
A Comparative Study on Algorithms of Computer Vision and 
Deep Learning for Facial Expressions Analysis 

 

Vladyslav Kuznetsov 
1, Iurii Krak 

1,2, Olexander Barmak 3, Anatolii Kulias 
1 and Valentyna 

Petrovich 
1 

 
1 Glushkov Cybernetics Institute, 40, Glushkov avenue, Kyiv, 03187, Ukraine  
2 Taras Shevchenko National University of Kyiv, 60, Volodymyrska str., Kyiv, 01033, Ukraine  
3 Khmelnytskyi National University, 11, Instytutska str., Khmelnytskyi, 29016, Ukraine 

  

Abstract  
This article discusses two different approaches to study facial expressions on the human face: 

using a computer vision approaches and deep convolution neural networks. The similarities 

and difference between these two approaches, in particular the computation devices needed to 

perform these specific tasks was discussed in detail. The study proposes a technique to estimate 

the computation power needed to perform facial expressions recognition based on open data 

on performance of CUDA and OpenCL libraries on different computational devices. The best-

case and worst-case scenarios are studied in order to find the performance bottlenecks that 

happen in deep learning using graphic processing units. This involved studying pre-processed 

facial expression datasets including positions of facial landmarks on human face using deep 

unsupervised autoencoders with different levels of constraints to compare them with singular 

value decomposition. It also included in-depth study of convolution neural networks on images 

of facial expressions (FER-2013 dataset) using tensorflow-directml library. A set of tests was 

conducted in order to infer relative performance such as time of processing (for input images) 

as well as processed data. According to the experimental study, our tests of real performance 

on particular task stand together with theoretical estimates. A few solutions to overcome the 

computation bottlenecks in deep learning problems was  suggested. 
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1. Introduction 

Recent advances in human-computer interaction allow usage of more user-oriented means of 

communication; such means include voice commands, gesture input systems [1], haptic control, facial 

recognition [2] and many others. The main outcome of these advances is that they give users new ways 

to interact with computers and each other; using new means of human-computer interaction give not 

only the economic but social effect since they widen the area of interest for people with hearing, speech 

and vision disabilities what is very important in modern society. 

Among these new means of communication, one is drawing big interest – facial recognition which 

also incorporates lip-reading [3] (recognition of words in speech), emotion recognition and user 

authentication. Based upon recent advances in information technology [4] which incorporates powerful 

means of data acquisition, data processing as well as new algorithms that can process this data, now it 

is possible on nearly every desktop computer nowadays. 

The development of new means of communication comes with development of new algorithms and 

new computer computation devices since analysis of speech, volumetric sensing and computer vision 
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are quite demanding on computational power – processors (CPUs) and graphic processing units 

(GPUs), which raises a certain list of problems and questions how to solve them properly. 

2. Background and problem statement 

According to preliminary studies, the software and hardware has to be available for most customers 

on the market, when introduction of such means is plausible in both economical and technical views. It 

means that if the hardware is cheap to produce for end customer in relatively high volumes, the software 

development on these types of hardware also becomes cheaper since the technology can be incorporated 

in every operating system on state-of-art computers. 
Although, during recent two years (2020-2021), the hardware and software production shown high 

decline. It was caused mostly because of recent pandemic (COVID-19) [5]; thus operation revenue, 

market share and other economic factors were affected too. According to such high negative effects on 

global economy, the electronic industry raised high demand of personal computers, laptops and other 

devices on one hand and on other hand created great decline in availability due to supply chain problems 

[6]. Due to this, every item that has the highest percentage of IP included in product created the effect, 

where electronic devices increased in price, in some cases, two to three times (complete devices) to 

nearly tenfold for various structural elements - microcontrollers, voltage controlling units and many 

others, which highly influenced the price of graphic processing units (Hardware- und Nachrichten-

Links des 18./19. September 2021 | 3DCenter.org) in last year.  
Since the graphic processing units are widely known for machine learning tasks in general, their 

prices affected the cost of AI research. Because of this, one may ask: how big is the computation cost, 

and what is the lowest possible configuration can be used to fulfill such task? 
 If we discuss quite narrow and specific task what – facial recognition what is a topic of interest of 

this article – we can discuss more in detail, but according to our study in area, most of the tasks related 

to human-computer interaction – such as gesture recognition, voice recognition, facial recognition and 

others in one or another way are made using relatively similar data processing algorithms, which are 

adopted to shape of data structures and are less impacted by type of data itself. 

