
An Approach and a Software Tool for Automatic Source Code
Generation driven by Business Rules

Andrii Kopp and Dmytro Orlovskyi

National Technical University “Kharkiv Polytechnic Institute”, Kyrpychova str. 2, Kharkiv, 61002, Ukraine

Abstract
This paper proposes an approach to automatic source code generation driven by business

rules. This approach is inspired by low-code and automatic programming to improve the

software development process and accelerate product delivery through the source code

generation from natural language statements. The proposed approach considers business rules

as input, uses the triplestore model for knowledge representation based on business rules,

utilizes association rules to suggest attribute data types, and produces an abstract data model.

This abstract data model is a framework for software components generation of various

purposes and syntax, such as SQL scripts for database tables creation and Java Beans for

server-side implementation. A software solution based on the proposed approach translates

the data model into the source code of software components: MySQL database and Java

classes. But it can be extended to generate various software components based on different

syntax rules. Performed experiments demonstrate that generated software components are

verified and valid since they were checked using static code analysis and dynamic testing.

Conclusion formulates research outcomes, obtained results, and limitations. Future work

outlines the next research steps in this field.

Keywords 1
Business Rules, Low-Code, Source Code Generation, Data Model, Software Development

1. Introduction: Related Work and Problem Statement

The time between specifications capturing and the product delivery is critical for the software

development process and its stakeholders. The source code generation could significantly increase the

software development process by shortening the time between requirements gathering and delivery

using automatic programming and low-code solutions. The main idea of automatic programming is to

“tell the computer what to do rather than how to do the task” [1]. Hence, automatic programming

should be supported by some definitive high-level language that is closer to a natural language than a

programming language [1]. Low-code platforms provide information technologies that automate the

creation and deployment of business applications that encourage business transformations [2]. We can

say that low-code platforms encapsulate automatic programming tools since they usually provide

user-friendly visual environments to create ready software solutions for business needs by users with

minimal programming skills [2]. The encapsulation mentioned above means that knowledge models

that automatic programming toolkits use to generate the source code can be created in a drag-and-

drop manner via low-code platforms. However, in this study, we address the “low-code” term as the

general concept rather than some software development platform. However, in this study, we address

the “low-code” term as a general concept rather than some software development platform and focus

mostly on the automatic programming aspect of the low-code approach. This paper aims at automatic

source code generation from natural language statements given as SBVR business rules to facilitate

the software development process by bridging a gap between business analysis and engineering.

COLINS-2022: 6th International Conference on Computational Linguistics and Intelligent Systems, May 12–13, 2022, Gliwice, Poland

EMAIL: kopp93@gmail.com (A. Kopp); orlovskyi.dm@gmail.com (D. Orlovskyi)

ORCID: 0000-0002-3189-5623 (A. Kopp); 0000-0002-8261-2988 (D. Orlovskyi)

©️ 2022 Copyright for this paper by its authors.

Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

 CEUR Workshop Proceedings (CEUR-WS.org)

1.1. Related Work

In this study, we propose to use the Semantic of Business Vocabulary and Rules (SBVR) standard

for specifications representation comprehensible by humans and computers [3]. SBVR is an Object

Management Group (OMG) standard that facilitates the software development process.

Extraction of SBVR-based business rules from natural language business rules for computer

processing was recently proposed by authors of papers [3] and [4]. Moreover, authors of [5] consider

the RDF-based (Resource Description Framework) knowledge representation models generation from

SBVR business rules to provide a formal description of natural language as a graph or set of subject-

predicate-object triples.

Authors of [6] state that SBVR guarantees traceability between models and quick applications

development. However, [6] only proposes the transformation of SBVR statements to UML (Unified

Modeling Language) use case diagrams. Earlier studies consider the generation of SQL queries from

SBVR business rules. For example, papers [7] and [8] consider SELECT SQL statements generation

from pre-defined business vocabularies and rules. A later study [9] also considers translation from

SBVR specifications into SQL queries to provide an interface for the database. Authors of one of the

recent papers [10] also consider the translation of natural language descriptions into SQL queries for

data retrieval. Earlier we also proposed an approach and software prototype for the translation of

natural language business rules into SQL database creation scripts [11].

