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Abstract  
The suggested hybrid neural biosystem model provides an explanation for the condition and 

behavior of limb tremors by utilizing the propagation of wave signals. Specifically, it focuses 

on the segmental depiction of 3D trajectories of atypical neurological movements in the 

examined part of the body, while considering the matrix of cognitive influences from groups 

of neuroobjects in the central nervous system. Through the application of a hybrid integral 

transformation, which incorporates Fourier, Bessel, and Hilbert transforms, we have achieved 

a high-speed analytical solution to the model. This solution is presented in the form of a vector 

function that characterizes the 3D elements of trajectories during each segment of movement. 

Additionally, we introduce a methodology for calculating the hybrid spectral motion function, 

a system of orthogonal basic functions, and spectral values. These components form the 

foundation of the proposed hybrid transformation, offering integral vector solutions for the 

model. These solutions describe the elements of abnormal neurological movements trajectories 

and the distribution of absorbed components, taking into account feedback effects at both 

macro and micro levels. 

Keywords  
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1. Introduction 

The development of cutting-edge scientific models was driven by the collaborative efforts with 

French research institutions, including the University of Pierre and Marie Curie Sorbonne Paris 6, the 

Institute of Brain and Spinal Cord, and the Higher School of Industrial Physics and Chemistry in Paris. 

In this research, the authors have introduced innovative hybrid models to analyze the propagation of 

wave signals, aiming to understand the state and behavior of abnormal neurological movements (ANM) 

in specific body parts of a subject, referred to as T-objects. These movements are influenced by a 

particular group of neural nodes known as cerebral cortex (CC) neuro-objects. 

These models are built on the foundation of integrated transforms and spectral analysis techniques 

tailored for various types of media. The research employs parallelization and component-wise 

assessment of interactions, resulting in explicit expressions for gradients of incoherent functionals. This 

approach facilitates the implementation of gradient methods for the identification of internal and 

external parameters. 

The proposed hybrid model for neuro-biosystems provides a comprehensive description of the state 

and behavior of T-objects, focusing on the segmental depiction of 3D-trajectories associated with 
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abnormal neurological movements in a specific part (limb) of the T-object's body, taking neuro-objects 

into account. High-speed analytical solutions for the model, which describe trajectories for each 

neuromovement segment in vector form, are obtained using hybrid integral Fourier transformations. A 

novel method for calculating the hybrid spectral function of movement, a system of orthogonal basic 

functions, and spectral values form the basis of the proposed hybrid transformation, offering an 

integrated vector solution for the model. 

2.  A comprehensive approach and analytical instruments for diagnosing 
neurological conditions in T-objects utilizing the hybrid ANM model 

These studies primarily emphasize the investigation of parameters pertaining to normal 

physiological conditions and behaviors, particularly the typical wave-like movements observed in 

specific body regions. To analyze these parameters, conventional digital processing techniques relying 

on integral Fourier transforms were employed. In prior works [2-3], cognitive feedback connections 

were roughly approximated through the utilization of methods and software technologies related to 

neural networks. 

The methodology is founded on a hybrid model of the neuro-system, incorporating СС nodes and 

the tremor-object. This model was developed based on the theory of wave signal propagation and serves 

to delineate the states and behaviors of T-objects. It facilitates a segment-by-segment description of the 

3D elements within the movements trajectories of the examined T-object, particularly focusing on the 

limbs of the hand. The model takes into consideration the matrix of cognitive influences emanating 

from groups of СС neuro-nodes on motion segments. These elements encompass the components of 

the hybrid spectral function across all signal segments. To dissect intricate ANM movements into more 

straightforward elements, the number of partitions can be flexibly selected, depending on the 

complexity of the ANM patterns. The mathematical model is designed to yield quantitative parameters 

related to tremors. An integral aspect of this method for analyzing the ANM data of a T-object is the 

remarkable capability to obtain a frequency response. This is achieved by applying a hybrid integral 

Fourier transform and employing digital signal processing techniques on hybrid spectral functions and 

spectral values [7, 8]. 