In order to answer the question above, we suggest solving the following problems: 

• to conduct a literature survey on facial emotion recognition methods; 

• to prepare the test data for experimental tests (facial expressions’ datasets); 

• to perform an experiment on computer vision methods for emotion recognition; 

• to suggest an estimate for performance using standardized computer benchmarks; 

• to benchmark a baseline performance of landmark detection algorithms; 

• to benchmark a performance of a computer systems on machine learning tasks; 

• to suggest ways to optimize network architectures to gain performance; 

• to compare performance of GPUs and CPUs on optimized network architectures; 

• to discover the edge situations where CPUs outperform GPUs and vice versa; 

• to study the edge situations and suggest solutions to increase the performance; 

• to test the estimate for performance and computation cost on real machine learning problems. 

3. Approaches for facial expression analysis: an overview 
3.1. Motion capture and computer vision 

Performance motion capture [7] is often used in computer animation in order to obtain precise 

movements of the body to create an animation model that imitates the movement of a real human [8]. 

These models utilize different optical, kinematic and magnetic sensors to calculate magnitude of 

movements of a movement in certain points known as points of interest. In case of optical sensors, these 

movements can be measured by means of computer vision [9] that distinguishes the image of an optical 

sensor from background or other parts of the body. This makes the methods used to be quite simple and 

can be programmed on relatively low-end machines and can be used for real-time tracking of body 

movements [10]. As a drawback, these systems are suitable only for static systems and very unlikely to 

be used for end user, except for research purposes (studying biomechanics of the body) or for computer 

https://www.3dcenter.org/news/hardware-und-nachrichten-links-des-1819-september-2021
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animators. In our recent studies we have proven that these are suitable for research purposes, and we 

had a few iterations of facial motion capture technologies, that focus more on sensors, the algorithms 

and their implementation, what is discussed more in detail in [11, 12]. 

3.2. Markerless motion capture and deep learning 

Markerless capture [13], in contrary to performance motion capture is quite scalable to different 

devices such as mobile phones, desktop computers or laptops. The main requirements are: availability 

of built-in or external web camera and availability of sufficient processing power. The recent methods 

that process input image such as active appearance models or convolution neural networks utilize the 

so-called activation (or in other words) of the pre-trained neural network in order to obtain 

characteristics of the image that display certain areas of interest on the human face [14].  
Even if there is no need to train weights for specific case, the process of localization of every feature 

on face, using convolutions has relatively high requirements to memory bandwidth and performance of 

computing units, so as the computations are made either in onboard SOC video chip (in mobile phones) 

or on dedicated GPU, which are best suited to process high number of similar operations (such as 

convolutions) in parallel. In case of using low-end CPUs without dedicated GPU, some solutions can 

be done sacrificing the image size or frame rate, what is in most cases makes these applications not yet 

suitable for real-time applications on regular web camera input. This can be applied only for facial 

recognition to authorize a user; therefore, computation time is not the case [15]. 

4. Experimental tests of CPU-based solutions in real conditions 
4.1. Experimental tests of optical flow algorithms 

According to our recent studies, the CPU-based solutions work quite fine for computer vision, in 

particularly optical flow method implementation. For instance, the performance motion capture 

solution, discussed in [12] was achieving nearly 60 frames per second on our dataset [16] representing 

facial expressions filmed at YUV 720p on a test system with A10-9620P CPU using EMGU computer 

vision library [17]. The main outcome of these experiments is that optical flow method performs well 

even on low-end on CPU on even outdated desktop machines of similar performance. According to our 

experimental tests, using these data to classify emotion expressions in separate classes shows us that 

this video resolution is high enough [12]. Our estimation is that using videos of higher resolution 

(1080p, 2K and higher) and higher frame rate may not affect quality of data, unless this data is long 

conversations (acting) and used in computer graphics or film-making. Only in this case, they may 

benefit from professional video editing software and high-end computers. 