1.2. Problem Statement

Our previous study is based on the translation of fact business rules (statements that define entities

and relationships within data models [12]) structured according to the Wiegers taxonomy [12] into

SQL DDL (Data Definition Language) scripts. Now we attempt to use the SBVR OMG standard to

provide a unified solution that can be integrated with other software development utilities. Also, we

want to improve the previously proposed approach by using the Model-Driven Development (MDD)

paradigm when business rules are given as subject domain descriptions to build an abstract model

with multiple possible implementations [13]. In MDD, abstract models are major artifacts that serve

as sources to generate the source code or other software engineering artifacts (see Fig. 1 below).

Figure 1: Abstract models serving as sources to generate the source code or other artifacts

The abstract model implementation includes automatic programming activities such as source code

and other artifacts generation (forward engineering).

Therefore, in this study we need to solve the following tasks.

1. Propose a procedure for translation of business rules given as SBVR statements into the RDF-

based triplestore model that operates subject-predicate-object triples.

2. Propose a procedure for translation of the triplestore model that describes a subject domain on

the conceptual level into the data model that describes an abstract software artifact.

3. Propose a procedure to suggest attribute data types that will be added to the abstract model,

considering their translation into language-specific data types, e.g. primitive data types in Java or

MySQL data types.

4. Develop a software solution based on previously mentioned procedures (1–3) to implement

the proposed approach.

5. Perform experiments with a sample set of business rules by translating them into the software

components. Verify and validate generated source code.

2. An Approach to Automatic Source Code Generation driven by Business
Rules

2.1. Translation of Business Rules given as Structured English Statements
into the Triplestore Model

According to [14], the SBVR Structured English (SSE) is a syntax that serves for textual mapping

of SBVR concepts and rules. In general, SSE defines four formatting styles, including terms, names,

verbs, and keywords [14]. The verbs-based style seems most suitable for the representation of fact

business rules. This SSE style defines relationships between concepts. For example, the business rule

“order includes items” contains two nouns and a verb. These two nouns describe concepts “order” and

“item”, and the “includes” verb describes the relationship between these two concepts.

The Resource Description Framework (RDF) is a modern knowledge representation framework. It

solves the problem of knowledge representation since irregularities and exceptions make it difficult to

process natural languages. It statements contain three elements (triples): subject, predicate, and object.

Such knowledge representation is easily processed by machines and readable for humans [15].

Considering the SSE syntax, we propose the following algorithm for translating fact business rules

given as the SSE statements into the triplestore model as it is done in [5] (see Fig. 1 below).

Figure 2: The algorithm for translating fact business rules into the triplestore model

Therefore, having the 𝑛 business rules, we can obtain a set 𝑇 of 𝑛 triples using the algorithm for

translating fact business rules into the triplestore model (Fig. 1):

𝑇 = {𝑡𝑖 = 〈𝑠𝑖, 𝑝𝑖 , 𝑜𝑖〉|𝑖 = 1, 𝑛}, (1)

where:

 𝑡𝑖 is the 𝑖-th triple, 𝑖 = 1, 𝑛;

 𝑠𝑖 is the subject within the 𝑖-th triple 𝑡𝑖, 𝑖 = 1, 𝑛;

 𝑝𝑖 is the predicate within the 𝑖-th triple 𝑡𝑖, 𝑖 = 1, 𝑛;

 𝑜𝑖 is the object within the 𝑖-th triple 𝑡𝑖, 𝑖 = 1, 𝑛;

 𝑛 is the number of business rules and corresponding triples.

Using the triplestore (1), now we can store triples, obtained using the input business rules, and

retrieve triples to build object-oriented, entity-relationship, and other data models. Furthermore, we

can use these data models to generate information system components, such as application classes and

structures, database tables, etc.

2.2. Translation of the Triplestore Model into the Data Model

Now we can use the triplestore formulated in the previous sub-section to build a data model. First

of all, it is necessary to identify entities and their attributes based on fact business rules given as SSE

statements and then translated into triples.

At the data modeling step, we need to define which attributes can have null or missing values and

which attributes cannot. In the future, these attributes will be implemented as class properties or

database table columns. Therefore, certain business logic, even such primitive, should be already

introduced.

Moreover, entities should be interrelated to achieve data consistency. Hence, we should treat

business rules not only as sources of entities and the respective attributes but also as sources of

relationships among entities.