An electronic pen is employed for the recognition of handwritten content, including numbers, text, 

and template drawings, as well as for capturing and digitizing arbitrary movements of the hand. We 

have introduced a graphic digital pen device equipped with a built-in 3D microaccelerometer for 

conducting diagnostic assessments. The microcontroller is responsible for reading and processing data 

obtained from a three-axis acceleration sensor (microaccelerometer). In accordance with the proposed 

formulas, the system calculates the instantaneous coordinates of the accelerometer's position in space 

[8, 9]. Concurrently, data regarding the electronic pen's motion across the graphics tablet surface is 

collected. 

Upon detecting zero pressure from the pen on the tablet's sensitive surface, signifying the pen's 

detachment from the surface, crucial information about the pen's movements is extracted from the 

microaccelerometer displays. This facilitates the determination of the instantaneous coordinates of the  

Micro-Electro-Mechanical Systems (MEMS) accelerometer's position in space, thereby ensuring the 

comprehensive acquisition of data pertaining to the trajectory of the ANM for the T-object and 

enhancing the data's reliability. 

 



   

 

   

 

 
Figure 1: A 3D model of the ANM in the T-object, derived from data acquired via a microaccelerometer 

 

The digitized pen position data is transmitted to the PC. This enhancement significantly bolsters 

the system's reliability in identifying the ANM of the T-object by integrating the tablet's sensitive 

element with an electronic pen and the embedded MEMS accelerometer. 

The data pertaining to pen movements are utilized to generate a 3D model of the T-object's ANM, 

displayed in a graphical interface. This interface allows for the deconstruction of intricate 3D 

movements into three possible projections, enabling subsequent analysis of each projection. This 

analytical capability supports the selection of the most decisive parameters for ANM identification 

and comprehensive assessment [10]. 

3. The formulation and approach for the direct solution of inhomogeneous 
boundary value problems in the context of ANM analysis, considering the 
impact of cognitive feedback influences 

As a result of this phenomenon, the patterns observed in electroencephalography (EEG) signals from 

neural nodes governing oscillatory neurological movements exhibit correlations. In essence, these 

correlations play a pivotal role in shaping the dynamics of the ANM for each segment of the track 

(referred to as the j-th segment), where n1 represents the number of division points for the abnormal 

neurological movements trajectories track (as depicted in Fig. 1). The division can be automatically 

configured in a flexible manner, accommodating any finite number of segments, each of which may 

possess varying lengths contingent upon the intricacy of the traffic areas and the selection of suitable 

basis functions. These basis functions are crucial for constructing acceptable dependencies for their 

approximation [13, 14]. Various criteria can be employed to determine the lengths of the partition 

elements, such as the amplitude characteristics of individual trends within the oscillating ANM 

trajectory [6, 7]. 

Mathematical Formulation of the Problem: 

In accordance with the specified physical principles within the realm of neurological analysis, we 

can express the direct inhomogeneous initial-boundary value problem for ascertaining the parameters 

associated with the ANM of a T-object through a system of equations [6, 7]. 
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Additionally, it involves homogeneous boundary conditions and a set of interface conditions: 
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Here (1.1) is a system of wave equations describing the ANM trajectories of tremor on each j-th 

segment of the trajectory 
11, 1, 1..3kj n k= + =  depending on the resulting action of the set of signals 

( )* , ,jS t z  arriving from EEG-sensors for a certain set of KGM neural nodes that control the behavior of the 

studied T-object, 
1, 1, 1, 1..3

kj kb j n k= + =  - components of the phase velocity of propagation of the ANM 

waves, which are the amplitude characteristics of the wave tremor motion; 
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 - an adaptive matrix determines 

the connections and feedback-effects of specific KGM neuronodules on individual small segments of the 

ANR-track. The matrix element 
kj i  is a weighting coefficient (from 0 to 1), which determines the integral 

influence of the i-th neuronode 
iS  on the 

k
j -th segment of motion (determined by machine learning methods 

based on data mining [13]. The interface conditions (1.3), (1.4) ensure the continuity and integrity of the 

solution of the problem for the entire multicomponent domain of its definition. 

 

Development of an analytical solution for the boundary value problem related to ANM. 

