Modelling ar chitectural design rulesin UML

Anders Mattssoh Bjérn Lundelf, Brian Ling$

! Combitech AB, P.O. Box 1017, SE-551 11 JONKOPING, Swed
2 University of Skévde, P.O. Box 408, SE-541 28 SK(&/[Sweden

tanders.mattsson@combitech 3bjorn.lundell, brian.lings}@his.se

Abstract. Current techniques for modelling software architextdo not
support the modelling of architectural design rubekich are recognized as
important design artefacts by current researcloftware architecture. This is a
problem in the context of Model-Driven Developmémtwhich it is assumed
that major design artefacts are represented asafoomsemi-formal models.
This paper addresses this problem by proposing drahitectural design rules
could be expressed in UML in a meta-model for §stean model

Key words: Model-Driven Development, Software architecturechitrectural
design rules

1 Introduction

In Model-Driven Development (MDD) [1], design arefs are represented as formal
or semi-formal models to allow tool-supported auation of time consuming and
error prone manual tasks. However, one class ofjdeartefact is excluded from
current MDD approaches, in spite of being recoghisecurrent research as being
very important: architectural design rules. In th&per we propose an approach to
removing this anomaly.

An important design artefact in any software depsient project, with the
possible exception of very small projects, is thitveare architecture. Recent research
[2-7] has acknowledged that a primary role of tmeh#ecture is to capture the
architectural design decisions. An important pafttliese design decisions are
architectural design rules. With architectural dasiules we mean rules (including
constraints), defined by the architect, to be fo#d in the detailed design of a
system. The state of the art is to capture theles in informal text. This becomes a
problem in MDD since MDD relies on models to ingeadevelopment efficiency
through automation. If we could model architectw@sign rules in a form that could
be interpreted by tools we would be able to elin@rerror prone and time consuming
manual work.

This paper is organized as follows. In section twe clarify the role of
architectural design rules. In section three wegmeMDD in relation to architectural
design rules. In section four we present our apgrda model architectural design
rules and relate it to the body of literature. Torbnstrate the approach an example is
given in section five. In section five we presentaternative modelling approach

72 Proceedings of EMMSAD 2008

close to our suggestion and explain the added vefueur approach. Finally, we
present a summary and future research directigeétion six.

2 Architectural Design Rules

IEEE has established a set of recommended pradticélse architectural description
of software-intensive systems [8] which are folloM®y several architectural design
methods [9-12]. A common understanding in archited methods is that the
architecture is represented as a set of componelated to each other [13, 14]. The
components can be organized into different viewsi$ing on different aspects of the
system. Different methods propose different vietypical views are a view showing
the development structure (e.g. packages and slassesiew showing the runtime
structure (processes and objects) and a view slgothie resource usage (processors
and devices). In any view each component is sgetifiith the following:

* An interface that documents how the componentaetsrwith its environment.
» Constraints and rules that have to be fulfillethie design of the component.
 Allocated functionality.

 Allocated requirements on quality attributes.

A typical method of decomposition (see for instaf@jand [11]) is to select and
combine a number of patterns that address thetguatjuirements of the system and
use them to divide the functionality in the systmito a number of elements. Child
elements are recursively decomposed in the sameloay to a level where no more
decomposition is needed, as judged by the archildwt elements are then handed
over to the designers who detail them to a levedr@hthey can be implemented. For
common architectural patters such as Model-Viewiftdier, Blackboard or Layers
[15] this typically means that you decompose yousteam into subsystems containing
different kinds of classes (such as models, viewd eontrollers). However the
instantiation into actual classes is often leftthe detailed design, for two main
reasons:

1. Functionality will be added later, either becauswas missed or because a new
version of the system is developed, so more elesngititbe added later that also
have to follow the design patterns decided by tohitect.

2. It is not of architectural concern. The concernthe architect is that the design
follows the selected architectural patterns, natddhe detailed design.

This means that a substantial part of the architectonsists of design rules on
what kinds of elements, with behavioural and stmadtrules and constraints, there
should be in a certain subsystem.

