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Abstract

The problem of training ADALINA in the presence of non-Gaussian interference is
considered. The learning algorithm is a gradient procedure for maximizing the functional. In
contrast to the commonly used Gaussian kernels, the centers of which are at zero and
effective for distributions with zero mean, the paper considers a modification of the criterion
suitable for distributions with nonzero mean. The modification is to use correntropy with a
variable center. The use of Gaussian kernels with a variable center will allow us to estimate
unknown parameters under Gaussian and non-Gaussian noises with zero and non-zero mean
distributions. The properties of its convergence in the stationary and non-stationary cases in
conditions of Gaussian and non-Gaussian noises are investigated.
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1. Introduction

Adaptive linear element (ADALINE) was the first linear neural network proposed by Widrow B.
and Hoff M., and became an alternative to the perceptron [1]. Subsequently, this element and its
learning algorithm are being very commonly used in problems of identification, control, filtering, etc.
The learning algorithm of Widrow-Hoff is the Kaczmarz algorithm for solving systems of linear
algebraic equations [2]. Properties of this algorithm dealt with the solution of the identification
problem is sufficiently described in [3].

2. The problem of ADALINE training

ADALINE is described by the equation
*T
Yni1 =€ Xny1+Snsts (1)
wherey, , is the observed output signal; x,.; = (X n.1, X2 ne1-Xnns1)' 1S the vector of output

signals Nx1; c*=(cf,c5,.cy)" is the vector of desired parameters Nx1; &, is the noise; n is the
discrete time.

The task of its learning consists in the definition (estimation) of the vector of parameters ¢* and is
reduced to minimize some of the chosen in advance performance functional (identification criterion)

F[en]=%p(ei), (2)
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where e =y; —§;; 9 =clyx i the output model signal; ¢ is the vector estimation c¢*; p(ej) —
some differential loss function satisfying the conditions:

plei)=0; p(0)=0; plej)=pl(-ei); ple;)= P(ej) for |ei|2|ej|-
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Figure 1: ADALINE

The training objective is to search for estimate ¢ defined as the solution of a minimum extreme
problem

F(c)=min, (3)
or as solving equation system
oF(e) < 8.

ple)=-=0, (4)
6cj E_ ! 6CJ
where p'(g; )):% — is the function of influence.

! de
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If we introduce the weigh function w(e)=p'(e)/e, the system of equations (4) may be put as
following:
n 8ei
e —L =0,
Ew(el )el oc; (5)
while functional minimization (2) will be equivalent to minimizing a weighted quadratic
functional, most often seen in practice

miniw(ei ?. (6)
i1

A quadratic functional the most widely used in estimating the parameters uses the second order
statistics of the error signal and is quite optimal in assuming linearity and Gauss nature of signals.

Indeed, when choosing p(ej)=0.5¢? the influence function p'(e;)=¢;, i.e. grows linearly with the
increase of e, that explains the volatility of the least squares method valuation to outliers and
distortions with big distribution “tails”.

Stable M-estimation is also estimation c, defined as solving an extremal problem (3) or solving a
system of equations (4), however loss function p(e;) is chosen as different from the quadratic one.

There are quite a number of functionals that provide the robust M-estimates but the most common
are combined functionals proposed by Huber [4] and Hampel [5] consisting of quadratic, that ensures
optimal estimates for the Gaussian distribution, and modular, that allows to get an estimate that is
more robust to distributions with heavy "tails" (outliers). Howewer, the effectiveness of the resulting
robust estimations depends significantly on many parameters used in these criteria and chosen
depending on the experience of the researcher.

The practical application of these functionals for solving the identification problem was considered
in many works, in [6, 7], in particular.

Another approach to obtain robust estimates, devoid of this drawback, is the use of the fourth
degree criterion [8], combined criteria using a combination of the quadratic criterion and the criterion
of smallest moduli [9-11], the quadratic criterion and the fourth degree criterion [12], the fourth



degree criterion and the criterion of smallest moduli [13]. It should be noted that the use of the
combined criterion turned out to be very effective and much simpler when implementing the
identification procedure.

