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Abstract
The translation of the pun is one of the most challenging issues for translators and for this
reason has become an intensively studied phenomenon in the field of translation studies.
Translation technology aims to partially or even totally automate the translation process,
but relatively little attention has been paid to the use of computers for the translation of
wordplay. The CLEF 2022 JOKER track aims to build a multilingual corpus of wordplay and
evaluation metrics in order to advance the automation of creative-language translation. This
paper provides an overview of the track’s Pilot Task 3, where the goal is to translate entire
phrases containing wordplay (particularly puns). We describe the data collection, the task
setup, the evaluation procedure, and the participants’ results. We also cover a side product
of our project, a homogeneous monolingual corpus for wordplay detection in French.
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1. Introduction

Wordplay is ubiquitous in both speech and writing as a means to evoke humour. It
can occur on or intersect with virtually any level of language, including the phon-
ological, orthographical, morphological, lexical, syntactic, or textual [1]. Punning
is a particular form of wordplay in which a word or phrase suggests two or more
meanings by exploiting polysemy, homonymy, or phonological similarity to another
word or phrase [2, 3]. Despite being a popular subject of research in translato-
logy [4, 5], the translation of puns has received little attention in the fields of natural
language processing (NLP) and machine translation (MT) [6]. With increasing global
communication, the demand for translation grows ever faster, which has spurred
rapid development of MT technology [7]. Recent developments in machine learning
and artificial intelligence have greatly improved the quality of MT, but puns are often
held to be untranslatable, particularly by statistical or neural MT [8, 9], which cannot
robustly deal with texts that deliberately disregard or subvert linguistic conven-
tions [6]. Among the main challenges in translating puns are linguistic and cultural
differences [10, 11, 12], which can affect the target audience’s comprehension of the
joke and must therefore inform the translator’s choice of strategy.

In 2022, the JOKER workshop at CLEF proposed three pilot tasks [13]: (1) classify
and explain instances of wordplay, (2) translate single terms containing wordplay,
and (3) translate entire phrases containing wordplay (puns) from English into French.
This paper describes and discusses the third of these tasks, including the participating
systems and their results. The goal of the workshop was to bring together translators
and computer scientists to work on an evaluation framework for wordplay, including
data and metric development, and to foster work on automatic methods for wordplay
translation.

2. Related work

2.1. Wordplay translation strategies

Over the past few decades, the field of translation studies has devoted increasing
interest to wordplay [14]. Various strategies for wordplay translation have been
conceived and described over time, and, accordingly, some typologies have been
produced. Two of them stand out for their quality and their universalist purpose. The
first of these is the fourfold typology of Henry [15, pp. 176–192]:

1. traduction isomorphe (isomorphic translation)

2. traduction homomorphe (homomorphic translation)

3. traduction hétéromorphe (heteromorphic translation)

4. traduction libre (free translation)

The isomorphic strategy consists of translating a source-text (ST) wordplay with
an identical wordplay (except for formal differences) in the target language (TL).



This is what happens, for example, when the German portmanteau adjective famil-
lionär (amalgamating Familie + Millionär) is translated into English or French as
famillionaire. As in this case, the isomorphic strategy is a borderline situation, which
only happens due to fortuitous (or historical) similarities between languages.

The homomorphic strategy consists of translating an ST wordplay with a wordplay
of the same typology, based on different linguistic material. This is what happens
when we translate an anagram with an anagram, or a pun with a different pun (i.e.,
in the great majority of cases where we cannot lean on the isomorphic strategy).

