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Abstract
This extended abstract was written to accompany an invited talk at the 2021 SC-Square Workshop, where
the author was asked to give an overview of SC-Square progress to date. The author first reminds the
reader of the definition of SC-Square, then briefly outlines some of the history, before picking out some
(personal) scientific highlights.
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1. SC-Square Definition

SC-Square, or SC2, refers to the intersection of two fields of Computer Science which share that
abbreviation: Symbolic Computation and Satisfiability Checking. The SC-Square community
refers to people with an interest in both fields.

Satisfiability Checking refers to algorithms and solvers dedicated to ascertaining whether a
system of logical constraints admits a solution (allocation of values to variables which satisfies
the system). This grew out of the SAT-community and the success of SAT-solvers in answering
many very large instances of the Boolean SAT Problem, despite the problem being NP-complete.
It now encompasses logic problems with variables from a variety of mathematical domains.
One popular paradigm for attacking such problems is to tackle the Boolean logic separately to
the constraints in the domain by viewing the atoms of the formula as Boolean variables and
employing a SAT solver; then using domain specific algorithms / software to see if the domain
constraints assigned to be true can be mutually satisfied. This is often referred to as Satisfiability
Modulo Theories (SMT) and the accompanying software as SMT-solvers.

Symbolic Computation refers to algorithms that perform symbolic mathematics efficiently,
such as polynomial computations. Historic achievements in symbolic computation include
algorithms for symbolic integration, polynomial factorisation, Gröbner bases for the effective
solution of many problems concerning multivariate polynomials over algebraically-closed
fields, and algorithms for addressing quantifier elimination and other problems involving a
mixed system of equalities and inequalities on non-linear multivariate polynomials. Symbolic
Computation algorithms are usually implemented in Computer Algebra Systems: large software
products designed for use in mathematics research and education.
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Traditionally, the two communities have been largely disjoint and unaware of the achieve-
ments of one another, despite there being significant areas of overlapping interest. In many
domains of interest for SMT the theory reasoning would naturally use algorithms of symbolic
computation. In the opposite direction; the integration of SAT solvers into computer algebra
systems allows for more powerful logical reasoning; and the model-driven search algorithms of
satisfiability provide inspiration for whole new algorithmic approaches in computer algebra.

2. SC-Square History

For more information on the separate histories of the two SCs we refer the reader, for example,
to Section 2 of [3]. That paper was written to announce the start of the EU funded SC-Square
Project1. This ran from 2016−2018 with the aim of bridging the gap between the communities
to produce individuals whom can combine the knowledge and techniques of both fields to
resolve problems currently beyond the scope of either. The project consortium consisted of a
variety of EU universities, institutions and companies, and the project included a wider group
of partners from all over the world. It was formed following the invited talk of Erika Ábrahaám
at ISSAC 2015 [2] and a 2015 Dagstuhl Seminar2.

The SC-Square Project funded new collaborations, new tool integrations, proposals on
extensions to the SMT-LIB language standards, new collections of benchmarks, two summer
schools in 20173 and 20184, a special issue of the Journal of Symbolic Computation (volume 100)
[14], and the SC-Square Workshop Series5.

Although the project finished in 2018, the collaborations it instigated have continued, as has
the workshop series which bears its name. There have been six editions of the workshop to
date, with two more planned:

2016 Timisoara, Romainia (as part of SYNASC 2016).

2017 Kaiserslautern, Germany (alongside ISSAC 2017).

2018 Oxford, UK (as part of FLoC 2018).

2019 Bern, Switzlerland (as part of SIAM AG19)

2020 Paris, France (online) (alongside IJCAR 2020)

2021 Texas, USA (online) (as part of SIAM AG21)

2022 Haifa, Israel (planned, as part of FLoC 2022)

2023 Tromsø Norway (planned, alongside ISSAC 2023)

The workshops take place as part of, or alongside, established conferences, alternating between
those in computational algebra and logic. Each year there are two chairs, one from each SC.
1http://www.sc-square.org/EU-CSA.html
2# 15471: https://www.dagstuhl.de/en/program/calendar/semhp/?semnr=15471
3http://www.sc-square.org/CSA/school/
4http://ssa-school-2018.cs.manchester.ac.uk/
5http://www.sc-square.org/workshops.html
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3. SC-Square Scientific Highlights