One more approach that is currently widely used is the approach based on information
characteristics of signals, entropy, in particular. The functional used in this case is an explicit
functional of the probability density function (PDF) and includes all the higher-order statistical
properties defined in PDF. Since entropy measures the mean uncertainty contained in a given PDF,
minimizing it provides a reduction in error. In [14, 15], the concept of information theoretic learning
(ITL) was introduced, using as a criterion the Rényi quadratic entropy, for which a nonparametric
estimate based on Parzen windows with Gauss kernels is determined directly from data samples. In
these works, it was proved that when using the Rényi entropy, as a result of training, the Rényi
distance between the conditional probability of the density function of the desired and actual output
signals for the given input signals is minimized.

The results of numerous studies indicate that in the presence of non-Gaussian, in particular,
impulse noise, in measurements, an approach based on information characteristics of signals is very
effective, while a criterion that considers all statistics of a higher-order error signal turns out to be
more appropriate. Correntropy was introduced in [16] as a generalized measure of similarity, the
maximization of which underlies the development of sufficiently simple and efficient robust
algorithms.

3. Correntropy as a measure of similarity

Correntropy, defined as a localized measure of similarity, has proven to be very efficient for
obtaining robust estimates due to its less sensitivity to outliers. Its name emphasizes the relationship
with correlation, and also indicates the fact that its average value over time or measurements is
associated with entropy, more precisely, with the argument of the logarithm in the quadratic Rényi
entropy, estimated with the help of Parzen windows [17].

For two random variables X and Y, the correntropy is defined as

V(X,Y) =Mk, (X,Y)}, (7)
where M{e} — is the expectation symbol; k_ (s) — rotation invariant Mercer kernels; o — kernel
width.

The most widely used in calculating the correntropy are Gaussian ones, defined by the formula

k Y) = - . 8
»(X,Y) — exp{ 52 (8)

When calculating the correntropy, it is necessary to know the joint distribution of random variables
X and Y, which, as a rule, is not known. Since in practice there are usually a finite number of samples
{xi Yi },i =1.2,..,N, the most simple estimate of the correntopy is calculated as follows:

1 N
WZka(xi =Yi)- (9)
i-1

In tasks of identification, filtering, etc. as a functional, the correntropy between the required output
signal d; and the model output signal (real) y; is used. When using Gaussian kernels, the optimized
functional takes the form

V(X,Y)=

11 ) e?
Jeorr (N) =——— expl ——- |, (10)
where ¢, = d; —y; — is the identification (filtration) error.

The use of the Taylor series expansion for the Gaussian kernel makes it possible to write the

correntropy as follows:

1 & (-1 2n
V(X,Y)= MX =Y 11
( ) 2o nzzi)Zno‘znn! {l " } 1)



4. Correntropy maximization algorithms

The gradient optimization algorithm (10) at N =1 will have the form [18, 19]

2
e
Wni1 = Wp + VeXp[_ 2n+§ Jenxnﬂx (12)

g

where yis the parameter affecting the rate of convergence.
A significant drawback of this algorithm is the low convergence rate, which significantly limits the
possibility of its use in identifying nonstationary objects. It should be noted that finding the optimal
value of the parameter ,, that provides the maximum convergence rate of the algorithm, equal, as it is
easy to show,
-1

ntl = (Wn+1"xn+1"2J (13)

2
where y,,q = exp[— Zr”zl} leads to an analogue of Kaczmarz algorithm (Widrow—Hoff’s).

g

In [20-23], to reduce impulse noise, a recurrent weighted least squares (RWLS) method was
proposed, which minimizes the criterion

ez 1
Vnen = oxp| — 2L (14)
20
and having the form
Yn+1PnX T
Chyr=Cn+ ek -|r—1 nel (Yni1—Cn Xn41), (15)
A+¥ni1XnaPaXnig
= P Xn 1 Xmeg P,
P=A 1(Pn _ ¥n+1hn n_ljrl n+1n } (16)
A+ ¥ni1Xni1PaXnga

where 0<A<1 is the weighing factor.
Thus, when deriving the formula for calculating p,,, (16), the approximation was used

Pri1 = 4Py + ‘//n+1xn+1xl+1- (17)
As known, introducing a parameter A into an algorithm is advisable when identifying
nonstationary parameters.
Since a function G (e) is a local function of error e, correntropy can be used as an indicator of

error in information processing and machine learning problems

! exp[— ¢’ ] (18)
2o 202 )

It can be seen from (18) that the center of the Gaussian nucleus is at zero. This circumstance can
lead to the fact that if the distribution of errors (noise) has a nonzero mean, function (18) will not
correspond to this distribution. Therefore, the problem arises of choosing such a correntropy function
that would be effective for noises having a nonzero mean.

