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Abstract  
The problem of training ADALINA in the presence of non-Gaussian interference is 
considered. The learning algorithm is a gradient procedure for maximizing the functional. In 
contrast to the commonly used Gaussian kernels, the centers of which are at zero and 
effective for distributions with zero mean, the paper considers a modification of the criterion 
suitable for distributions with nonzero mean. The modification is to use correntropy with a 
variable center. The use of Gaussian kernels with a variable center will allow us to estimate 
unknown parameters under Gaussian and non-Gaussian noises with zero and non-zero mean 
distributions. The properties of its convergence in the stationary and non-stationary cases in 
conditions of Gaussian and non-Gaussian noises are investigated.  
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1. Introduction 

Adaptive linear element (ADALINE) was the first linear neural network proposed by Widrow B. 
and Hoff M., and became an alternative to the perceptron [1]. Subsequently, this element and its 
learning algorithm are being very commonly used in problems of identification, control, filtering, etc. 
The learning algorithm of Widrow-Hoff is the Kaczmarz algorithm for solving systems of linear 
algebraic equations [2]. Properties of this algorithm dealt with the solution of the identification 
problem is sufficiently described in [3]. 

2. The problem of ADALINE training 

ADALINE is described by the equation 
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where 1+ny  is the observed output signal; T
nNnnn xxxx ),..,( 1,1,21,11 ++++ =  is the vector of output 

signals 1×N ; T
Ncccc ),..,( 21
∗∗∗∗ =  is the vector of desired parameters 1×N ; 1+nξ  is the noise; n  is the 

discrete time. 
The task of its learning consists in the definition (estimation) of the vector of parameters ∗c  and is 

reduced to minimize some of the chosen in advance performance functional (identification criterion) 
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where ;ˆiii yye −=  i
T
ii xcy 1ˆ −=  is the output model signal; c is the vector estimation ∗c ; ( )ieρ  – 

some differential loss function satisfying the conditions: 
( ) ;eρ i 0≥ ( ) ;ρ 00 = ( ) ( );eρeρ ii −= ( ) ( ) .eefor   eρeρ jiji ≥≥  

 
Figure 1: ADALINE 

 
The training objective is to search for estimate c defined as the solution of a minimum extreme 

problem 
( ) min=cF , (3) 

or as solving equation system 

( ) ,
c
eeρ

c
)e(F n

i j

i
i

j
0

1
=

∂
∂′=

∂
∂ ∑

=
 (4) 

where ( ) ( )
i

i
i e

eρ
)eρ

∂
∂
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If we introduce the weigh function ( ) eeρeω /)(′= , the system of equations (4) may be put as 
following: 
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while functional minimization (2) will be equivalent to minimizing a weighted quadratic 
functional, most often seen in practice 
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A quadratic functional the most widely used in estimating the parameters uses the second order 
statistics of the error signal and is quite optimal in assuming linearity and Gauss nature of signals. 
Indeed, when choosing ( ) 25.0 ii eeρ =  the influence function ( ) ii eeρ =′ , i.e. grows linearly with the 
increase of ie , that explains the volatility of the least squares method valuation to outliers and 
distortions with big distribution “tails”.  

Stable M-estimation is also estimation c , defined as solving an extremal problem (3) or solving a 
system of equations (4), however loss function ( )ieρ  is chosen as different from the quadratic one. 

There are quite a number of functionals that provide the robust M-estimates but the most common 
are combined functionals proposed by Huber [4] and Hampel [5] consisting of quadratic, that ensures 
optimal estimates for the Gaussian distribution, and modular, that allows to get an estimate that is 
more robust to distributions with heavy "tails" (outliers). However, the effectiveness of the resulting 
robust estimations depends significantly on many parameters used in these criteria and chosen 
depending on the experience of the researcher. 

The practical application of these functionals for solving the identification problem was considered 
in many works, in [6, 7], in particular. 

Another approach to obtain robust estimates, devoid of this drawback, is the use of the fourth 
degree criterion [8], combined criteria using a combination of the quadratic criterion and the criterion 
of smallest moduli [9–11], the quadratic criterion and the fourth degree criterion [12], the fourth 



degree criterion and the criterion of smallest moduli [13]. It should be noted that the use of the 
combined criterion turned out to be very effective and much simpler when implementing the 
identification procedure. 

