
ASP-Based Log Generation with Purposes in

Declare4Py

Ivan Donadello1,*, Fabrizio Maria Maggi1, Francesco Riva2 and Manpreet Singh3

1Free University of Bozen-Bolzano, Bolzano, Italy
2Datalane SRL, Verona, Italy
3Wuerth Italia Srl, Egna, Italy

Abstract

Process mining techniques are meant to extract non-trivial information from complex data. Controlled
experiments of the algorithms underlying process mining techniques often require logs of process
executions that fit the specific purposes of each specific test. Therefore, many tools for the log generation
from both procedural models (e.g., Petri nets or BPMN models) and declarative models (e.g., based on
LTL𝑓 or Declare) have been developed. However, the log generation from declarative models still
lacks tools for log generation that address specific purposes such as the specification of trace length
distributions, the setting of the number of variants that should appear in the log, or the specification of
the number of activations of a constraint that should be contained in a trace. We address this research
gap by proposing an extension of the Declare4Py Python library that generates synthetic event logs
using an Answer Set Programming-based solution whose flexibility supports the encoding of specific
purposes.

Keywords

Process Mining, Declarative Models, Log Generation, Answer Set Programming

1. Introduction

Process Mining (PM) is a research area that analyzes the execution data of a business process
(an event log) to extract useful information for process improvement. This is not a trivial task as
event logs are sets of process instances (a.k.a. traces) that are a complex type of data. A trace is
composed of a sequence of events arranged in chronological order and each event contains a set
of attributes that can be both symbolic (e.g., the name of the activity executed or the involved
resource) and numeric (e.g., a timestamp). In addition, process instances are samples of a process
model, that is, background knowledge that constraints the execution order of the events. This
background knowledge can be expressed with procedural models (e.g., Petri nets or BPMN
models), which specify the exact control flow of the activities in a trace, or with declarative
models (that is, constraints expressed in Linear Temporal Logic on finite traces or Declare [1])
that specify the constraints over process activities that should be satisfied during the process

ICPM Doctoral Consortium and Demo Track 2023
*Corresponding author.
" ivan.donadello@unibz.it (I. Donadello); maggi@inf.unibz.it (F. M. Maggi); f.riva@datalane.nl (F. Riva);
mani.sw.dev@gmail.com (M. Singh)
� 0000-0002-0701-5729 (I. Donadello); 0000-0002-9089-6896 (F. M. Maggi)

© 2023 Copyright for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).
CEUR
Workshop
Proceedings

http://ceur-ws.org
ISSN 1613-0073 CEUR Workshop Proceedings (CEUR-WS.org)

CEUR
Workshop
Proceedings

ceur-ws.org
ISSN 1613-0073

mailto:ivan.donadello@unibz.it
mailto:maggi@inf.unibz.it
mailto:f.riva@datalane.nl
mailto:mani.sw.dev@gmail.com
https://orcid.org/0000-0002-0701-5729
https://orcid.org/0000-0002-9089-6896
https://creativecommons.org/licenses/by/4.0
https://ceur-ws.org
https://ceur-ws.org


execution. The former models are more fine-grained, the latter more coarse-grained but more
flexible.

The controlled evaluation of PM algorithms requires event logs that fit the purposes for
which each specific experiment has been designed. For example, one purpose can be to test
how the performance of an algorithm is affected when the distribution of trace lengths in the
event log varies. However, although several tools have been developed for generating event
logs by simulating (declarative and procedural) process models [2, 3, 4, 5] only PURPLE (a tool
presented in [4]) produces event logs that fulfill a given property/purpose. Since PURPLE uses
procedural process models to generate logs, a purpose-guided log generator for declarative
models is still missing. To fill this gap, we extend the Declare4Py [6] Python library, which
implements classical PM tasks starting from the MP-Declare [7] language, with an Answer
Set Programming (ASP) functionality for generating purpose-guided event logs starting from
declarative models [8]. This ASP-based method performs the simulation of an input declarative
model by converting its associated deterministic finite automaton (DFA) into a logical program
whose solution is given by an ASP solver. This solution is extremely flexible as it supports the
encoding of the desired purposes as a logical program on top of the DFA encoding.

