CEUR-WS.org/Vol-3204/paper_33.pdf

An ASP-based Approach to Master Surgical
Scheduling

Linda Cademartori’, Giuseppe Galata?, Carola Lo Monaco’, Marco Maratea’,
Marco Mochi! and Marco Schouten®

!University of Genoa, Genova, Italy

2 SurgiQ srl, Genova, Italy
3KTH Royal Institute of Technology in Stockholm, Sweden

Abstract

The problem of finding Master Surgical Schedules (MSS) consists of scheduling different specialties to
the operating rooms of a hospital clinic. To produce a proper MSS, each specialty must be assigned to
some operating rooms. The number of assignments is different for each specialty and can vary during the
considered planning horizon. Realizing a satistying schedule is of upmost importance for a hospital clinic.
A poorly scheduled MSS may lead to unbalanced specialties availability and increase patients’ waiting list,
negatively affecting both the administrative costs of the hospital and the patient satisfaction. In this paper,
we present a compact solution based on Answer Set Programming (ASP) to the MSS problem. We tested
our solution on different scenarios: experiments show that our ASP solution provides satisfying results in
short time, also when compared to other logic-based formalisms. Finally, we describe a web application
we have developed for easy usage of our solution.

Keywords

Healthcare, Scheduling, Answer Set Programming

1. Introduction

Digital Health, defined as the usage of information and communication technologies in medicine
and in the management processes of healthcare, arose several years ago, but has gained increasing
importance in recent years. Thanks to new technologies and also due to new challenges such as
an aging society, the COVID-19 pandemic and the need to reduce high costs. One of the major
problems related to the modern hospitals are long waiting lists that reduce patients’ satisfaction
and the level of care offered to them. The Master Surgical Schedule (MSS) represents which
specialty is assigned to each operating room in a particular day and session. The administrative
practices of surgical departments, such as deciding which operating rooms are assigned to the
specialties, can have a large impact on hospital costs, patient outcomes and on the overall
efficiency of a hospital. Many papers have analyzed this problem (see for example [1, 2, 3, 4]);

CILC 2022: 37th Italian Conference on Computational Logic, June 29 — July 1, 2022, Bologna, Italy

£ 4518264 @studenti.unige.it (L. Cademartori); giuseppe.galata@surgig.com (G. Galata);

4416766 @studenti.unige.it (C. Lo Monaco); marco.maratea@unige.it (M. Maratea); marco.mochi @edu.unige.it
(M. Mochi); schouten @kth.se (M. Schouten)

PN
ams
wr

http://www.star.dist.unige.it/~marco/ (M. Maratea); https://marcomochi.github.io/website/ (M. Mochi)

® 0000-0002-1948-4469 (G. Galata); 0000-0002-9034-2527 (M. Maratea); 0000-0002-5849-3667 (M. Mochi)
© 2022 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:4518264@studenti.unige.it
mailto:giuseppe.galata@surgiq.com
mailto:4416766@studenti.unige.it
mailto:marco.maratea@unige.it
mailto:marco.mochi@edu.unige.it
mailto:schouten@kth.se
http://www.star.dist.unige.it/~marco/
https://marcomochi.github.io/website/
https://orcid.org/0000-0002-1948-4469
https://orcid.org/0000-0002-9034-2527
https://orcid.org/0000-0002-5849-3667
https://creativecommons.org/licenses/by/4.0
http://ceur-ws.org
http://ceur-ws.org

in particular, the introduction of an effective MSS lead to efficiency gains at the operating room
department: At Beatrix hospital the annual budget for operating room hours is reduced from
12,848 hours to 9,972 hours (22.4% reduction) while the patients operated increased by 7.7% in
2007 respect to 2006, using the same capacity as at the same time surgery duration decreases by
9.0% [5]. The MSS is often considered as an already available input in many healthcare problem
solutions but, due to the different aspects that need to be taken into account for computing a
valid schedule, the MSS is an interesting combinatorial problem that deserves its own interest.
Going in some more details, the MSS problem is the task of assigning the specialties to the
available operating rooms in the different days and sessions, taking into account that not all the
specialties need to be assigned the same amount of time and that, during the considered days, the
amount of time each specialty should be assigned can vary. The aim of the MSS is to support
the hospital to organize the resources and plan the different specialties in the next weeks/months.
In particular, by developing a MSS early a hospital can properly manage the personnel and the
resources, thus leading to a reduction of the costs. Moreover, by helping the hospital to manage
the surgeries and reducing the surgery waiting list, a proper solution to the MSS problem is
vital to improve the degree of patients’ satisfaction. Complex combinatorial problems, possibly
involving optimizations, such as the MSS problem, are usually the target applications of Al
languages such as Answer Set Programming (ASP). Indeed ASP, thanks to its readability and
the availability of efficient solvers, e.g., CLINGO [6], has been successfully employed for solving
hard combinatorial problems in several research areas, and it has been also employed to solve
many scheduling problems [7, 8, 9, 10, 11], also in industrial contexts (see, e.g., [12, 13, 14] for
detailed descriptions of ASP applications).