Thus, to restrict the syntax of fact business rules, we propose to consider only several verbs

according to their purpose:

6. “has” and “owns” verbs should be used to detect entities and their attributes (see Fig. 2), e.g.

“product has description” or “product owns title”, where:

 “has” means unnecessary attributes that can hold null or missing values;

 “owns” means mandatory attributes that cannot hold null or missing values;

Figure 3: Sample business rules and the expected entity with attributes

7. “includes” verb should be used to detect relationships between entities (see Fig. 3), i.e. how

instances of one entity reference instances of another entity, e.g. “product includes category”.

Figure 4: Sample business rules and the expected related entities

According to Fig. 3, the “includes” verb allows creating such relationships between the entities

that are called one-to-many in the relational database theory. Based on the SSE syntax considered

earlier and the given restrictions of the verbs used in fact business rules, we propose the following

algorithm for data model design based on the triplestore model (see Fig. 4 below).

Figure 5: The algorithm for data model design based on the triplestore model

Therefore, having the set 𝑇 we can obtain data model elements 𝐷𝑀, such as entities 𝐸, attributes

𝐴, and relationships 𝑅 using the algorithm (Fig. 4) for data model design based on the triplestore

model:

𝐷𝑀 = 〈𝐸, 𝐴, 𝑅, 𝜃, 𝜑, 𝜇〉, (2)
where:

 𝐸 is the set of entities, 𝐸 = {𝑒𝑗|𝑗 = 1, 𝑚};

 𝐴 is the set of attributes, 𝐴 = {𝑎𝑘|𝑘 = 1, 𝑝};

 𝑅 is the set of relationships, 𝑅 = {𝑟𝑙|𝑙 = 1, 𝑞};

 𝜃 is the mapping between attributes and entities these attributes belong to: 𝜃: 𝑎𝑘 → 𝑒𝑗, 𝑘 =

1, 𝑝, 𝑗 = 1, 𝑚;

 𝜑 is the mapping between relationships and entities they link: 𝜑: 𝑟𝑙 → 〈𝑒𝑐 , 𝑒𝑝〉, 𝑙 = 1, 𝑞;

 𝑒𝑐 ∈ 𝐸 is the so-called “child entity” that depends on the so-called “parent entity” 𝑒𝑝 ∈ 𝐸;

 𝜇 is the mapping between attributes and their status to define whether they are mandatory,

𝜇(𝑎𝑘) = 1, or not, 𝜇(𝑎𝑘) = 0: 𝜇: 𝑎𝑘 → {0,1}, 𝑘 = 1, 𝑝.

Now having the data model elements (2) we can build different software implementations of these

models. For example, we can use 𝐷𝑀 (2) to build SQL scripts for relational database creation. Or we

can use 𝐷𝑀 (2) to create Java Beans for enterprise information system development. We can even use

𝐷𝑀 (2) to produce smart contract code for blockchain-driven decentralized applications development.

2.3. Suggestion of Attribute Data Types based on Association Rules

In this sub-section, we propose to use the approach based on association rules [16] to suggest

attribute data types. According to this approach, the sets of items are called antecedent or left-hand-

side 𝐿𝐻𝑆 and consequent or right-hand-side or 𝑅𝐻𝑆 of the rule. Hence, the rule is formed as the

implication 𝐿𝐻𝑆 ⇒ 𝑅𝐻𝑆, where 𝐿𝐻𝑆 ∩ 𝑅𝐻𝑆 = ∅.

According to our idea, as the left-hand side, we can use column names of existing databases and as

the right-hand side, we can use data types of the respective columns. To implement the proof-of-

concept and conduct experiments, we propose to use the “Spider” dataset [17] maintained by Yale

students. This dataset includes 200 databases with multiple tables covering 138 different domains.

Each database in the “Spider” dataset is given as the set of SQL scripts and as the SQLite file.

Hence, such databases could be easily processed table by table to build association rules 𝐿𝐻𝑆 ⇒ 𝑅𝐻𝑆,

where 𝐿𝐻𝑆 is the column (attribute) name and 𝑅𝐻𝑆 is the data type respectively.

According to the approach based on association rules, we propose the following algorithm to

obtain attribute data types suggestions based on the association rules (see Fig. 5 below).