The heteromorphic strategy involves translating an ST wordplay with a wordplay
of a different typology in the TL. For instance, we could translate an anagram with a
pun, or a portmanteau with assonance.
Free translation takes place when the ST wordplay is translated into something

other than wordplay.
Despite its allure (as well as its elegant terminological uniformity), Henry’s tax-

onomy has a serious flaw: the fourth category, free translation, is a potentially very
broad one, as it brings together many different strategies. The second wordplay
translation typology, developed by Delabastita [16], dissects this fourth category in
a much more precise way. This is the reason why we will rely on a combination of
both typologies in the rest of this paper. While Henry’s typology is mostly based on
the author’s experience as a translator, Delabastita’s was developed on the basis of
parallel corpus analysis and therefore reflects the real techniques used by human
translators in their work. And while the typology was developed specifically for puns
(a type of wordplay that exploits multiple meanings of a term or of similar-sounding
words), many of the strategies it describes can be successfully applied to other types
of wordplay that are not based on ambiguity. Delabastita lists the following options:

1. pun→pun: The ST pun is translated by a TL pun. This category can be further
partitioned into three subtypes, using Henry’s typology:

• isomorphic translation

• homomorphic translation

• heteromorphic translation

Strategies 2 to 8 below can all be related to Henry’s fourth category, free
translation:

2. pun→non-pun: The pun is translated by a non-punning phrase, which may
reproduce all senses of the wordplay or just one of them, without trying to do
this in an equally ambiguous way.

3. pun→related rhetorical device: The pun is replaced by some other, rhetorically
charged, utterance (involving repetition, alliteration, rhyme, irony, paradox,
etc.).

4. pun→zero: The part of text containing the pun is omitted altogether.

5. pun ST=pun TT: The punning text, and sometimes its immediate environment,
is/are reproduced in the SL in the target text (TT), without attempting a TL
rendering.



6. non-pun→pun: A pun is introduced in the TT where no wordplay was present
in the ST.

7. zero→pun: New textual material involving wordplay is added to the TT, which
bears no correspondence whatsoever in the ST.

8. editorial techniques: All the paratextual strategies involved in explaining, or
presenting alternative renderings for, the pun of the ST (footnotes, prefaces,
translator’s notes, etc.).

Delabastita insists on one further point: these eight strategies are by no means
exclusive. A translator could, for instance, suppress a pun somewhere in their
TT (locally leading to a pun→non-pun solution), they could explain it in a footnote
(editorial techniques), and finally try to compensate for the loss by adding another
pun somewhere else in the text (non-pun→pun or zero→pun).

The very typology of translation strategies drawn by Delabastita directly points to
the main reason for the difficulty of conceiving a working machine translation system
for puns. How can we automate the omission of a pun, the introduction of wordplay
somewhere else in a text, or the reproduction of a SL textual segment in the TT? One
could say, then, that the typology developed by Henry could be more useful, because
it (usually) only accounts for translations of a wordplay in the ST with a wordplay
in the TT. Unfortunately, it cannot be stressed enough that this goes against most
human translators’ practice. Very often, the strategies used by human translators
completely break any kind of textual relationship between the ST and the TT. This is
the reason why wordplay translation is seen by many practitioners and theoreticians
alike as something “other” than translation – say, as adaptation or as re-creation –
and this is the reason why we believe that only Delabastita’s typology should be the
goal to achieve in the long term for a useful wordplay machine translation engine.

2.2. Computational humour

To date, there have been few studies on the MT of wordplay. Farwell and Helm-
reich [17] proposed a pragmatic-based approach to MT that accounts for the author’s
locutionary, illocutionary, and perlocutionary intents (that is, the “how”, “what”, and
“why” of the text), and discuss how it might be applied to puns. However, no work-
ing system appears to have been implemented. Miller [18] proposed an interactive
method for the computer-assisted translation of puns, an implementation (PunCAT)
and evaluation of which was described by Kolb and Miller [19]. Their study was lim-
ited to a single language pair (English to German) and translation strategy (namely,
the pun→pun strategy described previously). Furthermore, the tool’s functionality
is limited to facilitating exploration of the semantic fields corresponding to the two
meanings of the pun; actually detecting and interpreting the ST pun, and devising a
complete TL punning joke, is left to the user.

Numerous studies have been conducted for the related tasks of humour gener-
ation and detection. Pun generation systems have often been based on template
approaches. Valitutti, Toivonen, Doucet, and Toivanen [20] used lexical constraints



to generate adult humour by substituting one word in a pre-existing text. Hong and
Ong [21] trained a system to extract automatically humorous templates which were
then used for pun generation. Some current efforts to tackle this difficult problem
more generally using neural approaches have been hindered by the lack of a sizable
pun corpus [22]. Recent work [23] has tackled the issue for generating humourous
puns in English based on the data provided at SemEval-2017 [2].