2. Log Generation with Declare4Py

The ASP-based solution adopted in Declare4Py takes as inputs the number 𝑁 of traces to
generate, the minimum length 𝑚 and the maximum length 𝑛 of a trace (i.e., the number of
events in the trace), a process model containing MP-Declare constraints, and encodes these
inputs in an ASP program to be solved by the Clingo solver (https://potassco.org/). The solution
is a set of 𝑁 traces that satisfy the input model and the minimum/maximum length specification.
We leverage this solution to generate event logs with the following four purposes as additional
inputs.

Users can specify a trace length distribution, that is, an input probability distribution on
the lengths of the traces in the log. Declare4Py supports three probability distributions: i) the
custom distribution, where the user has to specify the probability of a generated trace to have
length 𝑘 for each 𝑘 ∈ [𝑚,𝑚+ 1, . . . , 𝑛]; ii) the uniform distribution where all the trace lengths
have the same probability to appear, i.e., 1/(𝑛−𝑚+ 1); iii) the Gaussian distribution where
the user has to specify a mean and a variance for sampling the trace lengths from a Gaussian
distribution. Once 𝑘 has been sampled, the Clingo solver is called 𝑛 −𝑚 + 1 times for each
trace length 𝑘.

Users can specify the number of variants 𝑉 , so the generated event log can be segmented
into 𝑉 groups of traces having the same control-flow (i.e., the same sequence of activity names)
but that can differ for other attributes, such as the timestamps or the resources. Here, Clingo is
called different times: in the first call, 𝑉 traces are generated representing the variants; then,
for each variant, Clingo is called to generate traces with the control-flow of the variant. In this
second call, the input ASP program also encodes the control-flow of the variant.

Users can specify a subset of constraints in the input model to generate negative traces,
that is, traces that do not satisfy (at least one of/all) the constraints in the specified subset. This
allows users to obtain event logs with labelings defined by MP-Declare constraints. Such

https://potassco.org/


labeled traces can be used to train and test Machine Learning-based process mining algorithms.
The positive traces satisfy all constraints in the input model, whereas the negative traces do
not satisfy the specified subset of constraints. Also in this case, the subset of constraints to be
violated is encoded in an ASP program.

Users can specify the number of activations for a subset of constraints in the input model.
For example, the user can specify for the constraint Response[(CRP, J), ReleaseB] an activation
number of 3 that means that the event with activity name CRP with payload J should occur
three times. The user provides as input a range of possible values for the number of activations
for a specific constraint and then Declare4Py randomly selects a value in that range for each
generated trace. The subset of the constraints for which the number of activations is specified
and the user-defined value range for the number of activations are encoded in ASP.

3. Tool Maturity

The better computational times of the adopted ASP solution with respect to the state-of-the-
art (declarative) log generators have already been shown in [8]. Therefore, we performed
a comparison in terms of diversity of the generated traces between our tool and the Alloy-
based tool presented in [5]. We chose this tool as it is the only one available that generates
synthetic logs starting from MP-Declare models. The tool generates the traces by using a
SAT solver (instead of an ASP solver as done in Declare4Py) starting from a representation of
the input MP-Declare model in Alloy (https://alloytools.org/). The diversity is measured with
the average of the syntactic distances among the traces in the generated event log. A higher
average distance indicates a higher diversification of the generated traces making the event
log a more interesting benchmark for testing purposes. As syntactic distance, we considered
the normalized Damerau-Levenshtein Distance (DLD). We considered the activity names and
resources available in the 𝑆𝑒𝑝𝑠𝑖𝑠 log1 (13 activity names, 26 resources), in the 𝐵𝑃𝐼𝐶15_4 log2

(87 activity names, 10 resources) and in the Road Traffic Fine Management log3 (𝑅𝑇𝐹𝑀 , 10
activity names, 143 resources), in order to define three MP-Declare models. In each model, 5
constraints were defined, and the model was used to generate a log with 100 traces of lengths
ranging from 10 to 20 events. For each synthetic log, we measured the DLD between all pairs of
synthetic traces and computed the average. The DLD was measured on both the control-flow
and the resources (see Table 1). We can notice that Declare4Py has better performance than
the Alloy-based tool, that is, Declare4Py guarantees a higher variability in both control-flow
and resources. Finally, the log generator in Declare4Py, being purpose-guided, represents an
improvement of the existing tools for log generation also in terms of provided functionalities.