The importance of architectural design rules is &ighlighted in current research
in software architecture which is focused on theatiment of architectural design
decisions as first class entities [2, 4-7], wherehidectural design decisions impose
rules and constraints on the design together gitiomale. However, there is not yet

Proceedings of EMMSAD 2008 73

any suggestion on how to formally model these desides. The current suggestion
is to capture them in text and to link them to tkesulting design. This may be
sufficient for rules stating the existence of elatsg“ontocrisis” in [5]) in the design,
such as a subsystem or an interface, since théemicban put the actual element (i.e.
a certain subsystem) into the system model atithe of the decision. It is however
not sufficient for rules on potentially existingeatents (“diacrisis” in [5]) such as
rules on what kinds of elements, with behavioural atructural rules and constraints,
there should be in a certain subsystem, sincedhmlaelements are not known at the
time when the design decision is made. Insteadruleebased design occurs later in
the detailed design phase, and involves other psrgmtentially even in a different
version of the system.

3 MDD and Architectural Design Rules

The basic idea of MDD is to capture all importaessign information in a set of
formal or semi formal models that are automatic&iiypt consistent by tools. The
purpose is to raise the level of abstraction atctvithe developers work and to
eliminate time consuming and error prone manualkworkeeping different design
artefacts consistent [1].

MDD requires that the work products produced aneduduring development is
captured in models to allow automation of non-déveatasks such as transformation
of models into code or conformance checks betwéfggreht design artefacts. There
exist several approaches to Model-Driven Develogn{dDD) such as OMG's
MDA [16], Domain Specific Modelling (DSM) [17, 183nd Software Factories [19]
from Microsoft. Since neither these nor any ardhiteal design methods address the
problem on how to model architectural design rulles,state of practice is to describe
architectural design rules in informal text. Thieans that we have to rely on manual
routines to make sure that they are followed.

This need for manual enforcement of the architettdesign rules exists of course
in traditional document based development as velhavDD, but it becomes more
of a problem in MDD. This is because MDD has auttetiahe step from detailed
design to implementation eliminating time consumauogling and code reviews, but
we still rely on error prone and time consuming oarnnterpretation and reviews to
keep the system in line with the architecture. As lvave reported earlier [20] this
makes architectural enforcement a bottleneck in Mid&senting us from reaping the
full benefits from MDD. This leads to a plethorapwbblems, for instance:

1. Stalled detailed design: The design teams have to wait for the architecteview
their overall design before they can dig deeper ihé design.

2. Premature detailed design: Design teams start detailing their design befbedrt
overall design is approved by the architect, wihih tisk that they will have to redo
much work after the review.

3. Low review quality: Low quality of the reviews, leading to problemtefain the
project.

74 Proceedings of EMMSAD 2008

4. Poor communication of architecture: The architects have no time to handle the
communication with the design teams regarding &&chiral interpretations or
problems, problems are “swept under the carpet.”

4 Modeling Architectural Design Rules

There are a large number of Architectural Desaipiianguages (ADL) [21-23],
including UML, specified for describing the arclutere of software systems. These
typically allow one to specify components with telas and interfaces together with
functional and structural constraints. They do hotvever provide any means to
specify constraints or rules on groups of concéptamponents only partly specified
by the architect that are intended to be insteadiaind detailed by designers. For
instance, in the project we reported on in [20&, éinchitects needed to specify a set of
rules on behaviour and relations on a conceptuaipcment called arcComponent
without knowing which specific arcComponents wobklrelevant. Rather, they were
to be identified and designed by the designersrdaug to the rules stated by the
architects.

The problem of modelling design rules is essentidhe same problem as
modelling the solution part of a design patterrcsithe solution specifies rules to
follow in the design. There are a number of suggeston how to formally model
design pattern specifications [24-29]. They are éxav all limited in what kind of
rules they can formalize, typically only structurales. In addition all approaches
except [28] require the architect to use matherabfiermalisms such as predicate
logic and set theory that may be unfamiliar or hiardinderstand both for architects
and developers.

