use in the tagging phase. For VirusTotal (if we have
a subscription): the archives contain the malware and a JSON file summarising the analysis,
which can be used to deduce metadata for the family.

Filtering For data filtering, we rely on two types of hash: SHA256 and SSDEEP. The first is a
very quick way of making sure we are not downloading an archive or malware that has already
been ingested. This obviously avoids duplicates, particularly among different data sources.

SSDEEP, meanwhile, allows us to compute the level of similarity with other malware in
the database: as our correlation algorithms are fairly flexible, we prefer to avoid downloading
malware that is too similar to what we already have, whereas other chains may need maximum
numbers of samples to be collected. The SSDEEP similarity computation is relatively complex,
especially as the database grows larger. We thus carry out a preliminary partial search in an
Elasticsearch database using an N-gram tokeniser of size 7. This tokeniser selects a very limited
subset of the full database, on which a full comparison computation is carried out. With the
results of this query, if the score exceeds a set threshold, the malware is rejected on the basis
that it is too similar to a strain that has already been ingested.

Storage The storage infrastructure needs to allow us to store data of varying types and to
retrieve it on demand. We also need to be able to upgrade it easily as the project progresses. We
chose to store metadata in an Elasticsearch cluster and data on a Nexus server (using only a
tiny proportion of its features).

1https://en.wikipedia.org/wiki/Beautiful_Soup_(HTML_parser)

https://en.wikipedia.org/wiki/Beautiful_Soup_(HTML_parser)
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3.2.2. Tagging

We used two types of taggers for the tagging phase: metadata and YARA rules. The first
type uses the source metadata (typically, MalwareBazaar tags or VX-Underground families,
for example) while the second uses a series of YARA rules to identify specific families. Each
piece of malware stored passes through both taggers to complete the malware information in
Elasticsearch.

3.2.3. Conversion into concept code

Once the binaries have been collected and identified, the final transformation is carried out to
convert them into what we call concept code. This process is only relevant for the malware
correlation method based on concept code, and is not necessary if other methods are to be
used instead. It could be replaced by a disassembly process, for example, which extracts the
basic blocks from each binary to enable a similarity calculation based on the basic block hashes.
Another option is to extract character strings in order to detect binaries sharing the same strings
and thus produce a correlation score based on this metric. We will not examine these methods
in detail here, because they are highly dependent on capacity within the organisation wishing
to implement a binary analysis automation process (in terms of both computation time and
access to the different technologies required).

3.3. Automation

To automate this sequence, we use the following infrastructure:

• A GitLab server for orchestration, triggering, managing and supervising jobs.
• Elasticsearch to store the metadata on the collected files.
• Nexus to store all the binaries.

The collection sequence is asynchronous, making it easier to resume operation if it needs
to be interrupted and restarted later. Link searches for each source are carried out every 10
minutes, and tags are updated hourly. So far we have 8,262,249 items of processed malware,
of which 4,430,562 are non-rejected and 3,282,091 are tagged. This represents around 3 TB of
malware, taking one to two months to ingest. Updates currently take about an hour for a 5 GB
archive.

3.4. Problems and areas for improvement

3.4.1. Archive size and format

The archives can vary widely in size, from a few megabytes to several hundred gigabytes
– the largest archive we have had to ingest was 800 GB. At this size, it becomes difficult to
fully decompress the archive, which would require around twice the disk space available. This
makes it essential to plan the process from the beginning for “flow”-based operation, partially
decompressing and analysing the archive as we progress. Our collection process has provided
us with archives in a variety of formats: zip, rar, 7z and tar. Partial decompression works very
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well for the zip, tar and rar formats. For 7z, partial decompression still works, but very slowly.
We have thus chosen to decompress these archives in full before analysis, as we have not come
across 7z archives that were too large for this mode of operation.

3.4.2. Tagging

With the two taggers we use, we only manage to tag a fairly small proportion of the malware
(a few percent), mostly using metadata and in a few cases using YARA rules. Additional work
(which we have not yet carried out) will be needed to find better YARA rules, and probably
more of them. This proves the significant limitations of this detection method, which ultimately
is based on searching for signatures. For our purposes, this is not a major stumbling block
(our algorithms are very tolerant of changes, so only a small number of samples are needed
for effective detection), but it is important to be aware of it if large-scale use is to be made that
requires a higher percentage of correctly identified malware.

