CEUR-WS.org/Vol-3648/paper_3468.pdf

C

CEUR

Workshop
Proceedings

The DyLoPro Library: Comprehensively Profiling the
Dynamics of Event Logs by Means of Visual Analytics

Brecht Wuyts’, Hans Weytjens’, Seppe vanden Broucke? and Jochen De Weerdt!

'LIRIS, Faculty of Economics and Business, KU Leuven, Leuven, Belgium

?Department of Business Informatics and Operations Management, Ghent University

Abstract

In Process Mining, a notable issue arises due to the discrepancy between prevailing techniques, which
assume constancy in business processes, and the actuality of modern business processes characterized by
frequent changes. As this discrepancy can lead to biased results, it is crucial that such drifts are detected
and understood, prior to applying other PM techniques on the corresponding event logs. However, such
drifts in event logs can manifest in different forms (sudden, gradual, recurring, incremental) and occur
in many different process perspectives (control-flow, data, performance). This necessitates approaches
that holistically and efficiently delve into the temporal dynamics present in event logs. Therefore, in
this paper, we present the DyLoPro Python library, a visual analytics tool that enables PM practitioners
to efficiently and comprehensively explore event log dynamics over time, and which caters to all kinds
of event logs. This demo paper aims to familiarize Process Mining practitioners with the DyLoPro library,
showcasing its main capabilities, and encouraging the Process Mining field to take the time dimension
into greater consideration in all stages of their projects.

Keywords
Process Mining, Event Logs, EDA, DyLoPro, Visual Analytics, Python

1. Introduction

Event logs violating Process Mining [1] techniques’ ubiquitous assumption of stationary
processes, will induce a significant, yet oftentimes unnoticed bias in their results, potentially
resulting in flawed conclusions. Therefore, it is imperative that the dynamics are analyzed
and potential drifts are identified prior to the application of PM techniques. However, many
different forms of drift exist, and drifts can occur in different process perspectives (control-flow,
resource, data, performance). This multi-perspective property, together with the sequential
nature of event logs, complicates the process of studying event log dynamics over time. One
intuitive and powerful manner in which event log dynamics over time could be analyzed, is by
means of visualizations. Dotted charts [2] allow for such a multi-dimensional exploration of
the dynamics over time, and are offered by several open-source PM tools such as ProM [3] and
PMA4PY [4]. However, dotted charts visualize every event, which makes it hard and cumbersome
to entirely visualize the dynamics of large real-life event logs. Another interesting tool that

& brecht.wuyts@kuleuven.be (B. Wuyts)
® 0000-0001-6079-7515 (B. Wuyts); 0000-0003-4985-0367 (H. Weytjens); 0000-0002-8781-3906 (S. v. Broucke);
0000-0001-6151-0504 (J. D. Weerdt)

© 2023 Author:Pleasefillinthe\copyrightclause macro

CEUR Workshop Proceedings (CEUR-WS.org)

mailto:brecht.wuyts@kuleuven.be
https://orcid.org/0000-0001-6079-7515
https://orcid.org/0000-0003-4985-0367
https://orcid.org/0000-0002-8781-3906
https://orcid.org/0000-0001-6151-0504
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org

Brecht Wuyts et al. CEUR Workshop Proceedings 1-5

provides functionality to visualize dynamics over time, is the Performance Spectrum Miner
(PSM) [5]. The PSM focuses solely on visualizing the evolution of the time elapsed between a
pair of two consecutive activities. Nevertheless, to the best of our knowledge, no comprehensive
tool has been developed to efficiently explore the dynamics in an event log over time.

This gap is addressed by the recently introduced Dynamic Log Profiling (DyLoPro) framework [6],
and its complementary Python library, which we present in this paper. On the one hand, the
visual analytics [6] framework enables PM practitioners to conduct a comprehensive analysis
of the dynamics of event logs over time, from various process perspectives, both individually
and combined with the performance perspective. The complementary DyLoPro library, on the
other hand, provides users with a ready-to-use and user-friendly Python implementation of this
framework, thereby empowering users to leverage the framework’s comprehensive visualization
capabilities in an efficient way, too.