4.2. Experimental tests of markerless motion capture 

In order to obtain the relative performance of different CPU-based systems, we studied three systems 

based on three platforms: AMD A10-9620P, Intel Core i5-6600k and AMD Ryzen 5 3600X (no 

overclocking was used). Every system had similar volume of system memory – 8 GB DDR 4 SDRAM 

and type of OS – Windows 10. These platforms were tested due to availability and their relative low 

age. The test systems included benchmarking software was written on Python [18] using external library 

Dlib [19] – to track the positions of landmarks on face. This implementation was based upon a pre-

trained convolution neural network and was tested on 720p test video sequences that contained facial 

expressions. According to series of tests, the average performance was following – 0.31 FPS for AMD 

A10-9620P, 0.96 FPS for Intel Core i5-6600k and 2.7 FPS for AMD Ryzen 5 3600X. According to 

these tests, it becomes very clear that even high-end CPU is not suitable to perform facial expressions' 

detection using convolution network inference, even though being capable to make similar task with 

optical flow and permanent markers. The problem lays behind the following: the image (or pattern) of 

a certain facial landmark can be distorted in many ways and the number of “true” images of same 

features is stored within a certain neural network detector is much higher in contrary to image of a 

permanent marker in about 2 orders of magnitude (50-100 times). This leads to the statement that the 



computational unit has to contain either 50-100 times more logical cores or have the higher clock speed, 

what in both cases seem unrealistic in general purpose desktops.   

4.3. Performance estimation for certain device using benchmarks 

In some typical cases, the performance of one system in a specific task can be compared with the 

performance of other ones using a standard test and normalizing score that represents performance of 

each given system. In some cases, these benchmarks are available, and the test system can be compared 

to a known one. For instance, according to our previous tests (facial landmarks detection), one can 

calculate performance of one device and compare it with others for this given task. The same can be 

done comparing performance of general purpose machine learning; for instance, the site 

Geekbench.com provides results of benchmarking computer systems using Geekbench software [20]. 

  

 
 

Figure 1: CUDA benchmarks of various low-end GPU devices. Data courtesy of geekbench.com site 
 

Using one of benchmark lists on Geekbench.com site on CUDA technology, we can compare 

performance of specific GPUs based on known performance of for Intel Core i3-8100, which is taken 

as 1000 [21]. Thus, if Intel Core i5-6600k is equal to i3-8100 in other tasks, we can infer performance 

from other tasks (facial landmark recognition): e.g., AMD Ryzen 5 3600X is 2,81 times faster than i3-

8100 and around 2x faster than NVIDIA GeForce GT 710 (Fig. 1). 
This assumption tends to the following statement. In order to perform specific task with certain 

performance, one can assume, that the desired performance of a specific system with unknown 

component can be calculated in similar way. Hence, in case of facial landmark detection, we want to 

achieve certain performance rate based upon our assumptions about desired performance and known 

performance of baseline system in specific tasks.  

It means following: if expected performance of certain CPU-based system is equals 2812 score 

points (let’s assume the baseline AMD Ryzen 5 3600x CPU) with approximate performance of 2.7 

operations per second in real benchmark in target task (frames per second) and desired performance is 

60 operations (frames) in second on 720p video sequences led us to estimated performance of 56240 in 

specific benchmark, based upon known one, on, for instance OpenCL computing tasks [22]. This gives 

us an estimated level of performance as of Nvidia Quadro P6000 GPU or similar GPU, for instance 

AMD Radeon RX 5700 XT (Fig.2). 
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Figure 2: OpenCL benchmarks of various mid-end GPU devices. Data courtesy of geekbench.com site 

4.4. Experimental test of general-purpose machine learning 

In order to test our hypotheses, an additional study of existing computing tools was conducted in 

order to assume the computational procedures that require the most computational time and, 

accordingly, potential ways to optimize these procedures on the same systems, previously tested in 

computer vision tasks and also extended to two other systems based on AMD Athlon X2 and AMD 

Ryzen 7 4800H processor with same memory specs (refer to paragraph 4.2.). This may give us a clue 

how the general-purpose ML is compared to CV tasks. 
The following computational procedures were analyzed in the experiment: 

• Data read time (from disk) into machine learning environment 

• Changing the dimensionality of a data array 

• Reducing the dimensionality of data (using singular value decomposition [23])  

• Grouping of features (using T-stochastic grouping of nearest neighbors [24])  

• Data clustering (K-means clustering) [25] 

• Deep artificial neural network (ANN) initialization, training and testing [26] 

• Classifier training based on decision trees [25]. 