Figure 6: The algorithm to obtain attribute data types suggestions based on the association rules

Let us make the proposed idea clearer by introducing the following example. We assume that

dealing with the dataset of multiple databases each of which contains an entity (table) with the

“phone” attribute (column). Let us consider 8 cases of tables with the “phone” column (see Fig. 6

below). Data types used for the “phone” column vary from one to another database (see Fig. 6 below).

Nevertheless, after processing the dataset, we discover that the “phone” column has the following data

types (see Fig. 6 below):

 “varchar(24)” in 4 out of 8 cases;

 “varchar(30)” in 1 out of 8 cases;

 “integer” in 1 out of 8 cases;

 “varchar(20)” in 2 out of 8 cases.

Figure 7: Sample dataset for association rules calculation and data types suggestion

Hence, we can calculate the confidence values (see Fig. 6 above) for each rule:

1. "𝑝ℎ𝑜𝑛𝑒" ⇒ "𝑣𝑎𝑟𝑐ℎ𝑎𝑟(24)", conf = 4 8⁄ = 0.5;

2. "𝑝ℎ𝑜𝑛𝑒" ⇒ "𝑣𝑎𝑟𝑐ℎ𝑎𝑟(30)", conf = 1 8⁄ = 0.125;

3. "𝑝ℎ𝑜𝑛𝑒" ⇒ "𝑖𝑛𝑡𝑒𝑔𝑒𝑟", conf = 1 8⁄ = 0.125;

4. "𝑝ℎ𝑜𝑛𝑒" ⇒ "𝑣𝑎𝑟𝑐ℎ𝑎𝑟(20)", conf = 2 8⁄ = 0.25.

Since the maximum confidence (conf = 0.5) was reached for the first association rule "𝑝ℎ𝑜𝑛𝑒" ⇒
"𝑣𝑎𝑟𝑐ℎ𝑎𝑟(24)", the “varchar(24)” data type could be suggested for the “phone” attribute of the data

model 𝐷𝐵 (2) created in the previous stage.

Therefore, having business rules of 𝑝 attributes each of which is associated with 𝑤 data types, we

can use the following equation to calculate confidence values of the association rules:

conf𝑘
𝑣(𝐿𝐻𝑆𝑘 ⇒ 𝑅𝐻𝑆𝑘

𝑣) =
supp(𝐿𝐻𝑆𝑘 ∪ 𝑅𝐻𝑆𝑘

𝑣)

supp(𝐿𝐻𝑆𝑘)
, 𝑘 = 1, 𝑝, 𝑣 = 1, 𝑤,

(3)

where:

 𝐿𝐻𝑆𝑘 is the 𝑘-th attribute placed as the left-hand-side of the rule;

 𝑅𝐻𝑆𝑘
𝑣 is the 𝑣-th data type associated with the 𝑘-th attribute placed as the right-hand-side of

the rule;

 supp is the number of rules that contain a given set of items.

Let us introduce the set of data types 𝐷 = {𝑑𝑘|𝑘 = 1, 𝑝} as part of the data model 𝐷𝑀 (2) that

correspond to each attribute 𝑎𝑘, 𝑘 = 1, 𝑝, so it will look like: 𝐷𝑀 = 〈𝐸, 𝐴, 𝑅, 𝜃, 𝜑, 𝐷〉.

The task includes a search of the most suitable data types 𝑑𝑘, 𝑘 = 1, 𝑝 for given attributes 𝑎𝑘, 𝑘 =

1, 𝑝 mentioned in the data model 𝐷𝑀 (2) created in the previous stage.

Therefore, using calculated confidence values (3) of considered association rules we can find the

most suitable data types for data model 𝐷𝑀 (2) attributes:

𝑑𝑘 = arg max
𝑅𝐻𝑆𝑘

𝑣
{conf𝑘

𝑣(𝐿𝐻𝑆𝑘 ⇒ 𝑅𝐻𝑆𝑘
𝑣)|𝑣 = 1, 𝑤} , 𝑘 = 1, 𝑝. (4)

Since we use the “Spider” dataset, the expected data types suggested for data model attributes will

be specific for the SQLite databases this dataset includes.

2.4. Adjustment of Suggested Attribute Data Types for usage in Different
Software Development Technologies

Therefore, we should introduce the bottom-up mapping from SQLite-specific to generic data

types. Moreover, we also need to introduce a set of top-down mappings from the generic data types

from generic data types to technology-specific ones used in chosen programming languages,

platforms, database management systems, etc.