To establish an analytical solution for the direct inhomogeneous problem, denoted as (1) - (4), we 

employ the Hybrid Integral Fourier Transform (HIFT) as previously defined in [12]. This 

transformation relies on hybrid integral operators presented in matrix form. 

- of direct action: 
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- of reverse action: 
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It has been determined that the array of spectral values forms a monotonically ascending sequence 

that extends to positive infinity + ∞. Leveraging this observation, a recursive approach is introduced 

for computing the constituents of the hybrid spectral function of ANM. This  methodology focuses on 

the identification of a set of orthogonal basic functions and serves as the foundation for the proposed 

hybrid transformation.  The process ultimately results in an exhaustive vector solution pertinent to the 

theoretical mode: 
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Following this, we represent the system of equations (7) and the conditions (8) for the boundary 

value problem (1) - (4) using matrix notation: 
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Applying to problem (9) the direct-action HIPF integral operator 
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- hybrid Fourier differential operator,  - is the 

Heaviside step unit function, we obtain the Cauchy problem: 
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whose solution is the function [12, 13]: 
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Applying to (10) the inverse integral GIPF operator 
1

1

nF −
 (6), after transformations, we obtain a 

unique solution to the homogeneous boundary value problem of ANM (1.1) - (1.4): 
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Here, the impact matrix is the response of the ANM system to the influence of the k-th segment of 

the resulting action of signals 
*

kS  a certain set of CC-neural nodes on the j-segment of the ANM track: 
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4. Identification of AMM amplitude components. Inverse inhomogeneous boundary value 

problem taking into account the cognitive feedback-influences of the neuro-nodes of the CC 

Choice of residual functional. It is assumed that the amplitude components of the phase velocity 

of propagation of the ANM wave 
k 1, 1, 1b k n= +

 
boundary value problem (1) - (4) are unknown 

functions of time. However, on the surfaces of the regions 
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inhomogeneous medium, traces of solutions (trajectories of the ANR) 
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The challenge of functionally identifying the amplitude parameters of ANM. The issue, as 

described in (1) - (4), requires a solution that involves implementing a procedure for the functional 

identification of the amplitude components of the phase velocity of ANM propagation. 
2

1, 1, 1kb k n= +  as a function of time and conditions, known decoupling traces for each sufficiently 

thin k-th segment, 11, 1k n= + , is transformed into a direct boundary value problem (15) - (17) as a 

system of homogeneous initial boundary value problems for successive thin segments of the ANR: 
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Boundary conditions on each of the thin segments of the ANM on Z coordinate: 
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Choice of residual functional. It is assumed that the components of the phase velocity of 

propagation of the ANM wave 
1, 1, 1b k n= +

 
of the boundary value problem (15) - (17) are unknown 

functions of time. With known values of the pen position ),( ztu
k

 at observation points on segments 

of the ANM 
1, 1, 1k k k n   = +  : 
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the initial-boundary value problem (15) - (17) can be considered for each point z for each thin k1-th 

segment of the ANM trace and will consist in finding the functions 
kb D , where 
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The residual functional of the deviation of the solution from its traces on 
1 1k k  , and can be 

obtained as follows  
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Approach for addressing the direct boundary value identification problem. The process of 

constructing and providing mathematical support for the problem's solution is achieved through the 

application of the finite integral Fourier transform [12, 13]. By utilizing integral operators [10], we 

apply them to the problem outlined in (15) - (17)::  
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the Cauchy problem is obtained: 
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The unique solution to the Cauchy problem (1.21), (1.22) has the form: 
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Passing to the originals in (23), we obtain a unique solution to the original boundary value 

problem (15) - (17) in the classical form. 
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Here, the components of the influence vectors have the form: 
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The solution (24) to the problem described in (15) - (17) undergoes a sequence of transformations, 

leading it to a format that is both convenient and efficient for numerical iterative computations and for 

application in parameter identification procedures. By integrating, substituting explicit expressions for 

influence functions, and conducting several transformations, the equations (25) are simplified into 

straightforward algebraic expressions that are highly suitable for the identification process. This 