In this paper we present a mathematical formulation of the MSS problem. We then apply
ASP to solve the MSS problem, by presenting a compact ASP encoding obtained by modularly
representing input specifications in ASP, and then running an experimental analysis on randomly
generated MSS benchmarks, obtained by varying the number of days and trying different scenar-
ios, created with realistic sizes and parameters inspired from data seen in literature. Results using
the state-of-the-art ASP solver CLINGO show that ASP is a suitable solving methodology also
for the MSS problem, since we are able to solve optimally instances of the MSS problem in few
seconds even considering planning horizon up to 180 days. We also compare the performance
of our ASP solution to those of top performing Max-SAT, Pseudo-Boolean and ILP solvers run
on instances obtained by automated translation of ASP encoding and instances: Results show
that CLINGO, run on the ASP encoding contribution of this paper and employing an optimization
algorithm based on unsatisfiable cores, is almost always the best option. Finally, we describe
the implementation of a web application we have developed in order to support users in the
usage of our solution. The application allows for inserting the main parameters of the problem,
running CLINGO on the encoding without actually installing nothing locally, and showing results
graphically.

The paper is structured as follows. Sections 2 and 3 present an informal description of the
MSS problem, and its precise mathematical formulation, respectively. Then, Section 4 shows
our ASP encoding, whose experimental evaluation is presented in Section 5. Section 6 describes
the implementation of our web application. The paper ends by discussing related work and
conclusions in Section 7 and 8, respectively.

2. Problem Description

With the computation of an MSS, a hospital can see in which days, sessions and operating rooms
(ORs) each specialty will do the surgeries. This is important since by looking at the MSS the
hospital can manage the personnel and the resources in advance. The MSS is thus often scheduled
for long periods of time and as soon as possible, to be able to assign the surgery to the patients in
time and to properly organize the personnel. To schedule the MSS a hospital should evaluate the
percentage of time that needs to be assigned to each specialty and the allowed errors for such a
period of time, in order to better respond to the patients’ needs. The percentage of assignments
is evaluated as the number of times each specialty is assigned divided by the total number of
sessions available in the period considered. To produce a proper schedule, the solution must
assign the specialties taking into account the percentage targets and the allowed errors of each
specialty. At most n sessions are associated to each day, where n is equal to the maximum number
of sessions that could be assigned to an OR. Each session is identified by an id. For example, in a
hospital with the maximum number of sessions equal to 2, day 1 will be linked to sessions 1 and 2,
while day 2 will be linked to sessions 3 and 4, and so on for all the remaining days. Each session
is then linked to all the ORs and the scheduler must assign a specialty to each session. Since the
MSS is planned for a long period of time, hospitals could desire that the target assignment of
each specialty is respected not for all the considered days, but may vary, e.g., on a monthly or
weekly basis. Another aspect that could change during the considered period and between the
ORs are the sessions. The usage of each OR is often splitted in two sessions for each day but,
sometimes, some ORs can be split in a different number of sessions, higher or used even for just
one session. In particular, the single-session solution could be used when a specialty requires
particular resources and the time to prepare them is long enough that changing the specialty at
mid day would be a waste of time. Moreover, some ORs could be unavailable in some days and
the scheduler must be able to consider these unavailability.

Overall, the MSS problem takes as input the number of ORs and specialties, the number
of days to consider for the scheduling, the number of sessions for each day, and the different
target values for each specialty, and computes the assignment of the different specialties to the
available ORs of a hospital in the considered planning horizon. An optimal solution minimizes
the difference between the percentage of usage of each specialty and the target value of each
period. An example of MSS is presented in Table 1. In particular, the table is the result obtained
by our solution, that we will show later in the paper, considering 90 days and fixed target value
for each month. Moreover, we considered a hospital with 10 ORs, each splitted in 2 sessions in
each day, and 5 specialties (these numbers corresponding to hospitals of small-medium size in
Italy) SP1 ... SP5 : The table shows the MSS for the first 7 days of the solution. In particular,
each row represents a day and the sessions linked to that day, the columns report the ORs, and the
intersection shows the specialty assigned to the OR in that day and session.

3. Mathematical formulation of the MSS problem

In this section, we provide a mathematical formulation of the basic version of the problem (called
Scenario A later).

Table 1
Example of MSS generated by our solution.

Day | Session | ORT | OR2 | OR3 | OR4 | OR5 | OR6 | OR7 | OR8 | OR9 | OR10
1 1 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4
2 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4

9 3 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4
4 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4

3 5 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4
6 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4

4 7 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4
8 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4

5 9 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP3 | SP1 SP4
10 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP2 | SP1 SP4

6 11 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP2 | SP1 SP4
12 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP2 | SP1 SP4

7 13 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP2 | SP1 SP4
14 SP5 | SP5 | SP3 | SP3 | SP2 | SP5 | SP4 | SP2 | SP1 SP4

Definition 1. Let

* day be a constant that is equal to the number of days considered;

* max_session be a constant that is equal to the maximum number of session associated to
an operating room in a day;,

* s_count be a constant that is equal to day x max_session and represents the number of
sessions that must be assigned to each operating room;

* D={r:t € [l..day|} be the set of all days;

* DD = {(dy,d2)1,...,(d1,d2)n} be a set of n pair of days such that for every pair d, is
greater than d,;

* OR={o01,...,0m} be a set of m operating rooms;

* SP={spy,...,sp;} be a set of k specialties;

o S={s1,...,Ss_count } be a set of s_count sessions id;

* 8 :OR X SP+— {0,1} be a function associating an operating room to a specialty such that
0(o,sp) = 1 if the operating room o can be assigned to the specialty sp, and O otherwise;

* p:OR X D S be a function associating an operating room and a day to a session id such
that p(oy,dy) > max_sessiond,, - (max_session-1) and p(0,,dy) < max_session x d;

* £:8P x D x D N be afunction associating a specialty, a starting day and an ending day
to a value representing the percentage target to reach from the starting day to the ending
day;

* w:SP x D x D N be a function associating a specialty, a starting day and an ending
day to a value representing the maximum error that is allowed from the starting day to the
ending day;

e {:SPx D x D+ N be a function associating a specialty, a starting day and an ending
day to a value representing the percentage of times that a session has been assigned to the
specialty.