One of the approaches to solving this problem is the use of correntropy with a variable center [24-

26]

G, (e) =

2
Voo (T.Y) = M{Gy o () [Go (X, y) = \/%a exp{— e} J (19)

202
where c e R is the center.
In this case

0 n 2n
VU,CU’Y):\/%O_Z(_:L) M[(e_gz ] (20)

n—o 2"n! o



When o increasing, the moments of higher orders relative to the center will decrease faster,
therefore, the moment of the second order will prevail in the value Vv, (T,Y). In particular, for

c=M{e} and & — «, maximizing the correntropy whih the center ¢ is equivalent to minimizing the
error variance.

In [27], it was proposed complex correntropy with variable center, in [28] was introduced
generalized correntropy criterion. In [29] was considered maximum mixture correntropy criterion.

The solution of practical problems based on the minimization of the corresponding criteria was
considered in [30-33].

Sparsity Constrained Recursive Generalized maximum correntropy criterion (MCC ) with variable
center algorithm was studied in [34]. Work [35], is interested in distributed MCC algorithms, based
on a divide-and-conquer strategy.

Minimizing functional (19) with respect to the parameters of the model, we obtain

OEnu1 — _exp (en+1 - C)2 (en+1 - C)
ow

2 2 Xn+1; (21)
o

Enu — wexp{— (en+1 _C)Z ] (en+1 — C)
oc

- —, (22)

OEny _ (ens1—¢)* | (enea —¢)
—n; — _Wexp{_ N+ > n+ 3 . (23)

oo 20 o

Taking these expressions into account, the algorithms for correcting the network parameters will
have the form

2
e —C
Wnt1 = Wn + 7w €XP _M (€ns1 —Cnsa nat, (24)
2001

(Bns1 - Cn+1)2 '

Cnpt =Cn+7ceXp| —————— (€ns1—Cn ) (25)
On+1
2 2

e —-C € —C
J§+l = (;g — Yo Wit EXp{—( n+12 2n+1) J( n+1 3r1+1) , (26)

On On

where y,,, 7., 7, are the parameters of the algorithm that regulate the step size and affect the rate
of its convergence.

4.1. Multidimensional object

If the object under study has several outputs, then the output signal will be a vector signal and the
error will also be a vector value, and the learning algorithm will have the form

Wni1 =Wh +7 EXp(_ ||en+1 - C”irl )en+1xn+1v (27)
where [y, —¢|3-1 = (ena1 —¢)' R™M(enss —c) R is the covariance matrix of the input vector

Rt =Rt = 7RWni1 exp(— lensa - Cn+1||2Rr;1 )(en+l 1 NEns1 —Crst) - (28)

4.2. Investigation of the issues of convergence of the algorithm.

Consider the estimation error

Oni1=Cny1 — ¢ (29)
Then

T a
€ns1 = OniaXni1 +Sns1 = €ny1 + Snats (30)
where e?,; = 0., is a priori error.



In this case, the estimation algorithm can be written as
Wni1 =Wy + A (€n11) Xnsts (31)

20
Writing down algorithm (31) with respect to estimation errors, we have
Oni1 =0 =/ (Bni1)Xnia-

Multiplying both sides of the given expression on the left by 9n+1, we get

Ry
where f(ey,q) = exp[wj(em -c)

||‘9n+1" = ||9n|| — 2 (ensa)epig + 72 (en+1)||xn+1"2- (32)
Averaging both sides of (32), i.e.
M el =M {2 - 2 e e 7M1 en sl (33
we obtain the condition for the convergence of algorithm (31) in the mean square
O<y< ZMZ{f (en+l)er611+1}2 .
M {f (en+1)||xn+1” }
Consider a steady state. Since in steady state
tim W gy tim w7}
it follows from (33) that
20imM .  (,0) | AR, lim M{2(eq.)] (34)

n—oo
where tr denotes the trace operator.