eliminates the necessity for iterations in this phase of the regularization identification process, markedly 

enhancing the overall efficiency. Thus, after integration, we arrive at the following result: 
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After substituting expressions (26) into (24), we finally obtain: 
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Formulas for the gradient components. We derive analytical expressions for the gradient 

components of the residual functional: 
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In the context of the functional identification problem, we derive the subsequent formulas for the 

gradient components of the residual functional: 
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Regularization expressions for the n+1 -th step of defining the identifying functional 

dependency. Using the method of minimum errors to determine the dependence of the identification of 

the amplitude components of the phase velocity of propagation of the ANM-wave 𝑏̃
k

l

𝑛+1 on time for 

each kl - th element of the ANM 
11, 1, 1..3kl n k= + = , we obtain  
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A valuable and efficient approach to scrutinize the acquired outcomes is through cyclic 

computations, wherein the analyzed data sets are progressively reduced in proportion. In essence, 

estimates are derived and compared at each iteration of the analyzed data constraints. These results, 

illustrated in the form of frequency and amplitude characteristics, serve as the fundamental components 

for assessing a patient's condition via computerized diagnostic methods. Integral aspects of this 

development encompass algorithms for obtaining simulated system parameters, the capability to 

visually represent the obtained outcomes, and the necessity for dynamically adjusting system 

parameters. 

These factors collectively enhance the presentation of results, providing greater clarity, and 

promoting the focused utilization of the technology. A successful feature of this advancement is its 

deployment as an autonomous module, functioning as a library that permits the continuous 

enhancement of methods and the sustainability of research relevance. 

 

 

 



   

 

   

 

5. Displaying the digital analysis of the patient's movement trajectory 

As illustrated in Fig. 2, these movements exhibit significant heterogeneity, featuring numerous segments 

with pronounced high-amplitude and high-frequency abnormal movements. To enhance the visualization of 

the trajectory graph for the ANM of the T-object, as depicted in Fig. 1, it is presented in a temporal-spatial 

format. In this format, the sections of the oscillating abnormal movement trajectories become clearly 

discernible, revealing their dependence on time and their remarkable variation within short time intervals 

(Fig. 2). 

To conduct a more detailed examination of these ANM movement segments, they can be subdivided 

according to specific time intervals under study. This allows for the investigation of their real amplitude and 

frequency characteristics concerning the integral time distributions of cognitive signals from the CC nodes. 

 
Figure 2: Temporal-spatial representation of the ANM in the T-object, highlighting specific segments 
characterized by intense vibrational abnormal movements that vary with time within short intervals. 

6. Conclusions 

We have developed a hybrid model of a neuro-bio-system that elucidates the state and behavior of 

the 3D elements within the trajectories of abnormal movements in T-objects. This model takes into 

consideration the matrix of cognitive influences originating from groups of neuro-nodes in the cerebral 

cortex. Utilizing the techniques of hybrid integral Fourier transforms, we propose high-performance 

algorithms for the identification of parameters in the studied feedback systems. These algorithms enable 

component-wise estimation of mutual influences by explicit expressions for the gradients of the residual 

functional, facilitating parallel computations on multi-core computers. 

In contrast to the conventional classical approach, our proposed hybrid model prioritizes a deep 

decomposition of the system while preserving its integrity and essential connections. This approach 

allows for a more comprehensive description of the complex underlying mechanisms, especially those 

involving numerous internal connections and cognitive feedback influences. It enhances data 

completeness, which was previously overlooked during conventional statistical processing. 

The software implementation in this manner enhances adaptability and ease of integration into 

diverse systems for research purposes. Mathematical methods, specifically their calculation algorithms, 

have been translated into a set of classes with associated methods that emulate their functionality. 

Software modules, classes, and their interactions have been consolidated into a unified library module, 

fostering the versatile use of the input data analysis method across various practical applications and 
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programs.By incorporating the 3D microaccelerometer module within the digital pen of a graphics 

tablet, we maintain the existing high measurement accuracy while additionally gaining the capability 

to monitor the separation of the pen from the surface along the Xz-axes. 
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