3.4.3. Planned enhancements

For tagging, we are planning to use the correlation developed at GLIMPS (based on concept
code) to compare malware with specific families. This is possible as long as the pipeline is
completely reliable and fairly stable, because the volumes involved are not compatible with the
use of this sequence for every update. This will thus be done later and will resolve the tagging
problem.

4. Application of the results: generating cross-correlation
matrices

Once the data has been collected from the public sources and processed in our infrastructure,
we can compute the links between pairs of malware threats, family by family and between
families. Computations of similarity between two binaries are carried out using the GLIMPS
correlation technology (see Figure 2), based on code conceptualisation. The benefit of code
conceptualisation lies in its robust handling of modifications, including changes in compilation
chains or compiler versions. However, as described in section 3.2.3, other methods exist for
computing similarity, and for this reason we will focus more closely on the use of the results
obtained.

In addition, the computation is very fast – a matrix of 1,000 binaries (a million comparisons)
can be produced in less than a minute, and the computation time is linear relative to size rather
than quadratic, which most other methods are, enabling computation on families of several
tens of thousands of binaries. Finally, this method is logarithmic when adding a binary to a
collection (adding a row/column depends logarithmically on the size of the matrix, which is very
beneficial in terms of computation time for large families). By carrying out the computation on
a large scale, we can automatically generate correlation matrices for each family and study the
evolution of the samples by reordering these matrices by value (i.e. performing a clustering).
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Figure 2: Processing workflow of the GLIMPS correlation technology.

4.1. Correlation matrix and clustering

To highlight the links for and between malware families, we automatically define family clusters
that group similar binaries together (see Algorithms 1 and 3). These are constructed from a
correlation matrix generated by analysing pairs of binaries to calculate their similarity scores.

The rows and columns of the matrix represent the binaries, each identified by the first five
characters of its hash. In Figures 3.b and 4, each identifier is also prefixed by the cluster to which
it belongs. The value scale ranges from 0 (blue) to 1 (red), and represents the similarity score
between each pair of binaries, where 1 is the maximum value, representing perfect similarity
between two binaries (typically the same file or a copy). The absence of any colour indicates that
no similarity was detected between two binaries. An example of a correlation matrix (before
clustering) is shown in Figure 3.a.

Once the matrix has been constructed, we use it as the starting point for two clustering
algorithms, which we use in combination: DBSCAN[3] and a hierarchical clustering algorithm
(called AgglomerativeClustering in scikit-learn[4]). The first method finds high-density central
samples and develops clusters from them, while the second places each sample in its own cluster
and then merges them successively according to a given selection criterion. For matrices larger
than 8,000 x 8,000, we select a random subset of binaries, cluster them and then allocate a
cluster to each remaining binary using a modified majority voting mechanism applied to the five
nearest neighbours of each binary (see Algorithms 2, 3). The clusters are computed iteratively
(see Algorithm 3): we determine the initial clusters (using either of the methods depending on
the quality of the clustering produced), and then we re-divide them as long as doing so improves
the overall clustering. The clustering quality (degree of separation and density) is evaluated by
computing the average silhouette coefficient[5] for each binary, which we call the silhouette
score in the rest of the article. This is bounded between -1 for incorrect clustering to +1 for very
dense, well-separated clustering. Scores around zero indicate many overlaps between clusters.
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Algorithm 1: best_clustering
input :Correlation matrix M

1 c1 ← optimal dbscan clustering on M ;
2 c2 ← optimal agglomerative clustering on M ;
3 if silhouette_score(c1) ≥ silhouette_score(c2) then
4 return c1;
5 else
6 return c2;
7 end

The optimum clusterings are identified by testing a set of values for both methods.

• Agglomerative clustering: number of clusters to create ∈ [2, |M |/2].
• DBSCAN: parameter epsilon (maximum distance between two samples for one to be considered a neighbour

of the other) ∈ [0.02, 0.55] (pas de 0.02).

Algorithm 2: improved_majority_vote
input :binary x, correlation Matrix M , number of neighboors K
output :Associated cluster

1 xnn, lnn ← find binaries and clusters of the K-NN of x in M ;
2 mnn ← mean correlation value on xnn by cluster label from lnn;
3 vmax ← max(mnn);
4 if ∃! v ∈ mnn | v = vmax then
5 return cluster with mean correlation value = vmax;
6 else
7 return cluster with mean correlation value = vmax that is the most represented in lnn;
8 end

4.2. Clustering example

Figure 3.b shows a computation for a relatively small family (13 samples). In this case, clustering
is fairly fast (around a second) and results in two distinct clusters. The figure was obtained by
ordering the samples from the largest cluster to the smallest. Here one sample is placed alone
in its own cluster (3dda3), though it has a slight connection with the C1 cluster. The silhouette
score is very high, and shows good separation between the clusters. The matrix reveals two
samples that will attract the analyst’s attention: 704a0 and 58ccb. Both these samples belong to
a cluster but also have a high correlation score with the elements of the other cluster, indicating
a shared section of code.