One more approach that is currently widely used is the approach based on information 
characteristics of signals, entropy, in particular. The functional used in this case is an explicit 
functional of the probability density function (PDF) and includes all the higher-order statistical 
properties defined in PDF. Since entropy measures the mean uncertainty contained in a given PDF, 
minimizing it provides a reduction in error. In [14, 15], the concept of information theoretic learning 
(ITL) was introduced, using as a criterion the Rényi quadratic entropy, for which a nonparametric 
estimate based on Parzen windows with Gauss kernels is determined directly from data samples. In 
these works, it was proved that when using the Rényi entropy, as a result of training, the Rényi 
distance between the conditional probability of the density function of the desired and actual output 
signals for the given input signals is minimized.  

The results of numerous studies indicate that in the presence of non-Gaussian, in particular, 
impulse noise, in measurements, an approach based on information characteristics of signals is very 
effective, while a criterion that considers all statistics of a higher-order error signal turns out to be 
more appropriate. Correntropy was introduced in [16] as a generalized measure of similarity, the 
maximization of which underlies the development of sufficiently simple and efficient robust 
algorithms. 

 

3. Correntropy as a measure of similarity 

Correntropy, defined as a localized measure of similarity, has proven to be very efficient for 
obtaining robust estimates due to its less sensitivity to outliers. Its name emphasizes the relationship 
with correlation, and also indicates the fact that its average value over time or measurements is 
associated with entropy, more precisely, with the argument of the logarithm in the quadratic Rényi 
entropy, estimated with the help of Parzen windows [17]. 

For two random variables X and Y, the correntropy is defined as 
{ },),(),( YXkMYXV σ=  (7) 

where }{•M  – is the expectation symbol; )(•σk  – rotation invariant Mercer kernels; σ  – kernel 
width. 

The most widely used in calculating the correntropy are Gaussian ones, defined by the formula 
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When calculating the correntropy, it is necessary to know the joint distribution of random variables 
X and Y, which, as a rule, is not known. Since in practice there are usually a finite number of samples 
{ } Niyx ii ,...,2,1,, = , the most simple estimate of the correntopy is calculated as follows: 
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In tasks of identification, filtering, etc. as a functional, the correntropy between the required output 
signal id  and the model output signal (real) iy  is used. When using Gaussian kernels, the optimized 
functional takes the form 
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where iii yde −=  – is the identification (filtration) error. 
The use of the Taylor series expansion for the Gaussian kernel makes it possible to write the 

correntropy as follows: 
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4. Correntropy maximization algorithms 

The gradient optimization algorithm (10) at 1=N  will have the form [18, 19] 
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where γ is the parameter affecting the rate of convergence.  
A significant drawback of this algorithm is the low convergence rate, which significantly limits the 

possibility of its use in identifying nonstationary objects. It should be noted that finding the optimal 
value of the parameter γ , that provides the maximum convergence rate of the algorithm, equal, as it is 
easy to show, 
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n  leads to an analogue of Kaczmarz algorithm (Widrow–Hoff’s). 

In [20–23], to reduce impulse noise, a recurrent weighted least squares (RWLS) method was 
proposed, which minimizes the criterion  
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and having the form 
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where 10 <≤ λ  is the weighing factor. 
Thus, when deriving the formula for calculating 1nP +  (16), the approximation was used  
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As known, introducing a parameter λ into an algorithm is advisable when identifying 
nonstationary parameters. 

Since a function )(eGσ  is a local function of error e , correntropy can be used as an indicator of 
error in information processing and machine learning problems 

2

2
1( ) exp .

2 2
eG eσ πσ σ

 
= −  

 
 (18) 

 It can be seen from (18) that the center of the Gaussian nucleus is at zero. This circumstance can 
lead to the fact that if the distribution of errors (noise) has a nonzero mean, function (18) will not 
correspond to this distribution. Therefore, the problem arises of choosing such a correntropy function 
that would be effective for noises having a nonzero mean.  

One of the approaches to solving this problem is the use of correntropy with a variable center [24-
26] 
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where Rc∈  is the center. 
In this case 
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When σ  increasing, the moments of higher orders relative to the center will decrease faster, 
therefore, the moment of the second order will prevail in the value ),(, YTV cσ . In particular, for 

{ }eMc =  and ∞→σ , maximizing the correntropy whih the center c  is equivalent to minimizing the 
error variance.  