 

The experiments involved computers with different architecture (AMD and Intel processors) on 

Ubuntu 18 and Windows 10 operating systems.  

Testing was performed using Anaconda environment for execution of applications written in Python 

3. The results are shown in the Table 1. 

Based on the experiment, the following was also found: 

• Reading large arrays of data from disk, using different types of processors and different 

media types can vary up to 10 times (among the least powerful and most powerful 

computational tools at our disposal), so when processing large data sets media types can 

play an important role. 

• The execution time of machine learning procedures indirectly depends on the number of 

computing cores and processor threads (logical CPU cores) - to a greater extent affects the 

implementation of a particular algorithm; for example, the difference in performance 

between the most powerful and the least powerful processor for grouping of features was 6 

times, and for singular decomposition up to 16 times. 
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• The difference between the mobility and the instruction set may impact the performance of 

similar operations - such as desktop-based solutions showed better performance procedures 

for training neural networks in contrary to laptop ones. Note that these indicators are 

associated with a specific set of instructions for a specific generation of processors and, 

accordingly, certain procedures will be performed faster due to the availability of library 

optimization when compiling for these processors. 
 
Table 1 
Performance indicators of machine learning procedures for different architectures 

Procedure name Max, sec Min, sec Diff, sec Avg, sec 

Read (from disk) 1.4502 0.1398 10.37339 0.6081 
Changing the size of the matrix 0.0060 0.0010 6.006006 0.0029 
Singular value decomposition 2.1730 0.0751 28.92936 0.6348 

Grouping of features 65.5700 10.8194 6.06041 39.0700 
Clustering of features 0.6000 0.0728 8.241758 0.2387 
Sample preparation 0.0070 0.0026 2.681992 0.0051 

Deep ANN initialization 0.2693 0.0558 4.829627 0.1585 
Deep ANN training 117.6430 24.1080 4.879832 71.0883 

Deep ANN inference 2.2210 0.5830 3.809802 1.2514 
Learning decision trees 0.8269 0.1480 5.587162 0.3859 

 

4.5. Network architecture optimization for machine learning speedup 

One of the ways to decrease time of learning and inference of a neural network on data is to optimize 

architecture of the network in such way that decreases computation time [27]. In most cases it depends 

on width and depth of a neural network; decreasing size may decrease computation power. 
Let’s discuss it on typical architecture – an autoencoder. The main outcome of an autoencoder is a 

possibility to pre-train multilayer network or to get optimal non-linear feature space representation that 

can compact features in clusters and allow applying machine learning methods on data. 
According to this approach, autoencoder is a deep learning method with two inputs and two outputs; 

the first output creates an encoding of data and puts it in the inputs of a decoder that calculates a 

reconstructed data with regard to reconstruction error and level of detail. Obviously – more layers are 

presented – more of the features are excluded from the final reconstruction. In contrary, it can be done 

with so-called wide autoencoder, which expands current data representation. This approach allows 

preserving most features, but increases the computation costs. 
In order to overcome this, an approach is proposed that combines methods of synthesis of linear 

systems for classification and neural network approaches to learning [28], [29]. The following 

procedure is proposed: a set of data arrives at the encoder input, which forms an encoding for all data 

samples; in turn, the decoder layers receive encoding for the data set in the space of reduced dimension; 

the results of the transformation are subject to the requirements: 

• the transformed code allows to obtain approximately direct and inverse transformations for 

which true (XTX)-1A=Y~ і (ATA)=E, (BTB)=E where X is the output matrix, Y~ – coding, 

A - encoder weight, B - decoder weight, E – identity matrix); 

• the weights of the matrix of direct and inverse transformation are in a given range of values 

(data at the input and output and the coding layer have the same dimension); 

• the coefficients of direct and inverse transformation are linearly independent. 