2. DyLoPro - the Python Library

2.1. Architecture and Intended Use

The DyLoPro library implements and extends the eponymous framework [6], whose comprehen-
siveness is achieved through the incorporation of the main process perspectives - the control-flow,
data (including resources) and performance, along two orthogonal dimensions of log concepts and
representation types. Accordingly, the DyLoPro library provides functionality to construct and
visualize time series, i.e. the log dynamics, for a variety of log concepts, while for each log concept,
the dynamics can be represented using several different representation types. All these visual-
ization capabilities can be accessed and customized by invoking the appropriate methods on the
initialized DynamicLogPlots instance, and specifying the desired values for their parameters,
respectively. Accordingly, first of all, a DynamicLogPlots instance has to be initialized. The
DynamicLogPlots class provides one single source of access to the library’s functionalities, and
thereby serves as the interface between the users’ Python environment and DyLoPro’s underlying
computational logic. Initializing a DynamicLogPlots instance involves specifying a number of
required arguments, including the event log that should be loaded into a pandas [7] DataFrame ob-
ject, and a number of optional arguments. Secondly, after specifying the arguments, the software
will first validate the arguments. If an error was found, the software will raise an adequate error,
with a dedicated message describing the error and how to resolve it. If no errors are found, the
log is preprocessed in an internal format that allows DyLoPro to efficiently compute and visualize
all aggregations on an on-demand basis, as illustrated in Fig. 1'. For a more elaborate explanation
detailing the way in which the framework is implemented into the library and consequently how
to access DyLoPro’s extensive capabilities, please refer to the ‘Get Started’ section of the project
description®. A brief demonstration video can be found at https://youtu.be/Z9hqpkGbta0.

'Data used: https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1
*See Footnote 5 or 6.

https://youtu.be/Z9hqpkGbta0
https://doi.org/10.4121/uuid:d06aff4b-79f0-45e6-8ec8-e19730c248f1

Brecht Wuyts et al. CEUR Workshop Proceedings 1-5

2.2. Functionality

After having successfully initialized a DynamicLogPlots instance, all functionality can easily
be accessed by invoking the corresponding methods on this instance (e.g. Fig. 1. As already
mentioned, the DyLoPro library implements the identically named framework, proposed in [6],
which consists of three stages, (1) log discretization, (2) domain definition, and (3) time series
construction & visualization.

Log discretization boils down to subdividing the event log into equal length® sublogs. Domain
definition amounts to defining how to capture and represent event log dynamics over time. This
involves defining log concepts, which refer to the primary dimensions used to capture the dynamics
of event logs, and representation types, which determine how the dynamics of the event logs
should be represented and analyzed for each log concept. The domain definition, i.e. the resulting
log concept - representation type combination, translates into a unique domain-specific mapping
function. Finally, time series construction & visualization basically comes down to applying that
mapping function to each of the (chronologically ordered) sublogs of the log discretization, thereby
yielding several time series.

The functionality provided by the framework is implemented as follows. Each of the six log
concepts defined in [6] is assigned one or two dedicated plotting methods (see Table 1). Given

Table 1
Note that the functionality can be continuously extended. The reader is referred to the documentation
page for the most recent version of DyLoPro.

’ ‘ Log Concept Method 1 Method 2
1 Variants topK_variants_evol() variants_evol()
2 | Directly-Follows Relations topK_dfr_evol() dfr_evol()
3 | Categorical Case Feature topK_categorical_caseftr_evol() /
4 Numerical Case Features num_casefts_evol() /
5 | Categorical Event Feature | topK_categorical_eventftr_evol() /
6 | Numerical Event Features num_eventfts_evol() /

a certain log concept and an associated plotting method, both the log discretization and the con-
cept’s representation type can simply be configured by customizing the method’s arguments.
More specifically, the log discretization can be configured by specifying the frequency param-
eter (e.g. “weekly’), which determines the frequency by which cases are grouped together, and
the case_assignment parameter (e.g. ’first_event’), which determines the condition upon
which each case is assigned to one of the time periods. The representation type can be chosen
by specifying each method’s p1t_type parameter. To illustrate, the third command in Fig. 1
generates, for the 10 most frequently occurring variants (max_k=10), time series according
to the ’throughput time’ representation type (p1t_type="type_tt’), while each consecutive
value in each of the time series is calculated by aggregating® over a sublog covering one week
(frequency="weekly’), and containing all cases of which the first event occurred during that
specific week (case_assignment="first_event’). The third and final stage, time series con-

»Equal length’ means that each sublog covers an equal-length time period.
*In this case, the aggregation corresponds to computing the mean for each sublog (numeric_agg="mean’).

Brecht Wuyts et al. CEUR Workshop Proceedings 1-5

struction & visualization, simply corresponds to the execution of the specified plotting method.

Table 1 lists all six concepts introduced in [6], together with their visualization methods. In addi-
tion to the common hyperparameters just discussed, each of the plotting methods is also equipped
with additional configuration parameters, providing users with even more flexibility on the fly.
For more information about DyLoPro’s methods and their parameters, the reader is referred to the
documentation page (see Section 3). The DyLoPro library not only implements the framework (see
Table 1), but also extends it, with new functionality added over time when needed. Several auxil-
iary methods are also provided to, e.g., enable the user to adjust the initialized DynamicLogPlots
instance after initialization, or for example to query DataFrames containing the string represen-
tations of the most frequently occurring variants or directly-follows relations. Again, please refer
to the extensive documentation page for an up-to-date overview of all of DyLoPro’s functionality.