Let mss: OR x S X SP D +— {0, 1} be a function such that mss(o,s,sp,d) = 1 if the session s in
the day d and in the operating room o is assigned to the specialty sp, and O otherwise. Moreover,
for a given mss, let Ay = {(0,s,5p,d) : 0 € OR,s € S,sp € SP,d € D,mss(o,s,sp,d) = 1}.

Then, given sets OR, SP, S, D, DD and functions J, p, €, @, {, the MSS problem is defined as
the problem of finding a schedule x, such that

(c1) {p(o,d) =s}|=1 Yo € ORNd € D,Vs € S;

(c2) |{sp:mss(o,s,sp,d) =1} =1 Yo€ OR, Vs €< S,Vspe SPVYd e D,p(o,d)=s;

(c3) |{mss(o,s,sp,d) =1}|=0 Vo€ OR,Vs e S,Vspe SPVdeD,p(o,d)=s,6(or,sp)=0;
(c4) |{mss(o,s,sp,d) =1}|=0 Yo € OR,Vs € S,Vsp € SPVd € D,p(o,d) #s;

(cs) C(sp,di,dr) >0 Vspe O,V (di,dr) € DD;

(ce) |€(sp,di,da) — E(sp,di,da)| < @(sp,di,d2) Vspe€ O0,Y(d,d2) € DD;

Condition (c;) ensures that at each operating room is assigned to a session g, times. Condi-
tion (cp) ensures that each operating room, in each day and session is assigned to exactly one
specialty. Condition (c3) ensures that no operating room is assigned to a not allowed specialty.
Condition (c4) ensures that each specialty is assigned to an operating room in the right session
and day. Condition (cs) ensures that the percentage of times a specialty is assigned is bigger than
0 in every range of days required. Condition (cg) ensures that the percentage target of time a
specialty is assigned minus the actual percentage is less than the allowed error.

Definition 2 (Distance target percentage). Given a solution mss,

let tyg = y | €(sp,di,dy) — E(sp,dy,da) | . Intuitively, t,,ss represents the sum of
SpESP,(dl ,dz)EDD;
the distance between the target percentage and the actual percentage of times each specialty is

assigned to the operating rooms in the range between d and d,.

Definition 3 (Optimal solution). A solution mss is said to dominate a solution mss’ if |t,ss| <
|tmss |- A solution is optimal if it is not dominated by any other solution.

4. ASP Encoding for the MSS problem

We assume the reader is familiar with syntax and semantics of ASP. Starting from the specifi-
cations in the previous section, here we present our compact and efficient ASP solution for the
MSS problem, organized in two paragraphs containing input and output data model, and the ASP
encoding, respectively. The ASP encoding is based on the input language of CLINGO [15]. For
details about syntax and semantics of ASP programs we refer the reader to [16].

5

6

session(SID,DAY,OR) :- operatingRoom(OR,_), sessionN(OR,N,DAY), SID=1..s_count, SID >=
((max_session*DAY) - (max_session-1)), SID<=((max_session*DAY)-(max_session-N)), not
inactive (OR,DAY) .

n_session(N,START,END) :- N = #count{SID,OR,DAY : session(SID,OR,DAY), DAY >= START, DAY <
END}, targetShare(_,_,_ START,END) .

{mss(OR,SID,SP,DAY) : operatingRoom(OR, SP)} == :- session(SID,DAY,OR).

effectiveShare (SP,PERCENTAGE, START,END) :- SESSION = #count{ OR,SID,DAY : mss(OR,SID,SP,DAY), D
>= START, D < END}, n_session(N,START,END), specialty(SP), PERCENTAGE = ((SESSION*100) /
N).

:- effectiveShare (SP, PERCENTAGE, START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE
< (TARGET-ERROR) .

:- effectiveShare (SP, PERCENTAGE, START,END), targetShare(SP,TARGET,ERROR,START,END), PERCENTAGE
> (TARGET+ERROR) .

:- effectiveShare (SP,PERCENTAGE, START,END), PERCENTAGE <= 0.

:~ effectiveShare(SP,ES,START,END), targetShare(SP,TS,ERR,START,END). [|ES-TS|@l,SP,START]

Figure 1: ASP encoding of the MSS problem

Data Model. The input data is specified by means of the following atoms:

* Instances of sessionN(OR,N,DAY) represent the number of sessions (N) in which the
operating room identified by an id (OR) is split in the day (DAY).

* Instances of operatingRoom(OR, SP) represent which specialty (SP) can be assigned to
the operating room identified by an id (OR).

* Instances of specialty(SP) represent the different specialties identified by their id (SP).

* Instances of targetShare(SP,TARGET, ERROR, START,END) represent for each spe-
cialty (SP) the target percentage (TARGET) of utilization and the maximum distance allowed
to the target value (ERROR) in the range of days between START and END.

* Instances of day (DAY) represent the available days.

The output is an assignment represented by an atom of the form mss (OR, SID, SP,DAY),
where the intuitive meaning is that the operating room with id OR in the session with id SID and
in the day DAY is assigned the specialty SP.