Imposing such constraints on the procedure of autocoder training allows obtaining an approximate 

solution and implementing the synthesis of linear systems for classification within neural network. 
In order to test this approach, an experimental implementation in Python was created, which involves 

Tensorflow machine learning library. The experimental implementation was tested on a test data set, 



which was divided into training and test samples. To train the algorithm, constraints were imposed, 

which were passed to the procedure for initializing the layers of the autoencoder. 

 
a                

 
b 

Figure 3: Constrained autoencoder’s labels (a) and SVD with autoencoder data labels applied (b) 
 



To verify the efficiency of the transformation, the data encoding was transmitted to the input of the 

clustering method. Data labels were used to assess the similarity of the singular value decomposition 

(SVD) and the proposed approach (Fig. 3). 
As a result of testing this approach, it was found that the images of data elements on the hidden layer 

for the auto encoder and the singular schedule, despite the imposed restrictions, differ. An area with 

weakly separated data elements is formed in the center (Fig. 3). 
As a result of the conducted researches, in general, satisfactory results were obtained - the root-

mean-square error of reconstruction and orthogonality of the weights did not exceed 2%.  

To improve the results, we also tried to imply other limitations on the optimization procedure and 

hyper parameters. We hope that this can be improved more, thus the autoencoder encoded feature space 

representation will behave likely like singular value decomposition in terms of its own feature space 

being uncorrelated and compact. 
We tried this scenario in GPU vs CPU tests, which will be discussed more in detail below. 

5. Experimental tests of GPU vs CPU-based solutions vs CPU-based solutions  
5.1. Dataset and test system 

We decided to study two different scenarios where the GPUs are will be used – facial expressions 

dataset FER-2013 [30] and our dataset containing processed facial expression (landmarks) [12]. Both 

datasets represent two different tasks – feature detection on input images and feature dimensionality 

reduction. The neural networks structures were studied are – deep convolution network (image 

processing) [31] and constrained linear autoencoder (feature-space dimensionality reduction). 
Our test system consists of Windows desktop PC with AMD Ryzen 5 3600X desktop CPU [32] and 

AMD Radeon RX 6500 XT desktop GPU [33].  

All our test scripts were tested within Python 3 (Anaconda) environment with pre-installed 

tensorflow-directml [34] (TensorFlow version 1.15.5) machine learning library, which is fully 

compatible with our test system. 

5.2. Autencoder training using pre-processed facial expressions dataset 

GPUs mostly because of their possibility to accelerate AI tasks are known to be good at performing 

multiple similar task in parallel because of utilization computing, tensor or shader cores. Thus, there is 

a misconception that the GPUs are always good at performing general machine learning tasks, if 

comparing them to CPUs.  

According to our assumptions, this can’t be always true and GPUs should perform better in long 

memory-consuming tasks that allow storing all intermediate data within GPU memory (video RAM). 

In order to verify our hypotheses, we ran a task of learning a relatively simple architecture – an 

autoencoder (AE) on our dataset (refer to chapter 4.5 for more details). Every test had to increase the 

computation cost (involving more operations) and, hence, time of computation. It would give us 

estimation where CPU can compete against GPU in computation and where GPU gets better in terms 

of performance (Table 2). 

The Table 2 represents the change in complexity of tasks. The less complicated task is to calculate 

weights of an autoencoder without any constraints.  

Thus, it affects overall number of iterations and time to perform such a task; the end rows in the 

table contain the task, with respect to constraints of orthogonality, linear independence etc., so number 

of iterations is highly affected. 
According to our tests, we see, that performance issue lies within both complexity of task (e.g. doing 

one or more operation N times) and number of iterations.  

It becomes clear that some time is lost because of PCI Express bandwidth - because the CPU has to 

transfer the processed data to GPU memory and then perform certain task. Just because the PCI Express 

to 4 lanes [33], the task may have performed longer due to time needed to read data from system RAM 

to video RAM. 

