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Abstract  
High-performance intellectual information technologies for the nanoporous filtration systems 
research based on the mathematical model of the two-level transport "filtration-
consolidation" in the system of nanopores in intraparticle spaces, which includes two 
subspaces of particles of different sizes has been considered.  
The high-speed analytical solution of the model, which allows calculations parallelization on 
multi-core computers has been found using the operational Heaviside’s method, Laplace 
integral, and Fourier integral transformations.  
The high-performance software complex was built on top of the mode, with a modern 
approach to software design and keeping in mind software engineering best practices. 
Numerical modeling of filtration kinetics process research has been done using developed 
software. 
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1. Introduction 

Complex systems and processes design in the field of environmental protection, emission 
reduction, medicine, liquids or gases filtration requires a new high-performance information systems 
creation for their research based on scientific mathematical models with high-quality physical 
substantiation of the composition of their elements, connections between them and parameters that 
determine efficiency their progress and work. 

The proposed information research technology of nanoporous filtration systems is based on the 
phenomenological model of a solid-liquid liquid that we developed, containing various-sized 
nanoporous moisture-containing particles as a multi-level porous system with interparticle and 
intraparticle networks for fluid express flows. Mathematical models of the two-level transport 
"filtration-consolidation" in the system "interparticle space - nanoporous particles" are considered, 
which take into account the internal flow of liquid from particles, along with the flow of liquid in the 
skeleton [1, 2]. 

We consider the nanoporous particles containing liquid as a porous layer subjected to 
unidimensional pressing (Fig. 1). The liquid flowing occurs inside the particles, outside the 
nanoporous particles and between these two spaces. The nanoporous particles are separated by the 
porous network. The layer of particles is considered a double-porosity media. Fig. 1 illustrates two 
levels of the considered elementary volume: level 1(a) for the system of macropores in interparticle 
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spaces and level 2 (b and c) for the system of nanopores in intraparticle spaces, which includes two 
subspaces of particles of different sizes: intraparticle spaces 1 – subspace of nanoporous particles with 
a radius of at least R1 and intraparticle spaces 2 – a subspace of nanoporous particles with a radius of 
at least R2 (R1> R2). The model assumed, that in nanoporous media, the first porosity level is formed 
by the interparticle network with low storage capacity, while two-second levels of porosities are 
formed by the intraparticle network with high storage capacity. 

 
 

 
Figure 1: Example figure Schematization of mass transfer in a two‐level system of pores 

 

2. Mathematical model 

The mathematical model of the considered transfer, taking into account the specified physical 
factors, can be described in the form of such a system of boundary value problems for equations in 
partial derivatives, formulated both for the interparticle space and for two intraparticle networks 
versus the pressure in the liquid phase.: 

2.1. Consolidation equation for a layer 

Problem A is to find a limited solution of the consolidation equation for a layer of 
multidimensional nanoporous particles media in the domain   1 , : 0,   0D t z t z h    : 
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2.2. Consolidation equations for particles 

Problems В1,2: to find the limited solutions of the consolidation equations for the nanoporous 

particles (radius Ri) in the domain   2 1 2 21 2 1, , , : 0,   <R , <R , 0 hD t x x z t x x z    : 
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with the initial conditions: 
 

0 ( ), 2,3i t EP P z i          (5) 

 
the boundary conditions (for radial variable xj) are : 
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2.3. Nomenclature 

1P - liquid pressure in interparticle space, 2 3,P P - liquid pressure in intraparticle space 1 and 

intraparticle space 2 (interior of spherical particles 1 and 2) in accordance, 1b - is a consolidation 

coefficient in interparticle space, 2 3,b b - consolidation coefficients in intraparticle space 1 and 

intraparticle space 2, 1, 2,  - elasticity factor of the particles 1 and 2 in accordance, h - is layer 

thickness, R1, R2 -  radius of particles 1 and 2. 
 

3. The analytical solution of the model 

A pressure profiles in interparticle spaces and intraparticle spaces 1 and intraparticle spaces 2. 
The analytical solution of the problem is found using the operational Heaviside’s method, Laplace 
integral and Fourier integral transformations.  

Applying the finite integral Fourier transform (cos) [3, 4]: 
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numbers of integral Fourier transform (cos),   we obtain the solutions of the problems  В1, B2 :  
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(7) 
Substituting the expressions (7) into the consolidation equation (1), after a series of 

transformations and successive application to the problem (1)-(3) of the integral Laplace transform [3] 
and the finite integral Fourier transform (sin):  
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numbers of integral Fourier transformation (Sin-Fourier). 
Applying the integral operator of the inverse integral Laplace transformation to expression (8) we 

obtain [5]: 
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as result we obtain 
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Introducing the notation 
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and applying the integral operator of the inverse Laplace transformation, we obtain the formula for 

making the transition to the original in equation (8): 
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where  1 ...L - integral operator of inverse L laplce transformation, " * " – is an operator of 

convolution of both functions. 

Now we can consider the next equation:  
 

  32
1 1 1 2 2

1 2 2 3

1 0n bb s s
s b s th R s th R

R b R b
    

  
           

    . 
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According to Heviside theorem one can obtain the expression of transfer to original [4]: 
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where  
____

,  j= 1, ; 0,jn n      – the roots of transcendental equation (10).  

Calculating of the denominator in (11): 
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Then, as result, the expression (11) will have the vie: 
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We calculate the Laplace originals of expressions:  
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In result of this transforms, we obtain the original of function P1 
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which describe the pressure distributions in the interparticle space. 

Here  
____

,  j= 1, ; 0,jn n      – the roots of transcendental equation (10).  
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  – are the spectral numbers of integral Fourier transformation (Sin-Fourier).  

