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Abstract 
The paper proposes a method for recognizing linguistic constructions based on stochastic 
neural networks. The novelty of the study lies in the fact that in order to ensure the 
interaction of software agents representing subjects that operate within supply chains, two 
models of an artificial neural network were created to recognize natural language structures 
based on the restricted Boltzmann machine (in contrast to it, the neurons of the hidden layer 
were interconnected), a criterion for evaluating the effectiveness of training the proposed 
models was chosen, the parameters of the proposed models were identified based on the 
contrastive divergence. The proposed models and methods for their parametric identification 
make it possible to improve the recognition accuracy of natural language constructions. The 
proposed method for recognizing linguistic structures based on stochastic neural networks 
can be used in various intelligent systems that use the recognition of natural language 
structures.  
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1. Introduction 

Currently, one of the most urgent problems in the field of processing natural language structures is 
insufficiently high speed, adequacy and probability of correct recognition [1, 2]. This leads to the fact 
that the interaction of software agents in multi-agent natural language systems may be inefficient. 
Therefore, the development of methods that increase the efficiency of using linguistic structures for 
the interaction of software agents is an urgent task. 

In this work, the interaction of software agents representing subjects that operate within supply 
chains is chosen as the scope of natural language constructions [3-5]. 

To date, there are no supply chain management computer systems that provide modeling of the 
interaction of logistics entities based on soft calculations and linguistic structures. 

Currently, artificial intelligence methods are used to recognize natural language constructions, with 
the most popular being artificial neural networks [6-8]. 

The advantages of neural networks are [9-11]: 
• the possibility of their training and adaptation; 
• the ability to identify patterns in the data, their generalization, i.e. knowledge extraction from 
data, hence no knowledge about the object is required (for example, its mathematical model); 
• parallel processing of information that increases computing power. 
The disadvantages of neural networks are [12-14]: 
• difficulty in determining the structure of the network, since there are no algorithms for 
calculating the number of layers and neurons in each layer for specific applications; 
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• difficulty in forming a representative sample; 
• high probability for the training and adaptation method hitting a local extremum; 
• inaccessibility to human understanding of the knowledge accumulated by the network (it is 
impossible to represent the relationship between input and output in the form of rules), since they 
are distributed among all elements of the neural network and are presented in the form of its 
weight coefficients. 
The following recurrent networks are most often used as neural networks for recognition: 
• Elman neural network (ENN) or simple recurrent network (SRN) [15, 16], which is a 
recurrent two-layer network and is based on a multilayer perceptron (MLP). The advantages of this 
network are a simpler architecture and higher learning rate than in gated and bidirectional 
networks. The disadvantage is the insufficient recognition accuracy compared to bidirectional 
networks; 
• bidirectional recurrent neural network (BRNN) [17, 18], which is a recurrent two-layer 
network and is built on the basis of two Elman neural networks. The advantage of this network is a 
higher recognition accuracy than in a conventional Elman neural network. The disadvantages are a 
higher complexity of determining the architecture, a lower learning rate than in a conventional 
Elman neural network; 
• long short-term memory (LSTM) [19, 20], which is a recurrent network and is built on the 
basis of memory blocks (containing one or more cells) and input, output forgetting gates (FIR 
filters). The advantage of this network is a higher recognition accuracy than in a conventional 
Elman neural network. The disadvantages are a higher complexity of determining the architecture, 
a lower learning rate than in a conventional Elman neural network;  
• bidirectional recurrent neural network (BLSTM) [21, 22], which is a recurrent network and is 
built on the basis of two LSTM neural networks. The advantage of this network is a higher 
recognition accuracy than in a conventional LSTM. The disadvantages are a higher architecture 
definition complexity, a lower learning rate than conventional LSTM; 
• gated recurrent unit (GRU) [23, 24], which is a recurrent two-layer network and is built on the 
basis of hidden blocks and reset and update gates (FIR filters). The advantage of this network is a 
higher recognition accuracy than in a conventional Elman neural network. The disadvantages are a 
higher complexity of determining the architecture, a lower learning rate than in a conventional 
Elman neural network; 
• idirectional recurrent neural network (BGRU) [25], which is a recurrent network and is built 
on the basis of two GRU neural networks. The advantage of this network is a higher recognition 
accuracy than in a conventional GRU. The disadvantages are a higher complexity of architecture 
definition, a lower learning rate than in conventional GRU. 
Thus, none of the networks satisfies all the criteria. 
The aim of the work is to develop a method for recognizing natural language constructions. To 

achieve the goal, the following tasks were set and solved: 
• analyze existing recognition methods; 
• propose neural network recognition models; 
• choose a criterion for evaluating the effectiveness of neural network recognition models; 
• propose methods for determining the values of the parameters of neural network recognition 
models; 
• conduct numerical study. 