Encoding. The related encoding is shown in Figure 1, and is described next. To simplify the
description, we denote as r; the rule appearing at line i of Figure 1.

Auxiliary atoms in the heads of rules ry, r; and, r4 are derived by the encoder to simplify the
other rules. In particular, rule r; assigns the correct session ids to each operating room for all the
days considered. The assignment is made assigning an id such that the number of ids assigned in
each active day is equal to the number of sessions in which the operating room is splitted. Rule
r, evaluates the total number of sessions available in the range of days between the values start
and end. This value is then used to evaluate the percentage of assignment of each specialty. Rule
r3 assigns one of the possible specialties to a session of every operating room. Rule r4 derives
an atom that represents the assignment percentage of each specialty. In particular, it counts the
number of sessions linked to each specialty and divides it by the total number of sessions that
are available in that period. Then, rules rs and r¢ check that the percentage of each specialty is
compatible with the target values and the allowed errors. Rule r; ensures that the percentage of

each specialty is bigger than 0. Finally, weak constraint rg minimizes the difference between the
assigned and target percentage of each specialty in each period of time.

5. Experimental Results

In this section, we report the results of an empirical analysis of the MSS problem via ASP (second
paragraph). For the problem, data have been randomly generated using parameters inspired by
literature and real world data (first paragraph). A third paragraph compares results obtained
with alternative logic-based formalisms. The experiments were run on a AMD Ryzen 5 2600
CPU @ 3.40GHz with 16 GB of physical RAM. The ASP system used was CLINGO [15] 5.4.0,
using parameters --opt-strategy=usc for faster optimization and --parallel-mode 4 for parallel
execution. This setting is the result of a preliminary analysis (but presented later in Table 3) done
also with other parameters, i.e., the default configuration and the one having --restart-on-model
for optimization. The time limit was set to 30 seconds. Encodings and benchmarks employed in
this section can be found at: http://www.star.dist.unige.it/~marco/RuleMLRR2022/material.zip .

MSS benchmarks. Data are based on the sizes and parameters of a typical middle sized
hospital, with 5 different specialties and 10 ORs. Each specialty is associated with a target value
for each month and an error, that is equal to 10 for all the specialities. Each specialty can be
assigned to just some randomly selected ORs and the target value is assigned by dividing the
number of ORs in which the specialty can be assigned to the total number of ORs, and adding
to the result a random value in the range between -5 and 5. To test our solution we considered
four different scenarios. In the first scenario, that we will call Scenario A, we considered to
have the constant max_session equal to 2, while the constant d_count has values from 30 to 180.
Moreover, in this scenario the target value for each specialty is equal for each month. For this
scenario, we considered 10 instances, each with different target values for all the specialties,
for each range of days considered. In particular, we tested the scalability of the scheduler by
considering an increasing number of days: 30, 60, 90, 120, 150 and, 180.

Then, we generated a second scenario, that we will call Scenario B, that is based on the
Scenario A considering 90 days. The difference with Scenario A is that for each month the target
value is increased or decreased by a random value between -2 and 2, thus for each specialty
there are three different target values. Changes in the target values could be done by the hospital
manager because of different availability of doctors or due to the increase of the surgeries of
some specialty.

For the third and fourth scenario, named Scenario C and D, respectively, we again considered a
planning horizon fixed to 90 days. The constant max_session is equal to 2 for the Scenario C,
while for the Scenario D is equal to 3. This means that, in the fourth scenario, one randomly
selected operating room is splitted in three sessions. The difference between the Scenario C and
the others is that, for 5 days, three ORs are unavailable, meaning that no session can be assigned
to them during that days. The scenarios C and D aim thus at evaluating what is the impact of
limiting the usage of the ORs, or changing the number of sessions, respectively.

http://www.star.dist.unige.it/~marco/RuleMLRR2022/material.zip

25 -1

20

15

Time (s)

10

—*—il@il_T_J_

30 a0 a0 120 150 180
Number of Days

Figure 2: Results obtained by solving 10 instances per group of days in Scenario A. The box starts from
the first quartile and ends at the third quartile. The mean time is represented by the (green) triangle,
while the (orange) line represents the median value.

Results of our MSS solution. First, we tested the performances of the scheduler in the basic
scenario (Scenario A). The results for this scenario are shown in Figure 2, which represents the
range of seconds required to reach the optimal solution in all the 10 instances tested with the
different number of days considered, identified by the minimum and maximum times for solving
the instances in the set, together with the mean and the median time. From the figure it can be
seen that the scheduler is able to optimally schedule the MSS in a mean time of less than 10
seconds even considering 180 days of planning horizon, which is a remarkable result. Moreover,
besides being able to reach an optimal solution in less than 10 seconds on average, from the figure
it can be noted that even in the worst case, the scheduler is able to find the optimal solution in
less than 30 seconds.

Then, we tested the performance of the scheduler in the Scenario B. Testing the scheduler with
the 10 instances with 90 days in this scenario we found that the scheduler was able to reach the
optimal solution on average in 3 seconds, that is a time that is very near to the time required in
Scenario A. Thus, this analysis reveals that even changing the target values in each month for all
the specialties, our solution maintains very good performance.

Having evaluated now the performance in Scenario A and B, we then tested the scheduler in
Scenario C and D. Table 2 reports the time required by each instance in Scenario A and in these
more constrained scenarios, on 90 days planning horizon.