Since UML is a modelling language familiar bothaxchitects and designers we
propose an approach where we use UML to specifistcaints, the architectural
design rules, on a system model also in UML. Simita[29] we propose to use a
UML profile model to constrain the system model mstead of defining constraints
of stereotypes in OCL we propose to model these nimeta-model in UML. A meta-
model defines the modelling concepts to be usechviluélding a model in the same
way that a system-model defines the elements thst i a system [30]. So, if one
uses UML in a meta-model one can model rules andtcaints on a system model in
the same way one can model rules and constraindssystem in a system model. To
use UML at the meta-model level one simply liftsthe concepts in UML up one
meta-level. These meta-model elements are thesftraned into stereotypes to be
used in the system model, carrying the constrgivesn by the meta-model. In Table
1 interpretations at the meta-model level for ttestbasic UML concepts are given.
To highlight the regularity in the interpretatidretnormal model level interpretations
are also given.

Proceedings of EMMSAD 2008

Table 1. Meta-model interpretation of UML concepts

75

UML Concept

Normal inter pretation

Meta-model inter pretation

Class

Represents a type of object
either in the system or in the
problem domain. All objects of
a class share the properties of
the class

Metaclass, represents a type class in th
system model. All the classes share the
properties of the metaclass. A metaclas
represents a stereotype applicable to
classes in the system-model

[¢]

o

Association between
class A and class B

Represents a relation between
objects of class A and class B.
For example that a person ma
own a number of cars or that a
controller controls two pumps.

MetaAssociation, represents a relation
between classes of metaclass A and
metaclass B. The multiplicity on one si
specifies how many classes a class of t|
metaclass of the other side may be
associated with. A meta-association
represents a stereotype applicable to
associations in the system model.

ne

Composition where
class A contains
Class B

Means that an object of class A
contains a number of objects 0
Class B.

MetaComposition, means that a class 0|
f MetaClass A contains a number of
classes of MetaClass B. A meta-
composition represents a stereotype
applicable to compositions in the systen
model.

f

h

Inheritance where
class B inherits class
A

Means that Class B is a subtyy
of Class A in such a way that
each object of Class B has all
the properties of Class A as
well as the properties of Class

eMetalnheritance, means that MetaClass
B is a subtype of MetaClass A in such g
way that each Class of MetaClass B ha!
all the properties of MetaClass A as we
as the properties of MetaClass B. This
may be interpreted in the way that a cla
of MetaClass B shall inherit a class of
MetaClass A since all classes of
MetaClass A has all the properties of

MetaClass A.

5 An Example

To demonstrate the approach we use an example.nfinoo method to as far as
possible model architectural design rules in thetesp model is to use a combination
of abstract classes, accompanied by design rulesatural language. This is
illustrated in the example in Fig. 1 where Obseraed Subject are abstract classes
implementing part of the Observer pattern [31] #rm& comments contain the textual
part of the design rules that apply to the elementgresented by the packages
Distribution and Data_Store.

76 Proceedings of EMMSAD 2008

The Distnbution L Obsener Subject

subsystem contans 1 _

protocols. Pratacds The classesin
Obsener Data_Store are

transport Data_kems in
the Data_Store in ard out = Update(S:Subject)oid & Notify() :woid
o the system Each :

Daa_ktemsthat dl ae
specialisations of

Protocol shdl specidise Subject. I_fdaa is

Obsener ard oeride the changed in aData_Item

Update operetion. The the Notify gperation
shal becalled.

protocol shall add itself

& an obsener to the

Data Items that it

transports aut ofthe —

system and asscciate to Distrifution Data_Store

Data Items it updates.

Fig. 1. A traditional way of modelling architectural dgsirules

If we instead model these rules in a metamodekratthan in the system model,
using UML we get a model such as that in Fig. 2 Tincles R1 to R6 point out how
the corresponding rules below, directly fetchednfrthe comments in Fig. 1, are
represented in the model.

«Package» Meta_Subject Meta_Ob server «Package»
Data_Store Distribution

* Observer

& Notify():void Subject 7| EUpdate(s:Subject):void

> 1

L] @

{self.Trangported_Out =self.Subject}

Data_ltem * / ’ . \ Protocol
Transported_Out Tran sporter \
d L éU te(S:Subject)void
& xxx(om =):xox Transported_In pd ate(S:Subject)voi
XXX(XXN): XXX

{
A'= Attributes.value

if A" < Attributes.value then Notify()
}

Fig. 2. Observer pattern in a meta-mbde

R1. “The Distribution subsystem contains protocols”
R2. “Protocols transport Data_Items in the Data_Storand out of the system.”
R3. “Each Protocol shall specialise Observer and oderttie Update operation.”