Substituting into formulas (7) the analytical expression of pressure distributions in the interparticle 
space P1(t,z), calculated according to (13), we obtain the final expressions for determining the time-
space distributions of pressures P2(t,x,z) and P3(t,x,z) in the spaces of nanoporous particles: 
intraparticle spase 2  and intraparticle spase 3 in accordance. 

4. Numerical modelisation and discussion.  

As a part of the simulation stage, a special software complex was developed to study the internal 
kinetics processes of filtration in multidimensional nanoporous particle media. Such software was 
built with a modern approach to software design and keeping in mind software engineering best 
practices.  

The main goal is to allow the quick study of filtration processes for scientists and staff by reducing 
the time from inputting parameters of nanoporous media to the graphical visualization of key 
performance metrics of the filtration process. 

Results of the filtration kinetics process study are presented below. The process parameters used 
for simulations are: h=0.01m, R1=0.008 m, R2=0.004 m, b1 = 10-7 m2/s, b2 = 2 10-7 m2/s, b3 = 10-8 
m2/s, β1 = 0.1,  β2 = 0.15,  ε = 0.5. The media consists of two types of multidimensional nanoporous 
particles of different kinetic properties.  

 

 
Figure 2: Distribution of dimensionless pressure in the intraparticles space1 P2(t,x,z) versus time t, [s] 
in  different  sections  of  dimensionless  layer:  а)  Z=0.05;  b)  Z=0.25;  c)  Z=0.5;  d)  Z=1 (Z=z/h);  
1 – X=1.0  2 – X=0.8;  3 ‐ X=0.6;  4 – X=0.4; 5 – X=0.05 (X=x1/R1) 

 



Figure 2 shows the dimensionless liquid pressure profiles inside the porous particles of first type 
P2(t,x,z) in time t[s]. The temporal pressure profiles were simulated for different layer sections: Z=1 
(top of layer), Z=0.5 and Z=0.25 (a middle sections of layer), and Z=0 (surface of the filter medium. 
In the proposed images are clear to observe that liquid pressure is higher in the center of particles 
(X=0.05) and decline in direction of liquid expulsion on a particles surface X=1 ( m mx R ). At the 
particles edge the pressure in micropores tends to the pressure in macropores P1(t,z). Also, it is worth 
to note, that liquid pressure declines rapidly on the particles surface (X=1) than in the middle sections 
(0.4, 0.6, 0.8) or particles center (X=0.05).  

The difference between the temporal pressure profiles becomes more significant for particles 
located on top of the later (Z=0). However, even in sections close to the central axe of particles (X=0), 
the liquid pressure drops rather rapidly.  

 

 
Figure 3. Distribution of dimensionless pressure in the intraparticles space2 P3(t,x,z) versus time t, [s]  
in  different  sections  of  dimensionless  layer:  а)  Z=0.05;  b)  Z=0.25;  c)  Z=0.5;  d)  Z=1 (Z=z/h);  
1 – X=1.0  2 – X=0.8;  3 ‐ X=0.6;  4 – X=0.4; 5 – X=0.05 (X=x2/R2) 

 
Figure 3 shows the temporal profiles of dimensionless liquid pressure inside of porous particles of 

second type (small) in time t[s]. Same as before, the temporal pressure profiles were simulated for 
four different sections of media layer: Z=1, 0.25, 0.5 and 0.05. The consolidation coefficient for these 
types of particles characterizes less destroyed cellular tissue compared to the particles of the first type. 
Like in a previous example, the presented profiles show liquid pressure drops on the surface of 
particles (X=1) are more rapid than for sections close to the particle’s center (X=0.05), and overall 
decline is more significant when Z leads to 0. However, appreciable retardation of liquid pressure 
drop can be detected in micropores of particles.  



Figure 4. Distribution of dimensionless pressure in the interparticles space P1(t,z): 1 ‐ Z = 0.05,  
2 ‐ Z = 0.3, 3 ‐ Z = 0.5, 4 ‐ Z = 0.7; 5 ‐ Z=1.0 (Z=z/h) 

 
Figure 4 shows distributions of pressure profiles in interparticles space P1(t,z)  at different sections 

of nanoporous media.  

5. Conclusions  

During this research, was developed a foundation of scientific information technologies for 
nanoporous filtration systems with multidimensional nanoporous particles. A phenomenological 
model of the solid-liquid expression of a liquid containing various-sized nanoporous moisture-
containing particles as a multi-level porous system with interparticle and intraparticle networks for 
liquid flows is formulated.  

The filtration-consolidation equations were formulated for both intrerparticle and two intraparticle 
networks considering the pressure profiles. It was assumed, that for nanoporous media, the 
interparticle network forms the first porosity with a low storage capacity, while the intraparticle 
network forms two-second porosities with a high storage capacity. High-speed analytical solutions 
describe the spatiotemporal pressure distributions in the interparticle space, intraparticle space 
(particles of radius R1), and intraparticle space (particles of radius R2, R1>R2) are obtained for real 
nanoporous geomedia with two high characteristics of stability and permeability. Numerical 
simulation results showed a joint pressure drop in the intraparticle network and an increase in the 
consolidation kinetics for the two types of differently sized nanoporous particles.  

In the framework of scientific information technologies, specialized software has been created for 
the study of nanoporous filtration systems in media with multidimensional nanoporous particles based 
on the described mathematical model. The main goals pursued in software design were to allow the 
quick and detailed study of filtration processes in nanoporous for scientists, the ability to run on any 
modern platforms, high-performance numerical modeling, and friendly UI/UX. The use of software 
engineering best practices made it possible to create a software design that could easily be expanded 
or evolved by adding new classes of scientific and special services, as well as future improvements, to 
meet new requirements. 
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