To calculate the steady-state value of the estimation error, we define M{fz(en 1)[Xn +l||2} and

M2 ()}
Consider the case of Gaussian noise &~ N (0,05). Using Price's theorem [36], we obtain

tim R (o)} im MR (e, tim {2 (e} -

B e ) e e

2
* exp(_ deem—lv

20

where o2 =M {(eﬁ +1)2 +a§}; S=limM {(aﬁ +1)2}; ¢, is the center of gaussian error e, .
n—oo

Similarly, we define

M {f 2(en+1)}: n“j!o M {eXp[_%](enﬂ - C)Z} =

A\ A\
\/50' n“_T,o _[ exp[ %](erwl_c)z exp[_MJdem—l'
€ -

Substitution of (35) and (36) into (34) gives the expression for the steady-state error

IimwM {(eﬁ+1)2}

n—

(36)

lim M{(eﬁ‘ﬂ)z}:i, (37)

n—oo 2B



where

+00 2 2
A=, i jp[(z—)J(m{M]d
w o

204
e (en+1_c)2 (en+1_c)2 (en+1_ce)2 .
B_nll_r)rgo_{oexp{— o2 1- i 257 dena
or
tim s |
+00 2 2
ARy lim | eXp[—(e'”zla —2c) j(enu—c)2 exp[—(er”zl —ZCe) Jdem—l (38)
— 00*00 e
im Toxgl - a0 |- Cra=cP | _Cna-cef |y
nll_rﬂo_{(jexp[— > 1- o = den.g

n—o
Consider the case of non-Gaussian interference. In this case, we use the Taylor series expansion. In
the steady state, the estimated parameters change (are corrected) insignificantly. Therefore, we can
rewrite (34) as follows:

This expression shows that lim M {(e2+1)2} =0 when choosing y — 0.

M (e)j= R, M {F2(6)} (39)
We expand the function f(e) in a Taylor series, limiting ourselves to terms of the second order of
smallness

fe)=f (ea +&)="f(&)+ f’(g‘)ea +0.5f ”(‘f)(ea )2 +0((ea )Zj (40)
where
f’(§):exp _(g_c)z 1- (5_0)2 : (41)
252 o2
f”(§)=exp _(g_C)Z (5_0)3 _3(5_(:) i (42)
202 o o2

Assuming that the interference does not correlate with the signals and the prior error e?, we can
write

M {eaf (e)}: M {ea f(&)+ f’(§)(ea)2 +o(ea)2} ~ SM{f'(&)}; (43)
M {f Z(e)}z M {f 2(5)}+ SM {f (&) F"(€) +]|f '(§)|2} (44)

Substituting (43) and (44) into (40), we have
. ARM 2 -0 )

2M (£ —0)}- ARM {f (£ -0) T"(E—0) +|f (e —0)f |

Substitution of (41), (42) into (45) gives
s_ AR M K (2]

2M {K'[l— (5;5)2]} — R M {K[M 2(‘5(;10)4 . 5(50—20)2 J} | (46)




where

K= exp[—@]; K'= exp[— @]

o 20

4.3. Non-stationary case

Let us assume that the estimated parameters are non-stationary, i.e.
Chg=Ch+Ac, (47)
where Ac” = (Ac], Ac,..., Acy )T is a vector of a random sequence N x1 whose components have
zero mathematical expectation, the correlation matrix of which is equal to R, =M {c*c*T}

Consider the error vector 6,4 = ¢, —Cng.
Then, taking into account (30), the estimation algorithm can be written as

On41= 0 = Cnas + 7 (Bns1)Xns1 = O = AC™ + f (Bn1) X (48)
Multiplying both sides of (48) on the left by 4., and calculating the mathematical expectation, we
get

N B A e VR R T OO T VRLETC o
+M {“AC* 2} +M {XI+1AC*}+ M {AC*T xn+1}— 2M {xLlAc* f (en+1)},
Taking into account the statistical properties of signals and noise, we have

M {n }= M {|9n||2 Fomkaf s 72 2 pn }+ M {HAc*
For Gaussian interference, using Price's theorem gives

i MR e fim MR f @ )= im {2 1) -

. i1 —C) eny —C)F
ol ).