From the table we can see that the timing obtained by Scenario C is almost equal to the original
one. So, even if three ORs are unavailable for 5 days, the scheduler is able to compute the optimal
solution in the same time required in the Scenario A. In the Scenario D, the scheduler obtained

Table 2
Time required for each instances in the different Scenarios and considering 90 days

Instance Time (s) Time (s) Time (s)
Scenario A | Scenario C | Scenario D
1 1.7 1.7 1.7
2 0.3 0.2 0.3
3 1.8 1.1 4.3
4 2.0 3.0 2.0
5 0.9 2.2 0.9
6 1.9 1.0 2.1
7 0.8 0.6 0.6
8 2.2 1.6 2.3
9 0.9 0.8 0.9
10 0.9 5.2 0.8
| Mean | 13 \ 1.7 \ 15 |

the optimal solution almost in the same time as in the Scenario A for all but one instance: Indeed,
the third instance requires 4 seconds instead of 2 seconds to reach the optimal solution (from a
preliminary analysis, this harder instance corresponds to a setting in which a higher number of
sessions is set to an OR assigned to only one specialty with low target).

Overall, we can say that also in Scenario C and D the scheduler is able to reach highly satisfying
results, also when compared to the basic Scenario A.

Comparison to alternative logic-based formalisms. In the following, we present an empirical
comparison of our ASP-based solution with alternative logic-based approaches, obtained by
applying automatic translations of ASP instances. In more detail, we used the ASP solver
WASP [17], with the option -pre=wbo, which converts ground ASP instances into pseudo-
Boolean instances in the wbo format [18]. Then, we used the tool PYPBLIB [19] to encode wbo
instances as MaxSAT instances.

Then, we considered three state-of-the-art MaxSAT solvers, namely MAXHS [20], OPEN-
WBO [21], and RC2 [22], and the industrial tool for solving optimization problems GUROBI [23],
which is able to process instances in the wbo format. Concerning CLINGO, we used (i) its default
configuration (CLINGO-DEF); (ii) the option restart-on-model (CLINGO-ROM); and (iii)
the option -opt-strategy=usc (CLINGO-USC). The latter enables the usage of algorithm
OLL [24], which is the same algorithm employed by the MaxSAT solver RC2.

The experiments were executed on Scenario A considering the 10 instances with 30 days
horizon, with a timeout of 30 seconds. Results are reported in Table 3, where for each solver and
instance we report the ranking obtained by each solver, counting optimal solutions. The solver is
in the first position if it finds the solution in the shortest time; a dash means that the solver did not
compute the solution before the time limit. As a general observation, CLINGO-USC obtains the
best performance overall, since it is the first to find the optimal solution in all but one instance.
The performance of CLINGO-ROM is in general slightly worse than the one of CLINGO-USC,
even if in the majority of the instances the required time to reach the optimal solution is similar
to the time required by CLINGO-USC. GUROBI is able to reach the optimal solutions before

Table 3
Comparison of ASP solution with alternative logic-based solutions.

Instance CLINGO-DEF CLINGO-ROM CLINGO-USC MAXHS OPEN-WBO RC2 GUROBI

1 4 3 2 6 5 - 1
2 4 2 1 - - - 3
3 4 2 1 - - - 3
4 4 2 1 - - - 3
5 4 2 1 - - - 3
6 4 2 1 - - - 3
7 4 2 1 - - - 3
8 4 2 1 - - - 3
9 4 2 1 - - - 3
10 2 2 1 - - - 3

CLINGO-USC and CLINGO-ROM in the first instance while in all the other instances it ranked third.
Concerning MaxSAT solvers, we observe that both OPEN-WBO and MAXHS are able to reach the
optimal solution before the time limit just in the first instance, while in all the other instances they
can not obtain the optimal solution before the time limit. RC2 can not return an optimal solution
in any of the instances evaluated. Concerning CLINGO-DEF, we obtain the optimal solution in all
the instances but, without using any of the available options, the solutions are obtained in more
time than the other options and GUROBI, but for instance 10.

6. Web Application

After having presented our solution and compared it with other solvers, we have wrapped the
encoder and the CLINGO solver inside a NodeJS architecture and developed a simple graphical
user interface (GUI) to configure the different inputs of the problem. By developing the web app,
we want to reduce the burden related to the installation and the proper usage of the ASP-based
solution, mainly for non-technical users. Moreover, even if our solution was able to solve all the
tested instances in less than 30 seconds, without a proper interface even the best solution could
be discarded because of the difficulties caused by the technology itself.

In particular, the first page of the web app, shown in Figure 3, is devoted to the definition of
the characteristics of the problem. It allows setting:

¢ The number of months to schedule.

* The number of sessions per each ORs.

* The number of ORs.

* The starting day of the MSS.

* The different specialties, each with a specific target and error.
* The timeout of the scheduler.

Once the user is satisfied with the inserted data, by clicking on the "START PLANNING"
button, she can start the scheduling. The web app processes the data to transform them to a
format that allows the compatibility with the CLINGO solver and, once the solver finds the optimal

MSS Scheduler Create Scenario MSS Generated

First Planning

Number of months Sessions per day Number of operating rooms Starting day of plan Planning timeout
1 S 2 s 10 < 06/06/2022 30 s

Available specialties

Specialty name Target Error Specialty name Target Error
Pediatrics 14 < 10 < Cardiovascular 20 < 10 s
Remove this Specialty Remove this Specialty
Specialty name Target Error Specialty name Target Error
Urology 21 10 Orthopaedic 20 10
Remove this Specialty Remove this Specialty
Specialty name Target Error
Ophtahalmology 25 S 10 >

Remove this Specialty

Add Specialty
START PLANNING

Figure 3: The first page of the web app. From this page the user can define the inputs of the problem.

solution or the timeout time is reached, the user is redirected to the second page. In the second
page, reported in Figure 4, there are two cards available. In the first card, called "Table", is
shown a properly processed result obtained by the solver (assuming that at least a solution is
provided, even if not optimal; however, this is not the case of all our analysis). The card shows
the MSS obtained by the solver in a table format. In each row of the table there are the day and
the linked session plus the information regarding the specialties assigned to the different ORs,
thus mimicking the MSS output of Table 1. In the second card, called "Graphics", are shown the
graphs comparing the target and the actual percentage of time each specialty is assigned for every
range of days considered. This card helps the user to evaluate the quality of the result in a simple
way.