Meanwhile, the recent rise of conversational agents and the need to process
large volumes of social media content point to the necessity of automatic humour
recognition [24]. Humour and irony studies are now crucial when it comes to
social listening [25, 26, 27, 28], dialogue systems (chatbots), recommender systems,
reputation monitoring, and the detection of fake news [29] and hate speech [30].
However, the automatic detection, location, and interpretation of humorous wordplay
in particular has so far been limited to punning. And while even the earliest such
systems have achieved decent performance on the detection and location tasks [31],
methods for actually interpreting the double meaning of the pun – a prerequisite
for translation – have not been as intensively researched. Miller, Hempelmann, and
Gurevych [31] report an accuracy of 16.0% and 7.7% accuracy for homographic
and heterographic puns, respectively, and this baseline does not seem to have been
improved upon in more recent work [32]. Again, indications point to the lack of
sufficient training data as a stumbling block to further progress, especially for
languages other than English.

A few monolingual humour corpora do exist, including the datasets created for
shared tasks of the International Workshop on Semantic Evaluation (SemEval):
#HashtagWars: Learning a Sense of Humor [33], Detection and Interpretation of
English Puns [31], Assessing Humor in Edited News Headlines [34], and HaHack-
athon: Detecting and Rating Humor and Offense [35]. Mihalcea and Strapparava [36]
collected 16 000 humorous sentences and an equal number of negative samples from
news titles, proverbs, the British National Corpus, and the Open Mind Common
Sense dataset, while another dataset contains 2400 puns and non-puns from news
sources, Yahoo! Answers, and proverbs [37, 38]. Most datasets are in English, with
some notable exceptions for Italian [39], Russian [40, 41], and Spanish [42]. To the
best of our knowledge, no corpus exists for French.

To the best of our knowledge the only parallel corpus of wordplay was the one
introduced in our research [13, 43]. We manually collected over a thousand translated
examples of wordplay, in English and French, from video games, advertising slogans,
literature, and other sources [13, 43]. Each example has been manually classified
according to a multi-label inventory of wordplay types and structures, and annotated
according to its lexical-semantic or morphosemantic components. However, the
majority of the collected wordplay was single-term proper nouns or neologisms
based on portmanteaux, the like of which are common in the Asterix and Harry Potter
universes.

Large pre-trained AI models, like Jurassic-1 [44], mT5 [45], BERT [46], and GPT [47,
48], have outperformed other state-of-the-art models on several NLP tasks, including
MT [49]. Performance of such supervised MT systems depends on the quality and



quantity of training data [50]. However, as mentioned above, there exist no large-
scale, broad-coverage parallel corpora of wordplay. This corpus is a key prerequisite
for the training and evaluation of MT models.

Humorous wordplay often exploits the confrontation of similar forms with different
meanings, evoking incongruity between expected and presented stimuli. This makes
it particularly important in NLP to study the strategies that human translators use
for dealing with wordplay [51, 52]. On the one hand, this is because MT is generally
ignorant of pragmatics and assumes that words in the source text are formed and
used in a conventional manner. MT systems fail to recognise the deliberate ambiguity
of puns or the unorthodox morphology of neologisms, leaving such terms untranslated
or else translating them in ways that lose the humorous aspect [18].

3. Data

Our English corpus of puns is mainly based on that of the SemEval-2017 shared task
on pun identification [31]. The original annotated dataset contains 3387 standalone
English-language punning jokes, between 2 and 69 words in length, sourced from
offline and online joke collections. Roughly half of the puns in the collection are
“weakly” homographic (meaning that the lexical units corresponding to the two senses
of the pun, disregarding inflections and particles, are spelled identically) while the
other half are heterographic (that is, with lemmas spelled differently). The original
annotation scheme is rather simple, indicating only the pun’s location within the joke,
whether it is homographic or heterographic, and the two meanings of the pun (with
reference to senses in WordNet [53]).