Proceedings of EMMSAD 2008 77

R4. “The protocol shall add itself as an observer @ Etata_ltems that it transports
out of the system and associate to Data_Itemiitgs”

R5. “The classes in Data Store are Data_ltems thatawdl specialisations of
Subject.”

R6. “If data is changed in a Data_Item the Notify opierashall be called.”

A system model conforming to this model is for amste the one ifFig. 3. This
figure also shows how the classes in the metambdeté been transformed into
stereotypes. A non conforming model would be oms tlad more than one protocol
that “transported_in" any of the data items or tm& had a protocol associated with
another protocol. This simple example shows thit [itossible to model architectural
rules at the meta-model level that is not posdibblmodel at the system-model level,
in a straight forward way in standard UML.

«Subject» «Observer
Subject * Obsener
«Obs ervem
BN otify():void B Update(S:Subjec:v..
N
Data_Sporen S
Distribution
Dara_ptore Disﬁibution/ ‘
«Data_ltem» \
Turret_Direction «Protoc ob»
1 Vehicle_X_Prot
«Transported_In»
«Data_ltem» B Update(S:Subject):void
Hit
«Trarjsporied_Out» <Protocoh
Simulator_Prot
1
«Transported_In» S Update(S:Subjec):woid

Fig. 3. System-model conforming to the meta-model

6 Summary and Future Research

Architectural deign rules are an important partthad architecture and there are no
complete solutions on how to model them in the entrrbody of literature. This
means that we have to rely on laborious and emmngpmanual work to enforce the
architectural rules on the system design. In th@ecd of MDD this poses an anomaly
since MDD rely on models to automate non-creatasks. This paper presents an
idea on how to solve this problem based entirelgtamdard UML in a way familiar
to both architects and designers that at the samee dre amendable to automation.
We are now extending this work in the followingeditions:

» Document architectural rules of full industrial ®ms using this technique.

78 Proceedings of EMMSAD 2008

» Formalizing the connection between stereotypesldvitl constructs in the meta-
model and to extend it to behavioural constructs.

» Develop tooling for checking a system model agaamshitectural rules in a meta-
model.

e Testing the approach in a running project to gedfack on the usability in
practice.

Acknowledgements. This research has been financially supported by ITHeA
project COSI (Co-development using inner & Openrseun Software Intensive
products) (http://itea-cosi.org) through Vinnovétgh//www.vinnova.se/).

References

1. Hailpern, B., Tarr, P.: Model-driven developmefihe good, the bad, and the ugly. IBM
Systems Journal 45 (2006) 451-461
2. Jansen, A., Bosch, J.: Software Architecture &etof Architectural Design Decisions.
Proceedings of the Fifth Working IEEE/IFIP Conferemn Software Architecture (WICSA
05) (2005) 109-120
. Jansen, A., Bosch, J.: Evaluation of tool supfaorarchitectural evolution. (2004) 375-378
. Jansen, A, van der Ven, J., Avgeriou, P., HammeK.: Tool Support for Architectural
Decisions. Proceedings of the Sixth Working IEERIFConference on Software
Architecture (WICSA 07), Mumbay, India (2007) 44-53
5. Kruchten, P.: An ontology of architectural desigecisions in software intensive systems.
2nd Groningen Workshop on Software Variability (2D64-61
6. Kruchten, P., Lago, P., van Vliet, H.: Buildingoldnd Reasoning About Architectural
Knowledge. Quality of Software Architectures, VdR14. Springer Berlin / Heidelberg
(2006) 43-58
7. Tyree, J., Akerman, A.: Architecture decisiodemystifying architecture. IEEE Software
22 (2005) 19-27
8. IEEE: IEEE Recommended Practice for Architectiakcription of Software-Intensive
Systems. IEEE (2000)
9. Bass, L., Clements, P., Kazman, R.: Software attite in practice. Addison-Wesley,
Boston (2003)
10.Kruchten, P.B.: The 4+1 View Model of architeetdEEE Software 12 (1995) 42-50
11.Bosch, J.: Design and use of software architestuadopting and evolving a product-line
approach. Addison-Wesley, Reading, MA (2000)
12.Hofmeister, C., Kruchten, P., Nord, R.L., Obbhitk, Ran, A., America, P.: A general
model of software architecture design derived fribre industrial approaches. Journal of
Systems and Software In Press, Corrected Proof 2006
13.Shaw, M., DeLine, R., Klein, D.V., Ross, T.L.,0fm, D.M., Zelesnik, G.: Abstractions for
software architecture and tools to support therBBHransactions on Software Engineering
21 (1995) 314-335
14.Perry, D.E., Wolf, A.L.: Foundations for theudy of software architecture. SIGSOFT
Software Engineering Notes 17 (1992) 40-52
15.Buschmann, F.: Pattern-oriented software arctoite: a system of patterns. Wiley,
Chichester ; New York (1996)
16.0MG: MDA Guide version 1.0.1. OMG (2003)