110.4121/uuid:915d2bfb-7e84-49ad-a286-dc35f063a460
210.4121/uuid:31a308ef-c844-48da-948c-305d167a0ec1
310.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

https://alloytools.org/


Table 1

Average of the normalized DLD for different logs generated using Declare4Py and Alloy.

Declare4Py Alloy-based

Dataset Res. Flow Ctrl. Flow Res. Flow Ctrl. Flow

𝑆𝑒𝑝𝑠𝑖𝑠 0.565 0.409 0.027 0.028

𝐵𝑃𝐼𝐶15_4 0.631 0.798 0.126 0.050

𝑅𝑇𝐹𝑀 0.525 0.363 0.366 0.308

4. Screencast and Website

The GitHub repository of Declare4Py4 contains the source code of the tool and all
the tutorials. A specific tutorial for the ASP-based log generator5 shows how to
run the log generator using all the available options. The video presentation of
this paper can be accessed at https://www.dropbox.com/scl/fi/cbihgbw34smkisb7u1sry/
Screen-Recording-2023-09-12-at-19.17.17.mov?rlkey=pvzt6cuj5yk98azi611zd79xy&dl=0.

References

[1] M. Pesic, H. Schonenberg, W. M. P. van der Aalst, DECLARE: Full support for loosely-
structured processes, in: EDOC, IEEE Computer Society, 2007, pp. 287–300.

[2] A. Burattin, PLG2: Multiperspective process randomization with online and offline simula-
tions, in: BPM (Demos), volume 1789 of CEUR Workshop Proceedings, CEUR-WS.org, 2016,
pp. 1–6.

[3] C. Di Ciccio, M. L. Bernardi, M. Cimitile, F. M. Maggi, Generating event logs through the
simulation of Declare models, in: EOMAS@CAiSE, volume 231 of Lecture Notes in Business
Information Processing, Springer, 2015, pp. 20–36.

[4] A. Burattin, B. Re, L. Rossi, F. Tiezzi, PURPLE: A PURPose-guided Log GEnerator (Ex-
tended Abstract), in: ICPM Doctoral Consortium / Demo, volume 3299 of CEUR Workshop
Proceedings, CEUR-WS.org, 2022, pp. 90–94.

[5] V. Skydanienko, C. Di Francescomarino, C. Ghidini, F. M. Maggi, A tool for generating
event logs from multi-perspective Declare models, in: BPM (Dissertation/Demos/Industry),
CEUR Workshop Proceedings, CEUR-WS.org, 2018, pp. 111–115.

[6] I. Donadello, F. Riva, F. M. Maggi, A. Shikhizada, Declare4Py: A Python library for declarative
process mining, in: BPM (Demos), CEUR Workshop Proceedings, CEUR-WS.org, 2022, pp.
117–121.

[7] A. Burattin, F. M. Maggi, A. Sperduti, Conformance checking based on multi-perspective
declarative process models, Expert Syst. Appl. 65 (2016) 194–211.

[8] F. Chiariello, F. M. Maggi, F. Patrizi, ASP-based declarative process mining, in: AAAI, AAAI
Press, 2022, pp. 5539–5547.

4https://github.com/ivanDonadello/Declare4Py
5https://github.com/ivanDonadello/Declare4Py/blob/main/docs/source/tutorials/9.Log_Generation.ipynb

https://www.dropbox.com/scl/fi/cbihgbw34smkisb7u1sry/Screen-Recording-2023-09-12-at-19.17.17.mov?rlkey=pvzt6cuj5yk98azi611zd79xy&dl=0
https://www.dropbox.com/scl/fi/cbihgbw34smkisb7u1sry/Screen-Recording-2023-09-12-at-19.17.17.mov?rlkey=pvzt6cuj5yk98azi611zd79xy&dl=0
https://github.com/ivanDonadello/Declare4Py
https://github.com/ivanDonadello/Declare4Py/blob/main/docs/source/tutorials/9.Log_Generation.ipynb

	1 Introduction
	2 Log Generation with Declare4Py
	3 Tool Maturity
	4 Screencast and Website