Figure 4 shows an example of reclustering carried out on the merged Conti and Ryuk families
in order to study the link between them2. Again, the silhouette score is high, indicating globally
dense clusters with few overlaps. There are a few exceptions, however, and these will serve as a
basis for the analyses in the next section.

For comparison, we also computed the SSDEEP[2] distances for these malware families and
generated the associated correlation matrices (see Figure 5). These are organised in the same
order as the clusterings we defined. For the Babuk family, we can see that the C1 cluster from
Figure 3.b is present, but without the 704a0 binary that linked the two clusters. The SSDEEP

2The computation time for these 69 samples was around 2.5 seconds.
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Algorithm 3: Iterative clustering
input :a set of binaries B, a list of family labels by binary L, the associated correlation matrix M , the

maximal size for a matrix to recluster N
output :The found clustering ct
init: modif = True, blacklist = ∅

1 mcom ← max(|family| ∀family ∈ {L});
2 n← max(N/|L|, 0.5 ∗mcom);
3 Bs ← ∅;
4 for family ∈ {L} do
5 Bf ← Select at most n random binaries from family;
6 Bs ← Bs ∪Bf ;
7 end
8 cs ← best_clustering(M [Ls]);
9 ct ← cs;

10 for binary ∈ B \ Ls do
11 ct[binary]← improved_majoritary_vote(binary,M [B \ Ls], 5);
12 end
13 s← silhouette_score(ct);
14 while modif = True do
15 cR ← ct \ blacklist;
16 modif ← False;
17 for cluster ∈ cR do
18 cu ← ct \ cluster;
19 cu ← cu∪ best_clustering(cluster);
20 if silhouette_score(cu) > s then
21 c← cu;
22 modif ← True;
23 else
24 blacklist← blacklist ∪ {cluster};
25 end
26 end
27 end

method does not identify any other links between the Babuk binaries. For the Ryuk and Conti
families, this method highlights only very few similarities, and none between the families.
However, there is a strong link between the f0278, 3cd91, c5032 and fa13f binaries in the Conti
family, which belong to cluster c5 in Figure 4. We can thus find shared similarities using either
of the methods, but we can identify more links between the binaries, including between families,
with our method for computing similarity.

The correlation matrices used to generate these clusterings (and other examples) are available
from our GitHub repository3. In each case, we provide the input data (i.e. the matrix of
correlations between samples) and images of the clusterings obtained with our method.

3https://github.com/glimps-re/automate_malware_CTI

https://github.com/glimps-re/automate_malware_CTI
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(a) (b)

Figure 3: Correlation matrix of the Babuk family (a) and its clustering (b) which consists of 3 clusters
(silhouette score = 0.786).

Figure 4: Clustering of the Conti and Ryuk families (14 clusters, silhouette score = 0.725).

4.3. Applications

The clusterings generated in this way make the threat intelligence analyst’s work easier by
specifying which grouping a piece of malware belongs to and any links to other groups or
binaries. This cuts down on analysis time, because the analyst can target the relevant binaries
for comparison. The output from this section will be used as the basis for a threat intelligence
analysis in section 5 to illustrate this and validate the proposed approach.



F. Grelot, S. Larinier and M. Salmon

Proceedings of the 28th C&ESAR (2021) 51

(a) (b)

Figure 5: Correlation matrices for the Babuk (a), Ryuk and Conti (b) families, computed using the
SSDEEP distance between each pair of binaries.

This kind of analysis is not the only potential application. The clusterings can also be used,
for example, to automatically retag binaries (based on the clusters found), providing better
ground truth for learning (malware detection, malware type classification, etc.). Ultimately, this
will make it possible to improve the results of trained algorithms.

It is important to note that a clustering can easily be evolved by automatically injecting a
new binary. We just calculate its similarity scores with the binaries already clustered and then
allocate it a cluster using majority voting (for example) among the clusters of its N closest
neighbours.