Import the DyLoPro library
import DyLoPro as dlp
Initia g a DynamicLogPlots object
plot_object = dlp.DynamicLogPlots(event_log,
case_id_key,
activity_key,
timestamp_key,
categorical_casefeatures,
numerical_casefeatures,
categorical_eventfeatures,
numerical_eventfeatures,
start_date,
end_date,
outcome)
Invoking a visualization method on plot_obj
plot_object.topk_variants_evol(time_unit="'
frequency="weekly',
case_assignment="first_event’,

plt_type = 'type_tt’,
numeric_agg="mean’,
max_k = 18,

xtr_outlier_rem = False)

NN * N N

Figure 1: Example DyLoPro code: after having correctly initialized a DynamicLogPlots object, all of
DyLoPro’s capabilities can easily be accessed by invoking the desired methods on the initialized object. All
arguments used for initializing the object are assumed to be already specified. The invoked visualization
method generates, i.a., for each of the 70 most frequently occurring variants, the weekly mean throughput
time of cases pertaining to that particular variant, vs. cases pertaining to all other variants (and of which
the first event occurred in that week).

Brecht Wuyts et al. CEUR Workshop Proceedings 1-5

3. DyLoPro’s Maturity

DyLoPro was first released on PyPI° on 18/06/2023. As we move forward, it will be continuously
monitored, and new releases will be launched whenever necessary to ensure the best possible
performance and features for its users. Moreover, DyLoPro is equipped with an encompassing
GitHub repository®. This repository serves as a centralized hub for collaborative development
and houses essential elements to foster a thriving open-source PM community. Additionally,
DyLoPro offers an extensive Read the Docs page7, which documents, i.a., how to initialize a
DynamicLogPlots instance, and its visualization methods.

Furthermore, within a separate repository®, we present case studies that leveraged DyLoPro to
examine the dynamics of various public real-life event logs frequently referenced in PM literature.
These case studies identify and further examine various remarkable patterns and problems in
anumber of these event logs. By increasing transparency and understanding of these intricate
datasets, our case studies aim to improve the validity and accuracy of research relying on these
event logs. As part of an ongoing effort, the repository will continue to grow with additional case
studies of additional public event logs over time. Moreover, these case studies also contribute to
an improved understanding of the use and accessibility of DyLoPro’s extensive array of plotting
methods.

References

[1] W.M.P.van der Aalst, Process Mining: Data Science in Action, 2 ed., Springer, Heidelberg,
2016.doi:10.1007/978-3-662-49851-4.

[2] M. Song, W. Aalst, Supporting process mining by showing events at a glance, Proceedings
of 17th Annual Workshop on Information Technologies and Systems (WITS 2007) (2007)
139-145.

[3] B.F. van Dongen, A. K. A. de Medeiros, H. M. W. Verbeek, A. J. M. M. Weijters, W. M. P.
van der Aalst, The prom framework: A new era in process mining tool support, in: G. Ciardo,
P. Darondeau (Eds.), Applications and Theory of Petri Nets 2005, Springer Berlin Heidelberg,
Berlin, Heidelberg, 2005, pp. 444-454.

[4] A.Berti, S. van Zelst, W. Aalst, Process mining for python (pm4py): Bridging the gap between
process- and data science, 2019.

[5] V. Denisov, E. Belkina, D. Fahland, W. Aalst, The performance spectrum miner: Visual
analytics for fine-grained performance analysis of processes, 2018.

[6] B. Wuyts, H. Weytjens, S. vanden Broucke, J. De Weerdt, DyLoPro: Profiling the dynamics
of event logs, in: C. Di Francescomarino, A. Burattin, C. Janiesch, S. Sadiq (Eds.), Business
Process Management, Springer Nature Switzerland, Cham, 2023, pp. 146-162.

[7] Wes McKinney, Data Structures for Statistical Computing in Python, in: Stéfan van der
Walt, Jarrod Millman (Eds.), Proceedings of the 9th Python in Science Conference, 2010,
pp- 56 —61.doi:10.25080/Majora-92bf1922-00a.

*https://pypi.org/project/DyLoPro
Shttps://github.com/BrechtWts/DyLoPro
"https://dylopro.readthedocs.io
®https://github.com/BrechtWts/DyLoPro_CaseStudies

http://dx.doi.org/10.1007/978-3-662-49851-4
http://dx.doi.org/10.25080/Majora-92bf1922-00a
https://pypi.org/project/DyLoPro
https://github.com/BrechtWts/DyLoPro
https://dylopro.readthedocs.io
https://github.com/BrechtWts/DyLoPro_CaseStudies

	1 Introduction
	2 DyLoPro - the Python Library
	2.1 Architecture and Intended Use
	2.2 Functionality

	3 DyLoPro's Maturity