AW

Proceedings of EMMSAD 2008 79

17.Karsai, G., Sztipanovits, J., Ledeczi, A., Bapt.: Model-integrated development of
embedded software. Proceedings of the IEEE 91 (2D083164

18.Tolvanen, J.P., Kelly, S.: Defining domain-specenodeling languages to automate product
derivation: collected experiences. Software Prodines 9th International Conference,
SPLC 2005 Proceedings Lecture Notes in Computer &ieviol. 3714. Springer (2005)
198-209

19.Greenfield, J., Short, K.: Software factori@ssembling applications with patterns, models,
frameworks, and tools. Wiley Pub., Indianapolis, A (2004)

20.Mattsson, A., Lundell, B., Lings, B., FitzgeralB,: Experiences from Representing
Software Architecture in a Large Industrial Projédsing Model Driven Development.
Proceedings of the Second Workshop on SHAring angsiRg architectural Knowledge
Architecture, Rationale, and Design Intent. IEEE @ater Society, Minneapolis, USA
(2007)

21.Medvidovic, N., Taylor, R.N.: A classificatiomé comparison framework for software
architecture description languages. |IEEE Transastmn Software Engineering 26 (2000)
70-93

22.Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Mag architectural description from under
the technology lamppost. Information and Softwaeetihology 49 (2007) 12-31

23.Medvidovic, N., Rosenblum, D., S., Redmiles, B, ,Robbins Jason, E.: Modeling software
architectures in the Unified Modeling Language. ACMansactions on Software
Engineering and Methodologies. 11 (2002) 2-57

24.Mikkonen, T.: Formalizing design patterns. $afte Engineering, 1998. Proceedings of the
1998 (20th) International Conference on (1998) 128-

25.Lauder, A., Kent, S.: Precise Visual Specifaratof Design Patterns. Proceedings of the
12th European Conference on Object-Oriented Progmagir8pringer-Verlag (1998)

26.Eden, A.H.: A Theory of Object-Oriented Desigmformation Systems Frontiers 4 (2002)
379-391

27.Bayley, l.: Formalising Design Patterns in Pegath Logic. Software Engineering and
Formal Methods, 2007. SEFM 2007. Fifth IEEE Intéioreal Conference on (2007) 25-36

28.Mak, J.K.H., Choy, C.S.T., Lun, D.P.K.: Precisedeling of design patterns in UML.
Software Engineering, 2004. ICSE 2004. Proceedi@gth International Conference on
(2004) 252-261

29.Zdun, U., Avgeriou, P.: Modeling architectuggtterns using architectural primitives.
Proceedings of the 20th annual ACM SIGPLAN confeeenen Object oriented
programming, systems, languages, and applicat®@sl, San Diego, CA, USA (2005)

30.Atkinson, C., Kuhne, T.: Model-driven developmeA metamodeling foundation. IEEE
Software 20 (2003) 36-41

31.Gamma, E.: Design patterns : elements of réeisabject-oriented software. Addison-
Wesley, Reading, Mass. (1995)