Hence, taking into account the generic data types, we can derive them from SQLite-specific data

types [18] 𝑑𝑘, 𝑘 = 1, 𝑝 suggested for corresponding attributes 𝑎𝑘, 𝑘 = 1, 𝑝 (see Fig. 7 below).

Figure 8: The algorithm to obtain generic data types based on the SQLite-specific data types

According to the PYPL (PopularitY of Programming Language) rating for February 2022 [19], the

most popular statically-typed programming languages used in enterprise software development are

Java and C#. As for the database management systems, the most popular for February 2022 are SQL-

based relational database management systems Oracle, MySQL, and Microsoft SQL Server according

to the DB-Engines Ranking [20]. According to the “Top 5 Programming Languages To Build Smart

Contracts” rating by 101 Blockchains research platform [21], Solidity is the first among popular smart

contract programming languages.

Corresponding data types used in the most popular enterprise programming languages and SQL-

based database management systems are demonstrated in Table 1 below.

Table 1
Data types used in the most popular software development technologies

Generic type
Technology

Integer Floating-point Boolean String

Java int double boolean String
C# int double bool string

SQL int real smallint(1) varchar(255)
Solidity int int bool string

Using the algorithm (Fig. 7) and the mapping between languages and generic data types (Table 1),

various software development components can be generated based on the data model 𝐷𝑀 (2): classes

or structures, database scripts, smart contracts, or other source code that declare data structures.

2.5. Implementation of Software Components using Different Technologies
based on the Data Model

The proposed approach assumes building the abstract data model 𝐷𝑀 (2) from the SSE business

rules to define entities (or concepts), their attributes, and relationships among them. Also, the

proposed approach assumes the extension of the data model 𝐷𝑀 (2) with the attribute data types

based on the association rules build from the “Spider” dataset of SQLite databases of different

industries. SQLite-based data types then generalized up to the generic data types, such as Integer,

Floating-point, Boolean, and String. Then, we can use the data model 𝐷𝑀 (2) to generate software

components having only the SSE business rules on input, according to the specific technology,

platform, or language that has its syntax and data types.

Therefore, the object-oriented model of the proposed approach is represented in Fig. 8 below.

Figure 9: The object-oriented model of the proposed approach

As it is demonstrated in the model above (see Fig. 8), the data model 𝐷𝑀 (2) should be extended

with the syntax rules and specific data types to generate:

 Java-based software components, such as POJO (Plain Old Java Objects, i.e. simple Java

objects), Java Beans, Enterprise Java Beans (EJB), and others;

 SQL-based software components, such as MySQL, Microsoft SQL Server, and other database

creation scripts;

 other software components, such as source code or configuration files according to the given

syntactic rules.

Therefore, the data model 𝐷𝑀 (2) based on the SSE business rules and data type association rules

can be used to automatically generate almost any software component for which are only necessary:

 rules on entity representation according to a given syntax;

 rules on attribute representation, including mandatory ones, according to a given syntax;

 rules on relationship representation according to a given syntax;

 rules on attribute data type representation according to a given syntax.

Such rules could be programmed when the object-oriented model (see Fig. 8) is transformed into a

software solution to implement the proposed approach and perform experiments.

3. Results and Discussion
3.1. Software Implementation of the Proposed Approach

We have implemented the software solution using the Python programming language because of

its relative simplicity, flexibility, and rich collection of packages, including the packages for natural

language processing and database operations.

The software solution uses the following external dependencies demonstrated in Fig. 9 below.

Figure 10: External dependencies of the software tool

According to Fig. 9, which shows external dependencies, there are the following modules:

 json – the JSON (JavaScript Object Notation) format encoder and decoder;

 sqlite3 – the API (Application Programming Interface) for SQLite databases;

 pandas – the open-source data analysis and manipulation tool;

 nltk – computational linguistics library known as the Natural Language Toolkit (NLTK).

The component diagram (see Fig. 10 below) shows the detailed structure of the software tool that

implements the proposed approach outlined in section 2.