2. Block diagram of neural network recognition models  

Figure 1-2 shows block diagrams of recognition models based on the unidirectional and 
bidirectional restricted Boltzmann machine with a recurrent hidden layer (RBMRHL), which is a 
recurrent ANN and contains one visible layer and one hidden layer. Unlike the traditional restricted 
Boltzmann machine (RBM) [26–27], the hidden layer is recurrent. This makes it possible to improve 
recognition accuracy. 
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Figure 1: Block diagram of a recognition model based on a unidirectional restricted machine with a 
recurrent hidden layer (RBMRHL) 

 
 

Hidden 
neurons 

 

Visible 
neurons 

 

 

 

 

… 

 
… 

Input 
neurons 

 

Output 
neurons 

 

 

 

… 

 

 

… 

 
Figure 2: Block diagram of a recognition model based on a bidirectional restricted machine with a 
recurrent hidden layer (RBMRHL) 

3. Neural network recognition models  
3.1. Recognition model based on a unidirectional RBMRHL 
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Negative phase (step 3) 
3. Computation of the state of visible output neurons 
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3.2. Recognition model based on a bidirectional RBMRHL 

Positive phase (steps 1-2) 
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Negative phase (step 3) 
3. Computation of the state of visible output neurons 
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4. Criteria for evaluating the effectiveness of neural network recognition 
models 

In this work, for training a unidirectional and bidirectional RBMRHL model, the model adequacy 
criterion was chosen, which means choosing such parameter values hin
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The training of the RBMRHL model is subject to the criterion (1). 



5. Methods for determining the values of parameters of neural network 
recognition models  

5.1. Principles for determining the parameters of neural network 
recognition models 

RBMRHL parameter values are determined based on the CD-1 contrastive divergence method, 
which speeds up supervised learning, since instead of stabilizing the state of neurons, it performs only 
one step of tuning their state. RBMRHL classification operates in two phases - positive and negative. 

For RBMRHL recognition in the positive phase, visible input and output neurons are fixed, and 
RBMRHL functions until hidden neurons are established. In the negative phase, firstly hidden 
neurons trained in the positive phase are fixed, and RBMRHL functions until visible input and output 
neurons are established, after which visible input and output neurons trained in the negative phase are 
fixed, and RBMRHL functions until hidden neurons are established. 

5.2. Method for determining the parameter values of a unidirectional 
RBMRHL model for recognition based on contrastive divergence 
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7. hh xx =µ1 . If P<µ , then 1+= µµ , go to 5. 
Negative phase (steps 8-16) 

8. µ =1. 
9. hh

µ1xx = . 
10. Computation of the state of visible output neurons 
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11. Computation of the state of visible input neurons 
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12. inin xx =µ2 , outout xx =µ2 . If P<µ , then 1+= µµ , go to 9. 
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16. hh xx =µ2 . If P<µ , then 1+= µµ , go to 14. 
17. Adjustment of synaptic weights based on Boltzmann's rule 
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5.3. Method for determining parameter values of a bidirectional RBMRHL 
model for recognition based on contrastive divergence 
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output neurons, P  is the power of the training set. 
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11. hh xRxR =µ1 . If 1>µ , then 1−= µµ , go to 9. 
Negative phase (steps 12-24) 
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15. Computation of the state of visible output neurons 
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20. hh xLxL =µ2 . If P<µ , then 1+= µµ , go to 18. 
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24. hh xRxR =µ2 . If 1>µ , then 1−= µµ , go to 22. 
25. Adjustment of synaptic weights based on Boltzmann's rule 
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6. Numerical study 

The numerical study of the proposed methods for determining the parameter values was carried out 
in the Google Colaboratory environment using the Tensorflow package. 

To determine the structure of a classification model based on RBMRHL with 200 input neurons 
(corresponding to the number of analyzed words in each text), i.e. determining the number of hidden 
neurons, a number of experiments were carried out, the results of which are presented in Figure 3. 
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Figure 3: Graph of the dependence of the recognition accuracy value on the number of hidden 
neurons 

 
The standard IMDB data set was used as the input data to determine the values of the parameters 

of the neural network classification model. The criterion for choosing the structure of the neural 
network model was the classification accuracy. As can be seen from the Figure 3, with an increase in 
the number of hidden neurons, the accuracy value increases. For prediction, it is sufficient to use 200 
hidden neurons, since with a further increase in the number of hidden neurons, the change in the 
accuracy value is insignificant.  

Table 1 presents a comparative description of neural networks for recognition, where BRBMRHL 
means bidirectional RBMRHL. 

 
Table 1 
Comparative characteristics of neural networks for recognition 

Network 
Criterion SRN GRU LSTM BRRN BGRU BLSTM RBMRHL/ 

BRBMRHL 
Accuracy 0.80 0.85 0.90 0.92 0.94 0.96 0.91 / 0.98 

 
According to Table 1, BRBMRHL has the highest recognition accuracy. 

7. Conclusions 

1. To solve the problem of increasing the accuracy of recognition of natural language structures, 
the existing methods of neural network classification were investigated. These studies have shown 
that today the most effective is the use of recurrent neural networks.  



2. To improve the quality of recognition of natural language constructions, mathematical models 
of unidirectional and bidirectional stochastic neural networks RBMRHL (Restricted Boltzmann 
machine with recurrent hidden layer) were created, in which, unlike the traditional RBM 
(Restricted Boltzmann machine), hidden layer neurons are interconnected.  
3. For models of unidirectional and bidirectional stochastic neural networks RBMRHL, methods 
for identifying their parameters based on contrastive divergence were proposed.  
4. In the course of a numerical study of models of unidirectional and bidirectional stochastic 
neural networks RBMRHL, their structure was determined. The experiments showed that with 200 
hidden neurons (corresponding to the number of input neurons), the accuracy value does not 
change significantly, and the selected network gives recognition results with maximum accuracy.  
5. The proposed approach can be used in various intelligent systems that use the recognition of 
natural language constructs. For example, in supply chain management systems, where natural 
language interaction between subjects, which are represented by software agents, plays an 
important role. 
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