5. Use cases: the Babuk, Ryuk and Conti families and their links

To validate the approach presented above, it is important to compare it with a manual analysis
of the samples. We thus cross-referenced these results against a reverse engineering analysis
conducted with standard tools such as IDA4, which enables users to browse through a disas-
sembled binary and gain a detailed understanding, sometimes at the cost of many hours of
work.

5.1. Babuk

Babuk is a computer virus in the ransomware family. It neutralises the victim’s computer by
encrypting all the user’s files, or even the whole system if the ransomware is run with the
right permissions. The ransomware appeared on VirusTotal for the first time on 22 December

4https://hex-rays.com/ida-pro/

https://hex-rays.com/ida-pro/
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2020 under the name of Vasa Locker, and the group operating it calls itself Babuk. The group
appeared on RaidForums on 2 January 2021[6]. Like many players, the group set up a “leak and
sham” site on Tor5 to prove the victims had been compromised and blackmailed them in order
to negotiate a ransom as high as possible. The first public analysis of Babuk was carried out by
the researcher Chuong Dong[6], a student at Georgia Tech and an intern with FireEye’s Flare
team. The generic functions of a piece of ransomware are always more or less the same, and
Babuk is no exception:

• A function for traversing the file system to encrypt its data is always included.
• A public key algorithm for exchanging the data encryption key: this public key will be

sent by the target to the attacker when the ransom is paid, and the private key is then used
by the encryption software. Note that in most cases the decryption software is functional
– the goal is for the victim to pay the ransom, and an untrustworthy reputation is bad for
business. But even if the victim can recover their data, the work is not over. They then
have to ensure that the attackers have not left any traces on their computers and rebuild
their IT system from scratch. Failing this, the chances are that the incident will recur:
according to several studies, over 20% of companies never manage to retrieve their data
after paying the ransom, and almost 10% of ransomware victims go on to suffer a second
attack [7, 8].

• A private key algorithm for encrypting the data. This type of algorithm is preferred over
public key algorithms due to its speed.

• The creation of a file containing information on how to contact the attacker and the terms
for paying the ransom.

These core ransomware functions are altered as the malware evolves, corresponding very
closely to the correlation matrix presented in the previous section – see Figure 3.b.

In May 2021, the group changed its name to PayloadBin and stopped its ransomware
activity[9]. During this period, the ransomware code evolved, and we have analysed it to
confirm the clustering proposed automatically. The correlation matrix presented shows the
three major evolutions of Babuk, which are summarised in Table 2.

Manual analysis through reverse engineering tells us that the first cluster (named C1) uses:

• a queueing system that traverses the file system recursively,
• the exchange of a shared private key using the public key algorithm curve255196,
• mostly the hc-128 algorithm for data encryption, except for one sample that uses Salsa20.

The second cluster, C2, is older in terms of compilation date (the matrix is ordered based
on cluster size, with no reference to date of appearance) and shows the use of less refined
algorithms (particularly for traversing the file system and encryption):

• a parallelised mechanism for traversing the file system with threads based solely on the
disks present. This results in a very slow encryption process. The process for traversing
the file system stops at the 16th level of the folder structure. If files are located below this
level, they will not be affected.

5hxxp://gtmx56k4hutn3ikv[.]onion/
6https://github.com/agl/curve25519-donna/blob/master/curve25519-donna.c

hxxp://gtmx56k4hutn3ikv[.]onion/
https://github.com/agl/curve25519-donna/blob/master/curve25519-donna.c
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• The key exchange algorithm is ECDH, using an open-source library7 directly, or RSA.
• The private key algorithm is Salsa20.

Table 2
Functions of the Babuk family.

File hash Compilation date Fonctions Cluster
81e7942a1f 2021-03-15 21:55:04 recursive queue hc-128 curve25519 c1
ed0f154481 2021-04-12 15:40:26 recursive queue hc-128 curve25519 c1
ab4eae618b 2021-02-23 11:12:08 recursive queue hc-128 curve25519 c1
1deb1efad2 2021-03-15 21:50:31 recursive queue hc-128 curve25519 c1
391cfcd153 2021-02-19 16:06:32 recursive queue hc-128 curve25519 c1
499e43933c 2021-02-19 21:19:12 recursive queue hc-128 curve25519 c1
704a0fa7de 2021-01-13 13:12:33 recursive queue salsa20 curve25519 c1
1b9412ca5e 2021-01-02 16:50:38 no queue salsa20 ecdh c2
8203c2f00e 2020-12-30 11:03:14 no queue salsa20 ecdh c2
30fcff7add 2021-01-04 11:20:28 no queue salsa20 ecdh c2
550771bbf8 2021-01-11 17:15:09 no queue salsa20 ecdh c2
58ccba4fb2 2021-01-27 20:41:07 recursive queue salsa20 rsa c2
e8ccba4fb2 2021-01-28 20:41:07 recursive queue salsa20 curve25519 c3