Figure 11: The detailed structure of implemented software tool

According to Fig. 10 demonstrated above, the software solution includes several components:

 the “Data Model Extractor” component is responsible for processing SSE business rules given

as input by translating them into triples and then formulating entities, their attributes, and

relationships from these triples;

 the “Data Type Suggestion” component is responsible for utilizing association rules and

suggesting the data types for entity attributes according to the selected programming language;

 the “Association Rules Evaluation” component is responsible for processing the “Spider”

dataset and building association rules that can be used then by the previously mentioned

component to suggest the entity attribute data types;

 the “Source Code Generation” component uses all of the previously mentioned components to

produce the source code using the selected programming language (e.g., Java Beans, SQL scripts,

etc.) according to the created data model and suggested data types.

The source code generation scheme (see Fig. 11 below) describes translation from the data model

𝐷𝑀 (2) (that includes entities, their attributes (mandatory or not-null and optional), and relationships)

into the source code of software components described only by SSE business rules on input.

Figure 12: The source code generation procedure

The developed software tool can use the data model 𝐷𝐵 (2) to produce Java Beans, SQL scripts, or

other software components according to pre-configured syntactic rules. In the following sub-section,

we demonstrate sample business rules, corresponding data models with suggested attribute data types,

and produced software components created using the Java and SQL languages syntax.

3.2. Demonstration of Source Code Generation from Business Rules

Let us consider the example of business rules that describe brands, products, and categories as part

of the e-commerce platform. It is well known that nowadays online stores are large websites with

complex frontend but even more complex backend software components used as their parts.

Development and maintenance of medium and large e-commerce websites require considerable

software development and database design effort. However, this effort could be reduced using the

proposed approach and developed software tool. Therefore, in this sub-section, we will demonstrate

the automatic generation of Java Beans for the backend business logic and SQL scripts to create the

database tables of an enterprise e-commerce platform.

According to the proposed approach, the business rules of intended software components should

be given in the SSE format. Hence, sample business rules are following:

 product owns title;

 product includes brand;

 product has description;

 product has image;

 product owns price;

 product owns amount;

 product includes category;

 product has votes;

 product has rating;

 category owns title;

 category has description;

 category has image;

 brand owns title;

 brand has image;

 brand has description;

 brand owns origin country.

Therefore, we can pass these business rules as the input data of developed software and obtain the

following triplestore model (see Fig. 12 below).

Figure 13: The triplestore model based on business rules

Obtained triplestore model represents on the conceptual level the subject domain that business

rules describe. This triplestore model was then transformed into the data model (see Fig. 13 below).

Figure 14: The data model based on triplestore model

The data model then was extended by attribute data types (see Table 2) based on association rules

built using the “Spider” dataset that contains 200 databases of 138 different domains.

Table 2
The suggested data types based on association rules

Attribute Data
type

Confidence Attribute Data
type

Confidence Attribute Data
type

Confidence

title String 0.60 price String 0.29 rating String 0.38
description String 0.25 amount Float 0.33 origin

country
String –

image String – votes Integer 0.50

Obtained results (see Table 2) show the highest confidence of suggested data types for “title”

(0.60) and “votes” (0.50) attributes, intermediate confidence for “rating” (0.38) and “amount” (0.33)

attributes, and low confidence for “price” (0.29) and “description” (0.25) attributes.

Finally, SQL scripts and Java Beans were generated based on the data model (see Fig. 14 below).

The data model also demonstrates specific data types of database table columns in SQL scripts and

class fields in Java Beans respectively.

Figure 15: The source code of Java and SQL software components generated from business rules

The source code of generated software components, including SQL database tables creation scripts

and Java Beans, is available in the project’s GitHub repository [22].

3.3. Verification and Validation of the Generated Source Code

Now we need to verify and validate generated software components. Whereas verification answers

the question “are we building the product right?” and corresponds to the static code checking,

validation answers the question “are we building the right product?” and corresponds to the dynamic

code testing [23].

We used the following tools to verify and validate generated SQL database creation scripts and

Java Beans:

 MySQL – one of the most popular free relational databases;

 phpMyAdmin – a free web software tool for handling the administration of MySQL;

 JDK (Java Development Kit) and Eclipse IDE (Integrated Development Environment);

 SonarLint – an IDE extension for identification of quality and security issues in the code;

 JUnit – a unit testing framework for the Java programming language.