In order to translate this subcorpus from English into French, we applied a gamific-
ation strategy. More precisely, we organised a translation contest.1 The contest was
open to students but we also received multiple translations out of official ranking
from professional translators and academics in translation studies. The results were
submitted via Google Forms. Forty-seven participants submitted 3950 translations of
500 puns from the SemEval-2017 dataset. We first took 250 puns in English from
each of homographic and heterographic subsets. In the form, the homographic and
heterographic puns were alternated. Each page of the form contained 100 puns.

Unfortunately, Google Forms does not allow questions to be shuffled for each
participant. Thus, we observed a drastic drop in the number of translations per
pun starting from the second page (see Figure 1). As we had two participants who
translated almost all puns (see Figure 3), we have a conspicuous peak on the number
of translations per query (Figure 2). However, this histogram does not provide a
clear idea about the translation difficulty of puns as the vast majority of participants
translated only the first page of the form. Figure 4, the number of translations
per query on the first page only, perhaps better reflects the translation difficulty
distribution.

1https://www.joker-project.com/pun-translation-contest/

https://www.joker-project.com/pun-translation-contest/


0

10

20

30

40

Number of translations per query

Figure 1: Number of translations per query

0

50

100

150

0 2 3 5 6 8 10 11 13 14 16 18 19 21 22 24 25 27 29 30 32 33 35

Histogram of the number of translations per query (all)

Figure 2: Histogram of the number of translations per query (all)

Besides this SemEval-derived data, we sourced further translation pairs from
published literature and from puns translated by Master’s students in translation.

We annotated the dataset according to the classification used for Pilot Task 1 of
our workshop [54].
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3.1. Training data

In total, the final annotated training set in English contained 1772 instances. The
French collection contained 4753 annotated instances. The data was provided to
participants as a JSON file (or a CSV file for manual runs) with fields denoting the
instance’s unique ID (id), the source text in English (en), and a target text in French
(fr). For example:



[
{
"id": "pun_724_1",
"en": "My name is Wade and I’m in swimming pool maintenance.",
"fr": "Je m’appelle Jacques Ouzy, je m’occupe de l’entretien des

piscines."
}

]

3.1.1. Test data

The test set contains 2378 instances in English from the SemEval-2017 pun task [31].
The data format was identical to that of the training data, except that the field for
the target text was omitted. Example:

[
{
"id": "het_713",
"en": "Ever since my mineral extraction facility was converted to

parking, I’ve had a lot on my mine.",
}

]

The expected output format was identical to that of the training data, but with the
addition of fields RUN_ID and MANUAL. The RUN_ID field value uniquely identifies a
given run and is formed of the team ID (as registered on the CLEF website) followed
by the task ID (in this pilot task, always task_3), followed by the run number. The
MANUAL field value can be either a 1 (indicating a manual translation run) or a 0
(indicating a machine translation run). Example:

[
{
"RUN_ID": "JCM_task_3_run1",
"MANUAL": 1,
"id": "pun_724_1",
"en": "My name is Wade and I’m in swimming pool maintenance.",
"fr": "Je m’appelle Jacques Ouzy, je m’occupe de l’entretien des

piscines."
}

]

4. Evaluation metrics

As we have previously argued [13], the prevailing BLEU metric for machine transla-
tion is clearly inappropriate for use with wordplay, where a wide variety of translation



strategies (and solutions implementing those strategies) are permissible. Many of
these strategies require metalexical awareness and preservation of features such as
lexical ambiguity and phonetic similarity.

For our evaluation, participants’ runs were pooled together. We filtered out all
translations that did not match the regular expression .+[?.!"]\s*$ as we con-
sidered these translations to be truncated. Indeed, in some runs (e.g., Cecilia’s
run 3) the majority of generated translations were too short with regard to the source
wordplay and truncated in the middle of the sentence. We refer further the retained
translations as valid.

We then filtered out French translations identical to the original wordplay in
English, as we considered these wordplay instances to be not translated.

The pool of valid distinct translations into French contains 9513 instances. Three
Master’s students in translation, French native speakers, manually evaluated each
valid translation as follows. We evaluated the following errors:

• nonsense: This metric is true when the translation contains a nonsensical
passage.