However, the samples 704a0 and 58ccb provide a vital information – they make a link between
the two clusters, enabling us to establish connections between the two series of ransomware.
This link is even more visible when we compare it with the compilation timeline (see Figure 6).
Finally, we note the presence of an outlier, the sample 3dda3: it has functions in common with
cluster 1, but they have been altered during compilation. It thus appears as separate from the
cluster, but with weak links to two samples.

Figure 6: Timeline of the Babuk family.

7https://github.com/kokke/tiny-ECDH-c/blob/master/ecdh.c

https://github.com/kokke/tiny-ECDH-c/blob/master/ecdh.c
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5.2. Ryuk and Conti

This initial analysis of a group with a limited number of samples validated the approach based
on creating cross-correlation matrices and exploiting the information this provides. We then
successfully applied this method to a larger number of samples from two malware groups (Ryuk
and Conti), for which links seem to exist according to the literature.

Like Babuk, Ryuk belongs to the malware family of ransomware. Unlike Babuk, however,
Ryuk’s developers are not the direct operators of the malware. Ryuk is operated by affiliates,
as demonstrated by several articles including an ANSSI publication in March 2019[10]. One
of the operators is Evil Corp, the name given to a group of cybercriminals, who compromise
the victim’s entire information system and then deploy their ransomware before applying
encryption. Ryuk has compromised many victims in France, and particularly hospitals[11].

Conti is another member of the same family. It emerged in 2020. In the same way as Babuk,
Conti’s operators publish a website listing the victims and the data encrypted by the attackers.
Again, as with Babuk, this technique aims to put pressure on the victim and guarantee that as
high a ransom as possible will be paid. Unlike Babuk, however, these two families use techniques
to obstruct reverse engineering analysis. In the case of Conti, for example, no calls are made via
the import table – instead, strings of characters are decoded on the fly to reconstruct the table
and the addresses of the stored functions so that they can be called later.

The correlation matrix reveals the evolution of these techniques and how they have been
implemented in the two families. The techniques are not specific to these malware families,
and other viruses have already used them. However, here it is the implementations of these
techniques that were compared, revealing the link between the Conti and Ryuk families. A
literature review also confirmed that links have been demonstrated showing that the same
coders are responsible for the two pieces of ransomware[12, 13]. The cross-correlation matrix
shows an identical development persona for certain samples of Ryuk (23f8a, 5e2c9, 781bc, 8862b,
88b1b, 9eb7a, cfdc2, d0d7a, d5d74, d7333, ec3da) and Conti (61dd6, e64e3, 633b9). The author
or authors use the same libraries and the same code sequences. If we look at the compilation
timeline (see Figure 7), we clearly see the interweaving of Conti and Ryuk. This chronology
provides additional context to supplement the similarity found above.

Figure 7: Timeline of the Conti and Ryuk families.
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6. Conclusion

A traditional threat intelligence approach can provide global information about the threat
associated with a specific group. But as we have seen, a single name (Ryuk, Conti, Babuk,
etc.) can hide many variants of the same threat. When an incident occurs and a company or
organisation needs to respond effectively, it is vital to know which sample the threat is associated
with. The continuous collection of malware and binaries from open sources, together with
clustering using a high-performance correlation technology, enables us to keep our exhaustive
knowledge of attacker groups and their various malware releases constantly up to date. This
means that when threat intelligence analysts are called in to support the teams responding to
an incident, they can guide the response differently depending on whether the binary they are
dealing with focuses on encryption, lateral movement or leaking data.

In addition, an effective incident response usually requires decision-makers to be involved
in the process, enabling them to be kept up to date with the progress of the response and to
manage the crisis. As well as the standard CTI indicators, which are purely technical markers
(YARA rules, hashes, etc.), the approach presented here offers the prospect of automatically
proposing a concrete, explicit view of where a particular sample found in the IT system is
positioned within the “galaxy” of malware used by the attacker. This communication tool helps
make the threat more tangible and more easily understood by business executives, which means
it can be taken into account more thoroughly in decision-making processes.
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