Using the SonarLint extension for Eclipse IDE we completed the static analysis of SQL database

creation scripts. Verification results show no issues identified in the code.

However, the static analysis of Java Beans code shows four types of identified issues. These issues

include invalid class names, field names, and method names, as well as usage of generic exceptions

instead of dedicated ones (see Fig. 15 below).

Figure 16: Types of identified issues in generated Java Beans

Execution of generated SQL database creation scripts demonstrates successfully created tables on

the MySQL server. Data manipulation SQL statements (see Fig. 16 below) demonstrate the integrity

and consistency of created database tables.

Figure 17: Scripts that demonstrate integrity and consistency of created database tables

Execution of generated Java Beans demonstrates successfully compiled classes. JUnit tests (see

Fig. 17 below) demonstrate successfully passed cases that check setters for mandatory class fields.

Figure 18: Successfully passed JUnit test cases

Obtained results (see Fig. 16) demonstrate that created database tables fully support data integrity

and consistency, including enforcement of foreign key constraints and not null columns. Passed JUnit

tests (see Fig. 17) show the validness of created Java Beans that contain setters throwing exceptions if

null values are passed as input parameters.

As for the limitations, static code analysis of created Java Beans (see Fig. 15) shows that generated

classes, fields, and methods do not match Java naming conventions. Therefore, we should elaborate

on the proposed approach and software solution in future work to prevent such issues and introduce

an automatic generation of dedicated exceptions.

3.4. Contribution to Intelligent Source Code Generation Systems

Despite the detected limitations (missing dedicated exceptions and naming violations in Java code)

of the proposed approach and the software tools, the generated SQL database creation scripts and the

Java Bean classes are valid and correspond to the given business rules (see Section 3.3). Generated

artifacts can be used in an information system software development project after minor tuning – to

customize data types and meet coding conventions. Therefore, this study encourages projects to move

toward Intelligent Software Engineering practices that assume the usage of intelligent techniques in

Software Engineering [24]. The proposed approach and the software tool based on Natural Language

Processing techniques assume the implementation of an intelligent source code generation system that

is supposed to bridge the gap between software requirements (given as business rules) and the design

of the information system’s data layer. Furthermore, the elaborated intelligent system will result in an

automatic source code generation environment that can augment traditional IDEs.

4. Conclusion and Future Work

In this paper, we proposed the approach to automatic source code generation driven by business

rules. This approach includes several steps: translation of business rules given as SBVR Structured

English statements into the triplestore model, translation of the triplestore model into the data model,

suggestion of attribute data types based on association rules, adjustment of suggested attribute data

types for usage in different software development technologies. The object-oriented model of the

proposed approach describes its general idea and area of usage.

The Python-based software solution uses the “Spider” dataset of about two hundred databases with

multiple tables covering different domains to suggest attribute data types. The software tool uses the

Natural Language Toolkit package for business rules tokenization and part of speech tagging.

Currently, the software tool has a command-line user interface and allows to generate software

components using SQL and Java syntax to produce SQL tables creation scripts for database layer

implementation and Java Beans for backend layer implementation.

We used the developed software solution to perform experiments with the sample set of business

rules given in the SSE format. These business rules were translated into triples to build the conceptual

model of the subject domain. The conceptual model based on the triplestore model was built, attribute

data types were suggested and adjusted according to SQL and Java syntax rules. Finally, generated

software components were verified using the static code analysis performed by SonarLint for Eclipse

IDE and validated using the dynamic code testing performed by SQL data manipulation statements

and JUnit test cases.

Produced SQL scripts and Java classes are completely operable, tables with foreign key constraints

were created and Java Beans were compiled. However, obtained verification and validation results

show naming issues and generic exceptions misuse in generated Java Beans.

Future work in this field includes the elaboration of the proposed approach and created software

solution to avoid current limitations and extend types of software components that can be generated

based on business rules.

5. References

[1] M. O’Neill, L. Spector, Automatic programming: The open issue?, Genetic Programming and

Evolvable Machines 21 (2020) 251-262. doi:10.1007/s10710-019-09364-2.

[2] K. Talesra, G. S. Nagaraja, Low-Code Platform for Application Development, International

Journal of Applied Engineering Research 16(5) (2021) 346-351.

doi:10.37622/IJAER/16.5.2021.346-351.