• syntax problem: This metric is true when the translation contains a passage
with errors in syntax.

• lexical problem: This metric is true when the translation contains a passage
with errors in word choice/use.

An instance was not evaluated for subsequent metrics if one of the above errors was
identified. For translations without these errors, we evaluated:

• lexical field preservation, sense preservation, comprehensible terms, wordplay
form: These four metrics are evaluated as in Task 2.

• identifiable wordplay: A value of true is assigned to translations that are word-
play and are understandable for general audience. For example, the wordplay
“Je n’abandonnerai jamais mes chiens!” dit Tom cyniquement. (meaning “ ‘I’ll
never abandon my dogs!’ Tom said cynically”) requires etymological knowledge
that is beyond most readers.

• over-translation: A value of true is assigned to translations that have useless
multiple wordplay instances when the source text has just one.

• style shift : A value of true is assigned to translations that have style shift (e.g.,
where a vulgarism is present either in the source text or the translation but not
in both).

• humorousness shift : A value of true is assigned to translations that were judged
to be much more or much less funnier than the source wordplay.

Note that the categories over-translation, style shift and humorousness shift are
necessarily subjective.



Table 1
Scores of participants’ runs for Pilot Task 3

LJGG FAST_MT LJGG Cecilia Humorless Cecilia
DeepL auto run 1 run 3

total 2378 2378 2378 2378 2378 2378
valid 2324 2120 2264 2343 384 7
not translated 39 103 206 49 22 2
nonsense 59 220 349 51 297 3
syntax problem 17 58 46 41 6 0
lexical problem 25 79 78 52 10 0
lexical field preservation 2184 1739 1595 2155 118 6
sense preservation 1938 1453 1327 1803 100 6
comprehensible terms 1188 867 827 744 56 5
wordplay form 373 345 261 251 19 1
identifiable wordplay 342 318 240 243 16 1
over-translation 3 1 9 13 0 0
style shift 9 12 4 4 0 0
humorousness shift 930 765 838 1427 68 4

5. Methods used by the participants

Four teams participated in Pilot Task 3: FAST_MT [55], Cecilia [56], Humorless (no
paper submitted), and LJGG [57]. Cecilia updated their run, and LJGG submitted
two runs, one of which was produced with DeepL.2 LJGG’s other run, and that of
Cecilia, were generated using the SimpleT5 library3 for the Google T5 (Text-To-Text
Transfer Transformer) model, which is based on the transfer learning with a unified
text-to-text transformer [58].

FAST_MT also applied transformers but decided not to do fine-tuning; more pre-
cisely, the team used the Helsinki/NLP/opus-mt-en-fr model [59] from the Hugging
Face4 repository.

6. Results

Table 1 presents the results of submitted runs for Task 3. We observe that in
many cases the successful translations are due to the existence of the same lexical
ambiguity (homonymy) in both languages:

Example 6.1. A train load of paint derailed. Nearby businesses were put in the red.
Un train de peinture a déraillé. Les entreprises voisines ont été mises dans le

rouge.

2https://www.deepl.com/
3https://github.com/Shivanandroy/simpleT5
4https://huggingface.co/

https://www.deepl.com/
https://github.com/Shivanandroy/simpleT5
https://huggingface.co/


Example 6.2. An undertaker can be one of your best friends, he is always the last
one to let you down.

Un entrepreneur peut être l’un de vos meilleurs amis, il est toujours le dernier à
vous laisser tomber.

We also noticed some surprisingly successful translations:5

Example 6.3. Success comes in cans, failure comes in cant’s.
Le succès c’est dans les canons, le pétrin c’est dans les canettes.

Example 6.4. Wal-Mart Is Not the Only Saving Place. Come On In.
Le clerc n’est pas le seul à faire des économies.

Notably, a few successful translations used anglicisms:

Example 6.5. I used to be addicted to soap, but I’m clean now.
Avant, j’étais accro au savon, mais je suis clean maintenant.

Example 6.6. When the beekeeper moved into town he created quite a buzz.
Lorsque l’apiculteur s’est installé en ville, il a créé un véritable buzz.