7. Related Work

The section is organized in two paragraphs: the first presents works that highlights the impor-
tance of solving the MSS problem and alternative methods for solving the problem, while the
second mentions works in which ASP has been already successfully employed to closely related
scheduling problems.

Solving the MSS problem. In [4] is presented a literature review on how different Operations
Research techniques can be applied to the surgical planning. Presenting the different approaches
to the MSS problem, the authors pointed out that a more efficient MSS can improve the usage

MSS Scheduler Create Scenario MSS Generated

Mss Generated

Table Graphics

Assignments from day 1 to 30

Percentage assigned Target
30

Ophthalmology Urology Cardiovascular Pediatrics Orthopaedic

Figure 4: The second page of the web app. From this page the user can evaluate the quality of the MSS
obtained by the solver.

of the different resources involved (such as wards, that we do not take into account). [5] shows
the benefit of implementing an effective MSS in a regional hospital in the Netherlands. In
particular, thanks to the suggestion of the solution proposed, the hospital was able to reduce the
budget while increasing the number of patients operated. In this work, the MSS is evaluated
as a cyclic schedule composed of different individual surgical case types. Thus, the MSS is
composed by a sequence of surgeries instead of blocks of specialties. Moreover, the MSS is
planned for 3 weeks only. In [3], the authors proposed a solution to the MSS problem and the
surgical case assignments problem formulating it using a mixed integer nonlinear programming
approach. They compared their solutions to the historical data of an Australian public hospital.
Differently from our work, the solution proposed by the authors maximizes the number of patients
operated instead of focusing on target values required by the hospital. The work in [25] used a
simulation-optimization approach to solve the MSS problem. In particular, they used a two-stage
stochastic optimization model and a discrete-event simulation model to handle uncertainty such
as the surgery duration. Differently from our work, they did not consider a target value for the
different specialities. The authors of [26] used a mixed-integer linear programming model to
address the problem. They used the required surgeries of the week to assign the ORs to the
different specialties and considered a fixed (two) number of sessions for each day. In [27], the
authors addressed the MSS problem by proposing a cyclic schedule for the frequently performed
surgical procedures, maximizing the operating room utilization.

Solving scheduling problems with ASP. ASP has been successfully used for solving hard
combinatorial and application scheduling problems in several research areas. In the healthcare
domain, the first solved problem was the Nurse Scheduling Problem [28, 29, 10], where the goal
is to create a scheduling for nurses working in hospital units. Then, the problem of assigning
ORs to patients, denoted as Operating Room Scheduling, has been treated, and further extended
to include bed management [9]. More recent problems include the Chemotherepy Treatment
Scheduling problem [30], in which patients are assigned a chair or a bed for their treatments, and
the Rehabilitation Scheduling Problem [11], which assigns patients to operators in rehabilitation
sessions. Often problems in which an MSS needs to be computed, including those dealing with
the Operating Room Scheduling problem mentioned above, consider the MSS as an input of the
problem; however, as we have seen in this paper and by the presence of a number of works at
the state-of-the-art dealing uniquely with the problem, the MSS is per se of interest and deserves
devoted solutions, to be possibly integrated with other problem solutions building on it.
Concerning scheduling problems beyond the healthcare domain, ASP encoding were proposed
for the following problems: Incremental Scheduling Problem [31], where the goal is to assign
jobs to devices such that their executions do not overlap one another; Team Building Problem [7],
where the goal is to allocate the available personnel of a seaport for serving the incoming ships;
the work in [32], where, in the context of routing driverless transport vehicles, the setup problem
of routes such that a collection of transport tasks is accomplished in case of multiple vehicles
sharing the same operation area is solved via ASP, in the context of car assembly at Mercedes-
Benz Ludwigsfelde GmbH, and the recent survey paper by Falkner et al. [13], where industrial
applications dealt with ASP are presented, including those involving scheduling problems.

8. Conclusion

In this paper, we have presented an analysis of the MSS problem modeled and solved with ASP.
We started from an informal description of the problem, formulated it in precise mathematical
terms, and then presented our ASP solution. Results on synthetic benchmarks show that the
ASP solution is able to optimally solve the MSS problem even when considering large planning
horizons, up to 6 months. Moreover, solving more difficult scenarios, in which, e.g., targets and
number of sessions change within the planning horizon, reduce just slightly the performance of
the scheduler. We also compared our solution to other logic-based languages and tools for solving
combinatorial problems, on instances obtained by automatic transformation of ASP instances:
The analysis shows that, on instances of our basic scenario, our solution with CLINGO employing
optimization algorithms based on unsatisfiable cores [33] has the best performance. For what
concerns future works, we are currently working on extending our experiments. Moreover, we
would like to implement and test optimization algorithms (see, e.g., [34]), and to investigate re-
scheduling solutions, that may come into play when the MSS scheduling can not be implemented
for some reasons, e.g., sudden unavailability of ORs. Finally, we plan to propose our benchmarks
to future ASP Competitions [35].