3.1. Non-linear Real Arithmetic

Algorithms for working with systems of non-linear polynomials are a core topic for symbolic
computation, but also an important domain for SMT where it is referred to as Non-linear Real
Arithmetic (NRA). Such algorithms are notoriously complex but also offer limitless applications,
so it is no surprise that this is one area where there has been much activity6.

Arguably the first algorithmic development in the scope of SC-Square was the NLSAT Algo-
rithm of [20] which pre-dated and inspired the project. The authors re-purposed the symbolic
computation theory of cylindrical algebraic decomposition from [13], for use in their proof
framework (now known as MCSAT [15]) to solve satisfiability problems in NRA.

At a similar time, the SMT-RAT solver and toolbox [24] started developing implementations of
a variety of computer algebra tools for use in SMT, including cylindrical algebraic decomposition,
Gröbner Bases, Virtual Term Substitution, and more. This was preferable to using computer
algebra systems directly as SMT theory solvers, since the algorithms needed adaption to suit
the SMT requirements of efficient incrementality by constraint, backtracking and explanations
for unsatisfiability. For examples of such adaptions see e.g., [25] for cylindrical algebraic
decomposition and [21] for Gröbner bases.

The success of NLSAT and SMT-RAT inspired new algorithmic approaches. The Conflict
Driven Cylindrical Algebraic Coverings of [4] gives an alternative repurposing of CAD technol-
ogy for SMT, compatible with the traditional SMT proof framework. Meanwhile the NuCAD
algorithm of [10] was inspired by NLSAT to use an incremental local cell construction to build
a decomposition suitable for the more general quantifier elimination [9] application. This is an
example of a new symbolic computation algorithm development inspired by algorithmic ideas
from satisfiability checking.

Other SC-Square work in NRA includes the combination of computer algebra system Re-
duce/Redlog into SMT solver VeriT [16]; the combination of computer algebra with heuristics
based on interval constraint propagation and subtropical satisfiability [16]; and the Incremental
Linearlization techniques of [12].

3.2. Other Highlights

We note a few other SC-Square highlights the author is aware of:

• Popular commercial computer algebra system Maple can now read to and from SMT-LIB
[17] and ships with the both the Z3 and MapleSAT solvers.

• The computer algebra system CoCoA now releases the open-source CoCoALib: a C++
Library that underpins many of its routines [1], more suitable for use by SMT solvers.

• The MathCheck project has used a combination of SAT-solvers and computer algebra
to make progress on a variety of combinatorics problems, enumerating new cases and
verifying conjectures. E.g., Williamson Matrices [7]; Golay Pairs [8]; Good Matrices [6].

• Algebraic techniques were key for the circuit verification work [22], and in combination
with SAT-solvers [23].

6The author also acknowledges that this is his field of interest which likely led this to be forefront of his highlights!



• The Boolean SAT problem has also benefited from symbolic computation via Boolean
Gröbner Bases and parallel computation on both the conjunctive and algebraic normal
forms of a problem [18].

• An emerging direction in both SCs is the production of proofs and some initial ideas here
have emerged from SC-Square: [19], [5].

• The SC-Square workshops have been home to application descriptions that are new to
both SCs, including in the fields of Economics [28], Dynamic Geometry [29], and knot
theory [26], [27].

4. SC-Square Future

The past successes of SC-Square warrant a promising future for the community. The workshop
series will continue in 2022 and 2023 at the least. There will also be a new Dagstuhl Seminar
on the topic7. However, it is still the case that the bulk of both communities are working
independently from each other, and greater integration would surely bring further successes.
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