 



Table 2 
Performance ratio of autoencoder training in different tasks 

Task name CPU task 
time, sec 

GPU task 
time, sec 

 

Performance ratio 

Unconstrained AE, small 
number of iterations 0,46 0,61 0,754098 

Slightly constrained AE, 
small number of iterations 2,19 6,97 0,314204 

Slightly constrained AE, 
moderate number of 
iterations 27,55 7,36 3,743207 

Moderate constrained AE, 
moderate number of 
iterations 32,98 7,68 4,294271 

Highly constrained AE, 
high number of iterations 41,11 7,85 5,236943 

 

5.3. Experiments on facial expressions image processing 

Since our previous test was carried out on a relatively small dataset, and it had small footprint in 

terms of number of layers, number of hidden parameters, we decided to study the algorithms on a bigger 

dataset, which was in our case FER-2013 human emotions' dataset. Main outcome of this test is to 

verify our hypotheses, which is actually to estimate a performance of a certain computing unit using a 

certain relative performance, provided online on sites related to computer benchmarking. 
According to this, we conducted a series of tests that included usage both of CPU and GPU on our 

test system. This can help us to estimate the computation bottlenecks and also performance ratio. 

According to preliminary test, we have got a view how the data affects the performance; the dataset and 

weights of a neural network has to be transferred in GPU (see Fig. 4). 
 

 
a      b 

Figure 4: Performance of deep convolution network training on a CPU device (a) and GPU device (b) 
 

According to the test, the overall time that is needed to transfer the 1.2 GB of data from disk and 

RAM to video memory is approximately 80 seconds, that is 4 times more than a performance on a 

second epoch (Fig. 4, b); in worst-case scenario GPU/CPU performance ratio is 4.5 to 1 and best-case 

is slightly less than 20 to 1 (if the number of iterations is more than 100).  
In order to estimate overall time needed to achieve desired performance, we ran a test, which shows 

us mean–square error (MSE) and accuracy on a test dataset (Fig. 5). 

Epoch 1/15 
448/448 [==============================] - 449s 1s/step - loss: 1.7944 - acc: 0.3116 
Epoch 2/15 
448/448 [==============================] - 447s 998ms/step - loss: 1.4812 - acc: 0.4364 

Epoch 1/15 
448/448 [==============================] - 107s 238ms/step - loss: 1.7978 - acc: 0.3112 
Epoch 2/15 
448/448 [==============================] - 22s 49ms/step - loss: 1.4888 - acc: 0.4260 

 



 
Figure 5: Mean-square error (left axis) and accuracy (right axis) plot on 50 iterations (bottom axis) 

 

According to Fig. 5 it becomes very clear that achieving high (>75%) values of accuracy needs much 

more iterations and thus, computation time. For instance, time needed to perform 50 iterations for a 

given computation system, dataset and neural network architecture on a CPU lays behind 6 hours, in 

contrary the overall time needed to perform the exact same task on GPU is 20 minutes. The performance 

ratio for such number of iterations for a specific computation system is 18.9 to 1. 

6. Discussion  

Let’s discuss the main outcomes and general thoughts about our experimental tests. 
Foremost, we need to discuss the necessity of powerful computation devices. In modern world which 

nowadays has severe problems in production of electronic devices due to transportation issues, big 

demand and recent pandemic each research in AI faces the question “what is the price of a certain 

computation task”. And this task, besides the price of human time and electricity, is affected by the 

price of a certain electronic device. Thus, one can ask “how I can overcome this difficulty” and the 

answer is – to model certain big problem in smaller scope. For instance, training a certain natural 

language processing algorithm can be done on a smaller dataset that involves small computation costs. 

In one of our experiments, shared in paragraph 4.2 of this article, certainly visible that general purpose 

machine learning task (not involving neural networks training) and even computer vision can be done 

even on outdated CPU devices like AMD Athlon X2. In contrary, in further parts of this article 

(paragraph 4.4 and 5.2) it is visible that tasks involving deep learning have a great need of GPU 

accelerators since time of computation on CPUs on a certain task is out of range. 
On the other hand, one may ask another question, “do we really need that high computation power?” 