In [27], it was proposed сomplex сorrentropy with variable center, in [28] was introduced 
generalized correntropy criterion. In [29] was considered maximum mixture correntropy criterion. 

The solution of practical problems based on the minimization of the corresponding criteria was 
considered in [30–33]. 

Sparsity Constrained Recursive Generalized maximum correntropy criterion (MCC ) with variable 
center algorithm was studied in [34]. Work [35], is interested in distributed MCC algorithms, based 
on a divide-and-conquer strategy. 

Minimizing functional (19) with respect to the parameters of the model, we obtain 
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Taking these expressions into account, the algorithms for correcting the network parameters will 
have the form 
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where wγ , cγ , σγ  are the parameters of the algorithm that regulate the step size and affect the rate 
of its convergence. 

4.1. Multidimensional object  

If the object under study has several outputs, then the output signal will be a vector signal and the 
error will also be a vector value, and the learning algorithm will have the form  

,exp 11
2

11 1 ++++ 




 −−+= − nnRnnn xeceww γ  (27) 

where ( ) ( );1
1

1
2

1 1 ceRcece n
T

nRn −−=− +
−

++ −  1−R  is the covariance matrix of the input vector  

( )( ) .exp 1111
2

111
11

1 1
T

nnnnRnnnRnn cececewRR
n +++++++

−−
+ −−





 −−−= −γ  (28) 

4.2. Investigation of the issues of convergence of the algorithm. 

Consider the estimation error 
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In this case, the estimation algorithm can be written as  
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Writing down algorithm (31) with respect to estimation errors, we have 
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Averaging both sides of (32), i.e.  
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we obtain the condition for the convergence of algorithm (31) in the mean square  
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Consider a steady state. Since in steady state 
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where tr  denotes the trace operator. 
To calculate the steady-state value of the estimation error, we define { }2
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Similarly, we define  
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Substitution of (35) and (36) into (34) gives the expression for the steady-state error 
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This expression shows that ( ) 0lim
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Consider the case of non-Gaussian interference. In this case, we use the Taylor series expansion. In 
the steady state, the estimated parameters change (are corrected) insignificantly. Therefore, we can 
rewrite (34) as follows: 
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We expand the function )(ef  in a Taylor series, limiting ourselves to terms of the second order of 
smallness  
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Assuming that the interference does not correlate with the signals and the prior error ae , we can 
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4.3. Non-stationary case 

 Let us assume that the estimated parameters are non-stationary, i.e. 
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Taking into account the statistical properties of signals and noise, we have  
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For Gaussian interference, using Price's theorem gives 
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From this ratio, we can determine the value S  
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In the case of non-Gaussian noise, we have 
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Substituting (54) and (55) into (49), after simple transformations we obtain  
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This expression shows that S is a monotonically non-increasing function of the parameter γ .  
From the condition 0/ =∂∂ γS , an equation can be obtained to determine the optimal value of the 

parameter γ  that provides the minimum value S 
.02 =−+ BCBDAC γγ  

 
 
 

 

5. Numerical experiments 

The problem of ADALINE parameters adjustment was considered. Sequences of normally 
distributed quantities )(kх ~ )1;0(Ν  were chosen as the input signal )(kх . When testing the robustness 
of the algorithms, an independent noise distributed according to the Rayleigh law with σ = 1 was 



added to the output signal of the object. The histogram of such noise is shown in fig. 2. The 
simulation results for various values of the parameter are shown in fig. 3. In fig. 4 shows the graphs of 
changes in the error when choosing the RWLS algorithm (15)-(16) and algorithm (31) respectively, 
here  

2*
2
1 ccRMSE n −= ,  

where nc  and *c  denote estimated and target parameters vectors respectively. 

 
Figure 2: Noise distribution 

 
Figure 3: Different algorithms results 

6. Conclusion 

The work considered an adaptive robust learning algorithm for ADALINE when using the 
information criterion of correntropy with variable center as a learning criterion.  

The properties of its convergence in the stationary and non-stationary cases in conditions 
of non-Gaussian noises are investigated.  

The importance of choosing the width of the Gaussian kernel, which affects the rate of 
convergence of estimation algorithms and the error in the steady state, is noted, and the expediency of 
developing procedures for adaptive correction of the kernel width is indicated. 

The estimates obtained are quite general and depend both on the degree of nonstationarity 
of the object and on the statistical characteristics of useful signals and interference. 
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