Out of over 1155 translations containing wordplay, only 311 were translations of
heterographic puns. This suggests that the state-of-the art machine translation is still
unsuitable for translating wordplay, even with a manually annotated training set. The
successful machine translations are seemingly accidental, owing to the existences of
the same word ambiguity in both languages.

In total only 13% of automatically translated plays on words were successful,
compared to the 90% success rate for instances translated by the human participants
of our contest.

7. French corpus for wordplay detection

A side product of our project is a creation of homogeneous monolingual corpus for
wordplay detection in French.

As stated previously, our parallel wordplay corpus is primarily constructed by the
translation of the corpus of English puns introduced at SemEval-2017 Task 7: Detec-
tion and Interpretation of English Puns [2]. This corpus contains 2250 homographic
and 1780 heterographic puns. All puns were translated during the translation contest
described in §3 and 90% of these translations were successful. These facts provide
evidence that pun translation is possible. On the other hand, machine translations
succeeded only in 13% of cases. We manually annotated all 9513 machine transla-
tions submitted by our participants. Note that the translations of the same sentence
are close to each other in terms of length and lexical field. Given successful and

5On closer inspection, we determined that Example 6.4 was very close to an example from a training
set.



Table 2
Confusion matrix of T5 on all SemEval-2017 Task 7 data

Pun (ground truth) Not pun (ground truth)

1607 Homographic: 11.64 avg
len

643 Homographic: 8.7 avg len

1271 Heterographic: 11.6 avg len 509 Heterographic: 8.6 avg len
Pun (predicted) 1564 Homographic: 11.7 avg len 25 Homographic: 9.1 avg len

1238 Heterographic: 11.7 avg len 18 Heterographic: 9.5 avg len
Not pun (predicted) 43 Homographic: 10.7 avg len 618 Homographic: 8.7 avg len

33 Heterographic: 7.7 avg len 491 Heterographic: 8.5 avg len

unsuccessful human and machine translations, we obtained a homogeneous corpus
in French containing wordplay and non-wordplay with similar characteristics. This
similarity in terms of length and lexicon is crucial to build a corpus for wordplay de-
tection, as the vast majority of state-of-the-art NLP approaches are neural ones [60].
Thus, these models might learn the difference in lexicon or sentence length instead
of the ambiguity in a pun.

Indeed, when we tested the Google T5 model [58] via the SimpleT5 library on
the shuffled SemEval-2017 data, we obtained 92.8% on the test set (403 shuffled
instances). The split was 70% train, 20% validation, and 10% test. However, a closer
look at the confusion matrix (see Table 2) provides evidence that the non-puns are
much shorter than puns in the corpus in average and the model fails when it is not
the case. Thus, the homogeneity of the corpus for wordplay detection is important.

To the best of our knowledge, this is the first corpus for wordplay detection in
French.

This corpus has been already used for a five-step wordplay generation, aiming
to transform a non-humorous text into wordplay [61]. This source corpus without
wordplay has the potential to be transformed into a corpus of wordplays. Only the
machine translations that were annotated not to contain wordplay were used for this
generation (6780 texts in total).

8. Conclusion

The goal of the JOKER project is to advance the automation of creative-language
translation by developing the requisite parallel data and evaluation metrics for
translating wordplay. To this end, we organised the JOKER track at CLEF 2022,
consisting of a workshop and associated pilot tasks on automatic wordplay analysis
and translation. We collected a unique English–French parallel wordplay corpus.

Successful translations of puns in Pilot Task 3 are usually accidental, as they exploit
the ambiguity of the literal translation of the target wordplay term both in English
and French. However, some translations are successful due to the correct use of
anglicisms in French.



A side product of our project is a creation of homogeneous monolingual corpus for
wordplay detection in French. To the best of our knowledge, this is the first corpus
for wordplay detection in French.

Further details on the other pilot tasks and the submitted runs can be found in the
CLEF CEUR proceedings [62]. The overview of the entire JOKER track can be found
in the LNCS proceedings [43]. Additional information on the track is available on the
JOKER website: http://www.joker-project.com/
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