According to our research, the computation cost can be estimated given desired performance, baseline 

performance and known performance metrics on a specific task. In earlier chapters of this article, we 

raised a question – “what a computation device is needed to detect landmarks on images of a human 

face?”. We estimated baseline performance of our system using AMD Ryzen 5 3600X (without the 

GPU) on this task using Dlib library to detect the landmarks is around 3 frames per second on 720p 

video. Using the rule of thumb, we can project the estimated performance (60 fps) on a specific device 

– for instance, Nvidia GeForce 1660Ti and then compare the estimation with our results. According to 

our tests on convolution neural networks, we can estimate the performance on this task given our GPU 

device – AMD Radeon RX 6500 XT – and compare it to one we can estimate via benchmarks (Fig. 6). 
According to our calculations, if the estimated performance ratio is 18.9 (performance ratio against 

AMD Ryzen 5 3600 X) multiplied by 2812 (theoretical performance of AMD Ryzen 5 3600 X against 

Intel i3-8100U) it gives us performance benchmark value of 53156, which is slightly less than estimated 

53342 (by 0.35%) that is a good result. This proves that this type of performance estimation can be used 

to infer performance on an unknown task based on known task performance. 



 

 
 

Figure 6: OpenCL benchmarks of various mid-end GPU devices. Data courtesy of geekbench.com site 
 

However, our performance estimations, according to other tests, in less complicated tasks may not 

always be true (Table 2). The outcome of abundant computation power isn’t always useful when 

studying “toy” datasets like MNIST since most of the computation certainly can be done on a CPU.  

It means that cost of computation involves only price of CPU and a computation system; however, 

if taking in account the price of a specific CPU and GPU in price of computations done on this system, 

it means that actually on simple tasks, price of computation per certain amount of time can be actually 

twice as higher than of a baseline system if taking in account the manufacturer's suggested retail price 

(MSRP) from [33], [34].  

In contrary, in opposite case, where the computation power is of high importance (for instance image 

classification or landmark detection), the actual price of a system is overshadowed by a human time 

needed to wait the results to perform next tasks such as making assumptions and reasoning about the 

data, reprogramming the architecture due performance issues or changing the data due to lack of 

consistency of results or confidence about them due to low performance.  

The high-performance solutions may be useful if one have to make these solutions often or to process 

big amounts of data on certain computer system. 
Other significant outcome of our experiments is performance issues. Actually, it means that not 

every task can be done on a given computation system, even having enough computation power. In our 

case, it means that the computation system is restricted to a video RAM size and PCIe bandwidth.  
When we studied convolution networks (paragraph 5.3), our test system already involved 1.2 GB of 

video memory, and we saw that each GB restricts the performance drastically.  

One may assume that at the moment where the overall volume of data exceeds the size of a video 

RAM, here become another issues – using a shared memory. Since the memory speed of system RAM 

(DDR4) and video RAM (GDDR6) differ significantly, the computation of such task may become too 

expensive in terms of time.  

So the solution of this task can be done in literally two ways – either using GPU with higher amount 

of video RAM or scaling down the task that helps to solve it without exceeding the memory restrictions. 

The same can be said about the datasets themselves.  

Using data augmentation and data slicing one can get smaller dataset which is quite viable and 

plausible solution to solve this task. 
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7. Conclusions and future work  

We discussed two approaches in facial emotion recognition which involves computer vision 

algorithms and convolution neural networks, in particular how the type of computation unit affects the 

performance on certain computer vision and machine learning task. The study involves open data on 

performance rate of a certain computation device using OpenCL and CUDA libraries on standard 

benchmarks from Geekbench.com website. According to our tests in two machine learning tasks – 

training a restricted autoencoder on facial expressions temporal data and training a convolution neural 

network on facial expression image dataset (FER-2013) we have got a performance ratio that agree with 

our previous estimates with around 0.35% deviation of performance rate. Using the same data, we 

investigated bottlenecks in GPU machine learning, which are influenced by hardware and size of a 

dataset. In further research, we plan to study other types of deep learning methods such as recurrent 

neural networks and study them on real data. 
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