+00 2 A2 _ 2 3
__ lim jexp(— (Ensn _20) J[l—(er”lzc) ]exp{_MJdeM:L.
2

- 2 3’
ﬂae n—o ° 20 o 20¢ (0' +0'§+SF

2
} (49)

2
M {t2(en,0))= lim M {GXP{—M]@H —c)z} =

20
(51)
B \/EO' f'lILr:!O J. exp(_%}(en‘ﬂ_c)z exp[_%}denﬂ_ = ( é:) E .
e —0 e (20§+62+28)2

Considering that
M {HAC* 2} =M {AC*AC*T }: trR.,

for steady state when lim M i|9n+1"2}: lim M{|0n||2}
nN—oo n—o0

from expression (49) we obtain
25 AR o?+s) LR,
3~ 3 3"
(02 +0'§ + SF (02 + 20§ +28F e
From this ratio, we can determine the value S

(52)



_ ﬂrRX(GE +SX62 +0§ +Sﬁ JrtI’RC((fz +o-§ +sﬁ

¢ (53)

S

(0'2+20'§+28§ e

For &2 — o, we have the value of S for the least squares
rRyo? + 7 1R
lim 5 = 22 *7 TR

o—>® Z—ﬂrRX
In the case of non-Gaussian noise, we have

M {er?+1f (en+1)}z M {er?+lf (§n+1)+eg+1f I(égn+1)}z SM {f '(‘fn+l)}' (54)
RO A (I MCMITERC AR

{12, st () )+ (G )P

(55)
where

F'(Enaa) = exp{— (52;2)2 ][1— i }

o

o §:+1 o
Substituting (54) and (55) into (49), after simple transformations we obtain

-1
s_A+r B (56)

C-/D

_ )2 3
F(Enuy) = eXp[_ (fn; ZC) I a3 ]

where

A=tRy M{(‘tﬂnﬂ - C)2 eXp{_MJ};

(¢

B=1trR;

o 2M{[1_M}Xp[_ (‘:n+12_C)2 J}
2c o

D= trRXM{(]A_ 2(§n+14_ 0)4 B 5(§n+12— C)Z Jexp[_ (Ena 2— C)2 ]}

() (&) ()

This expression shows that S is a monotonically non-increasing function of the parameter , .
From the condition 6S/0y =0, an equation can be obtained to determine the optimal value of the

parameter » that provides the minimum value S
ACy? + BDy - BC =0.

5. Numerical experiments

The problem of ADALINE parameters adjustment was considered. Sequences of normally
distributed quantities x(k)~ ~ (0;1) were chosen as the input signal x(k). When testing the robustness

of the algorithms, an independent noise distributed according to the Rayleigh law with ¢ =1 was



added to the output signal of the object. The histogram of such noise is shown in fig. 2. The
simulation results for various values of the parameter are shown in fig. 3. In fig. 4 shows the graphs of
changes in the error when choosing the RWLS algorithm (15)-(16) and algorithm (31) respectively,

here
1 *[2
RMSE = Ecn—c“ ,

where ¢, and ¢” denote estimated and target parameters vectors respectively.
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6. Conclusion

The work considered an adaptive robust learning algorithm for ADALINE when using the
information criterion of correntropy with variable center as a learning criterion.

The properties of its convergence in the stationary and non-stationary cases in conditions
of non-Gaussian noises are investigated.

The importance of choosing the width of the Gaussian kernel, which affects the rate of
convergence of estimation algorithms and the error in the steady state, is noted, and the expediency of
developing procedures for adaptive correction of the kernel width is indicated.

The estimates obtained are quite general and depend both on the degree of nonstationarity
of the object and on the statistical characteristics of useful signals and interference.
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