[3] A. Haj et al, The semantic of business vocabulary and business rules: an automatic generation

from textual statements, IEEE Access 9 (2021) 56506-56522.

doi:10.1109/ACCESS.2021.3071623.

[4] A. Haj, Y. Balouki, T. Gadi, Automatic extraction of SBVR based business vocabulary from

natural language business rules, in International Conference on Advanced Information

Technology, Services and Systems, Springer, Cham, 2018, pp. 170-182. doi:10.1007/978-3-030-

11914-0_19.

[5] B. Akhtar et al., Generating RDFS Based Knowledge Graph from SBVR, in International

Conference on Intelligent Technologies and Applications, Springer, Singapore, 2018, pp. 618-

629. doi:10.1007/978-981-13-6052-7_53.

[6] I. Essebaa, S. Chantit, Tool Support to Automate Transformations from SBVR to UML Use Case

Diagram, in ENASE, 2018, pp. 525-532. doi:10.5220/0006817705250532.

[7] S. Moschoyiannis, A. Marinos, P. Krause, Generating SQL queries from SBVR rules, in

International Workshop on Rules and Rule Markup Languages for the Semantic Web, Springer,

Berlin, Heidelberg, 2010, pp. 128-143. doi:10.1007/978-3-642-16289-3_12.

[8] A. Marinos, S. Moschoyiannis, P. J. Krause, An SBVR to SQL Compiler, RuleML Challenge

649 (2010).

[9] T. Nadeem, Automated translation of SBVR to SQL queries, Master in Science Thesis, The

Islamia University of Bahawalpur, 2013.

[10] A. Kate et al., Conversion of Natural Language Query to SQL Query, 2018 Second International

Conference on Electronics, Communication and Aerospace Technology (ICECA), IEEE, 2018,

pp. 488–491. doi:10.1109/ICECA.2018.8474639.

[11] A. Kopp, D. Orlovskyi, S. Orekhov, An approach and software prototype for translation of

natural language business rules into database structure, in Proceedings of the 5th International

Conference on Computational Linguistics and Intelligent Systems (COLINS 2021), 2021, pp.

1274-1291.

[12] K. E. Wiegers, J. Beatty, Software Requirements. Best practices. Developer Best Practices,

Microsoft Press, 2013.

[13] P. André, M. E. Amin Tebib, More Automation in Model Driven Development, in International

Conference on Model and Data Engineering, Springer, Cham, 2021, pp. 75-83. doi:10.1007/978-

3-030-78428-7_7.

[14] W. el Abed, Semantic Business Vocabulary and Rules (SBVR), 2017. URL:

https://tdan.com/semantic-business-vocabulary-and-rules-sbvr.

[15] D. Tomaszuk, D. Hyland-Wood, RDF 1.1: Knowledge representation and data integration

language for the Web, Symmetry 12 (2020) 84. doi:10.3390/sym12010084.

[16] K. Poonsirivong, C. Jittawiriaynukoon, Big data analytics using association rules in eLearning, in

2018 IEEE 3rd International Conference on Big Data Analysis (ICBDA), IEEE, 2018, pp. 14-18.

doi:10.1109/ICBDA.2018.8367643.

[17] Yale University’s Spider 1.0 NLP Dataset, 2020. URL:

https://www.kaggle.com/jeromeblanchet/yale-universitys-spider-10-nlp-dataset.

[18] Datatypes In SQLite, 2021. URL: https://www.sqlite.org/datatype3.html.

[19] PYPL PopularitY of Programming Language, 2022. URL: https://pypl.github.io/PYPL.html.

[20] DB-Engines Ranking, 2022. URL: https://db-engines.com/en/ranking

[21] G. Iredale, Top 5 Programming Languages To Build Smart Contracts, 2021. URL:

https://101blockchains.com/smart-contract-programming-languages/.

[22] The project’s GitHub repository, 2022. URL: https://github.com/andriikopp/SBVR-to-source-

code-generation-study.

[23] T. Hamilton, Static Testing vs Dynamic Testing: What’s the Difference?, 2022. URL:

https://www.guru99.com/static-dynamic-testing.html.

[24] M. Perkusich et al., Intelligent software engineering in the context of agile software

development: A systematic literature review, Information and Software Technology 119 (2020)

106241. doi:10.1016/j.infsof.2019.106241.