References

[1]

(2]

[5]
[6]

[7]

(8]

[9]

[10]

[11]

[12]
[13]

[14]

C. Van Riet, E. Demeulemeester, Trade-offs in operating room planning for electives and
emergencies: A review, Operations Research for Health Care 7 (2015) 52—69. doi:https:
//doi.org/10.1016/j.0orhc.2015.05.005, proc. of ORAHS 2014.

Y. B. Ferrand, M. J. Magazine, U. S. Rao, Managing operating room effi-
ciency and responsiveness for emergency and elective surgeries—a literature sur-
vey, IIE Transactions on Healthcare Systems Engineering 4 (2014) 49-64.
arXiv:https://doi.org/10.1080/19488300.2014.881440.

B. Spratt, E. Kozan, Waiting list management through master surgical schedules: A
case study, Operations Research for Health Care 10 (2016) 49—64. URL: https://www.
sciencedirect.com/science/article/pii/S2211692316300042. doi:https://doi.org/10.
1016/j.0orhc.2016.07.002.

G. Francesca, R. Guido, Operational research in the management of the operating theatre:
a survey., Health care management science 14,1 (2001) 89-114. doi:doi:10.1007/
s10729-010-9143-6.

van Oostrum, Jeroen, Applying Mathematical Models to Surgical Patient Planning, Ph.D.
thesis, E, 2009. URL: http://hdl.handle.net/1765/16728.

M. Gebser, B. Kaufmann, T. Schaub, Conflict-driven answer set solving: From theory to
practice, Artificial Intelligence 187 (2012) 52-89.

F. Ricca, G. Grasso, M. Alviano, M. Manna, V. Lio, S. liritano, N. Leone, Team-building
with answer set programming in the Gioia-Tauro seaport, Theory and Practice of Logic
Programming 12 (2012) 361-381.

D. Abels, J. Jordi, M. Ostrowski, T. Schaub, A. Toletti, P. Wanko, Train scheduling with
hybrid ASP, in: LPNMR, volume 11481 of Lecture Notes in Computer Science, Springer,
2019, pp. 3-17.

C. Dodaro, G. Galata, M. K. Khan, M. Maratea, I. Porro, An ASP-based solution for
operating room scheduling with beds management, in: P. Fodor, M. Montali, D. Calvanese,
D. Roman (Eds.), Proceedings of the Third International Joint Conference on Rules and
Reasoning (RuleML+RR 2019), volume 11784 of Lecture Notes in Computer Science,
Springer, 2019, pp. 67-81.

M. Alviano, C. Dodaro, M. Maratea, Nurse (re)scheduling via answer set programming,
Intelligenza Artificiale 12 (2018) 109-124.

M. Cardellini, P. D. Nardi, C. Dodaro, G. Galata, A. Giardini, M. Maratea, 1. Porro, A
two-phase ASP encoding for solving rehabilitation scheduling, in: S. Moschoyiannis,
R. Pefialoza, J. Vanthienen, A. Soylu, D. Roman (Eds.), Proceedings of the 5th International
Joint Conference on Rules and Reasoning (RuleML+RR 2021), volume 12851 of Lecture
Notes in Computer Science, Springer, 2021, pp. 111-125.

E. Erdem, M. Gelfond, N. Leone, Applications of answer set programming, Al Magazine
37 (2016) 53-68.

A. A. Falkner, G. Friedrich, K. Schekotihin, R. Taupe, E. C. Teppan, Industrial applications
of answer set programming, Kiinstliche Intelligenz 32 (2018) 165-176.

P. Schiiller, Answer set programming in linguistics, Kiinstliche Intelligence 32 (2018)
151-155.

http://dx.doi.org/https://doi.org/10.1016/j.orhc.2015.05.005
http://dx.doi.org/https://doi.org/10.1016/j.orhc.2015.05.005
http://arxiv.org/abs/https://doi.org/10.1080/19488300.2014.881440
https://www.sciencedirect.com/science/article/pii/S2211692316300042
https://www.sciencedirect.com/science/article/pii/S2211692316300042
http://dx.doi.org/https://doi.org/10.1016/j.orhc.2016.07.002
http://dx.doi.org/https://doi.org/10.1016/j.orhc.2016.07.002
http://dx.doi.org/doi:10.1007/s10729-010-9143-6
http://dx.doi.org/doi:10.1007/s10729-010-9143-6
http://hdl.handle.net/1765/16728

[15] M. Gebser, R. Kaminski, B. Kaufmann, M. Ostrowski, T. Schaub, P. Wanko, Theory solving
made easy with clingo 5, in: ICLP (Technical Communications), volume 52 of OASICS,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016, pp. 2:1-2:15.

[16] F. Calimeri, W. Faber, M. Gebser, G. Ianni, R. Kaminski, T. Krennwallner, N. Leone,
M. Maratea, F. Ricca, T. Schaub, ASP-Core-2 input language format, Theory and Practice
of Logic Programming 20 (2020) 294-309.

[17] M. Alviano, G. Amendola, C. Dodaro, N. Leone, M. Maratea, F. Ricca, Evaluation of
disjunctive programs in WASP, in: LPNMR 2019, volume 11481 of LNCS, Springer, 2019,
pp. 241-255.

[18] Olivier Roussel and Vasco Manquinho, Input/Output Format and Solver Requirements for
the Competitions of Pseudo-Boolean Solvers, 2012.

[19] C. Ansétegui, T. Pacheco, J. Pon, Pypblib, 2019. URL: https://pypi.org/project/pypblib/.

[20] P. Saikko, J. Berg, M. Jdrvisalo, LMHS: A SAT-IP hybrid maxsat solver, in: SAT
2016, volume 9710 of LNCS, Springer, 2016, pp. 539-546. URL: https://doi.org/10.1007/
978-3-319-40970-2_34. doi:10.1007/978-3-319-40970-2_34.

[21] R. Martins, V. M. Manquinho, I. Lynce, Open-wbo: A modular maxsat solver,, in: SAT
2014, volume 8561 of LNCS, Springer, 2014, pp. 438—445. URL: https://doi.org/10.1007/
978-3-319-09284-3_33.d0i:10.1007/978-3-319-09284-3_33.

[22] A. Ignatiev, A. Morgado, J. Marques-Silva, RC2: an efficient maxsat solver, J. Satisf.
Boolean Model. Comput. 11 (2019) 53-64. URL: https://doi.org/10.3233/SAT190116.

[23] Gurobi Optimization, LLC, Gurobi Optimizer Reference Manual, 2021. URL: https://www.
gurobi.com.

[24] A. Morgado, C. Dodaro, J. Marques-Silva, Core-Guided MaxSAT with Soft Cardinality
Constraints, in: CP 2014, Springer, Lyon, France, 2014, pp. 564-573.

[25] T.R. Bovim, M. Christiansen, A. N. Gullhav, T. M. Range, L. Hellemo, Stochastic master
surgery scheduling, European Journal of Operational Research 285 (2020) 695-711.

[26] 1. Marques, M. E. Captivo, N. Barros, Optimizing the master surgery schedule in a
private hospital, Operations Research for Health Care 20 (2019) 11-24. URL: https:
/Iwww.sciencedirect.com/science/article/pii/S2211692318300225.

[27] J. van Oostrum, M. van Houdenhoven, J. Hurink, E. Hans, G. Wullink, G. Kazemier, A
master surgical scheduling approach for cyclic scheduling in operating room departments,
OR Spectrum = OR Spektrum 30 (2008) 355-374. doi:10.1007/s00291-006-0068-x.

[28] C. Dodaro, M. Maratea, Nurse scheduling via answer set programming, in: LPNMR,
volume 10377 of LNCS, Springer, 2017, pp. 301-307.

[29] M. Alviano, C. Dodaro, M. Maratea, An advanced answer set programming encoding for
nurse scheduling, in: AI*IA, volume 10640 of LNCS, Springer, 2017, pp. 468-482.

[30] C. Dodaro, G. Galata, A. Grioni, M. Maratea, M. Mochi, I. Porro, An ASP-based solu-
tion to the chemotherapy treatment scheduling problem, Theory and Practice of Logic
Programming 21 (2021) 835-851.

[31] M. Balduccini, Industrial-size scheduling with ASP+CP, in: J. P. Delgrande, W. Faber
(Eds.), Logic Programming and Nonmonotonic Reasoning - 11th International Conference,
LPNMR 2011, Vancouver, Canada, May 16-19, 2011. Proceedings, volume 6645 of Lecture
Notes in Computer Science, Springer, 2011, pp. 284-296.

[32] M. Gebser, P. Obermeier, T. Schaub, M. Ratsch-Heitmann, M. Runge, Routing driverless

https://pypi.org/project/pypblib/
https://doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1007/978-3-319-40970-2_34
http://dx.doi.org/10.1007/978-3-319-40970-2_34
https://doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.1007/978-3-319-09284-3_33
http://dx.doi.org/10.1007/978-3-319-09284-3_33
https://doi.org/10.3233/SAT190116
https://www.gurobi.com
https://www.gurobi.com
https://www.sciencedirect.com/science/article/pii/S2211692318300225
https://www.sciencedirect.com/science/article/pii/S2211692318300225
http://dx.doi.org/10.1007/s00291-006-0068-x

transport vehicles in car assembly with answer set programming, Theory and Practice of
Logic Programming 18 (2018) 520-534.

[33] M. Alviano, C. Dodaro, Unsatisfiable core analysis and aggregates for optimum stable
model search, Fundam. Informaticae 176 (2020) 271-297. URL: https://doi.org/10.3233/
FI-2020-1974. doi:10.3233/FI-2020-1974.

[34] E. DiRosa, E. Giunchiglia, M. Maratea, A new approach for solving satisfiability problems
with qualitative preferences, in: M. Ghallab, C. D. Spyropoulos, N. Fakotakis, N. M.
Avouris (Eds.), ECAI, volume 178 of Frontiers in Artificial Intelligence and Applications,
10S Press, 2008, pp. 510-514.

[35] M. Gebser, M. Maratea, F. Ricca, The seventh answer set programming competition: Design
and results, Theory and Practice of Logic Programming 20 (2020) 176-204.

https://doi.org/10.3233/FI-2020-1974
https://doi.org/10.3233/FI-2020-1974
http://dx.doi.org/10.3233/FI-2020-1974

	1 Introduction
	2 Problem Description
	3 Mathematical formulation of the MSS problem
	4 ASP Encoding for the MSS problem
	5 Experimental Results
	6 Web Application
	7 Related Work
	8 Conclusion

