
Modelling MAS-Specific Security Features

G. Beydoun1, G. Low1, H. Mouratidis2, B. Henderson-Sellers3

1University of New South Wales, Australia
{g.beydoun, g.low}@unsw.edu.au

2 School of Computing and Technology, University of East London, England
haris@uel.ac.uk

3University of Technology, Sydney, Australia
brian@it.uts.edu.au

Abstract. In this paper, we pursue a modelling approach to address security
requirements for multi-agent systems (MAS). This will allow developers to
account for both the system and agent-specific security requirements of a MAS
during the requirements phase and throughout the whole Software Development
Lifecycle of the system. We focus on autonomy, mobility and cooperation of
individual agents and how these create additional security vulnerabilities to the
system. In proposing a set of generic modelling primitives for these engendered
requirements in the analysis of the MAS, we extend our recently proposed MAS
metamodel.

Keywords: Meta-modelling, modelling of Agent-Oriented Information Systems,
modelling of security features, the act of modelling,

1. Introduction

Agents are highly autonomous, situated and interactive software components. They
autonomously sense their environment and accordingly respond as they are enabled. In
a given Multi-agent System (MAS), coordination and cooperation between agents
possessing diverse knowledge and capabilities facilitate the achievement of global
goals that cannot be otherwise achieved by a single agent working in isolation [1].
Autonomy of agents, cooperation amongst them and intensive communication between
them incur additional security requirements for a MAS. Furthermore, agents are
particularly useful in the engineering of open, distributed or heterogeneous systems.
Indeed, agent technology is poised to exploit the pervasiveness of the internet and the
availability of cheap computational power at its individual nodes and agents have
already proved effective in varying tasks and in different organizational settings:
automating management of information within businesses [2], e-commerce trading
environments [3] and building computational models of human societies to study
emergent behaviour [4].

We have developed and successfully evaluated a generic metamodel, called FAML
(FAME1 Agent-oriented Modelling Language), to describe features of any MAS [5, 6].
FAML was designed to support a set of general concepts relevant to model any MAS.
Some problem-specific concepts including security and mobility were initially omitted.
The chosen concepts are designated into two sets: run-time concepts and design-time
concepts. Each set has two scopes: system-related or agent internals related scope.

1 FAME (Framework for Agent-oriented Method Engineering) is the project name under which

FAML has been developed.

We recognize that the security requirements of a given MAS are either generic
(applying to any software), application-related (part of the functional requirement) or
MAS-specific (due to their engendered properties). This paper describes an effort to
complement our existing MAS metamodel, FAML, with the capacity to model the
security requirements of any given MAS. We further recognize that these security
requirements are of two kinds: system security requirements and agent-specific security
requirements. The former applies to all agents in the system while the latter applies at
the level of the individual agent. In this paper, we analyze the design tradeoffs in
accommodating both the system and agent-specific MAS security requirements, but we
focus more on modelling the former.

Our work is not the first to consider modelling of security issues of multi-agent
systems, example of others are [7-10]. However, our work is unique in that it
simultaneousely focuses on three important properties of a software agent: autonomy,
mobility and cooperation. Although these properties are important for many agent
systems, particularly those in situations where security is paramount, the above
approaches do not consider all of them at the same time. Most related to our suggested
approach is that of Mouratidis et al. [11] on the definition of an architectural
description language (ADL) to specify secure multi-agent systems. This work proposes
a set of design primitives conceptualized using the Z specification language to capture
a "core" architectural model to build secure MAS architectures. However, this work
differs from our approach in two ways: firstly, it does not consider mobility and,
secondly, as its authors state, it lacks a suitable set of core abstractions, inspired by
organizational metaphors, to be used during the design of the secure multi-agent
system architecture. Therefore, we believe that our work complements [11] by
providing the missing set of core abstractions.

The rest of the paper is organized as follows: Section 2 describes our analytic
process used to identify the required security modelling units. Section 3 articulates the
MAS-specific security concerns of any MAS and associates these with basic modelling
primitives. It shows our existing MAS metamodel extended to incorporate the
identified units. Section 4 discusses the proposed metamodel while Section 5 concludes
with a discussion of future work.

2. A Security metamodel for MAS

We are advocating a software modelling approach to address security requirements of
multi-agent systems, as suggested in recent work e.g. [12, 13]. This allows developers
to account for security of a MAS early during the development of the system rather
than as a costly afterthought. Our work in this paper is a step towards a coherent
approach to provide methodological support for the creation of secure MASs. We
systematically start the synthesis of a set of modelling units (classes in the metamodel)
required to model the security of a MAS. Our systematic approach to the synthesis
justifies why each unit is needed. In particular, our approach is to find a minimal set of
modelling units to model the MAS-specific security requirements, identified by the
MAS developer during design stage, and a number of security actions, performed by
the MAS during run-time to satisfy the system’s security requirement. We conduct our
analysis along two dimensions: the inherent attributes of agents in a MAS and an
increasing scale of security risk (see Table 1). Modelling unit sets associated with
various attributes may overlap. The context complexity ranges from a single agent on a
single machine to a fully mobile MAS with agents capable of roaming the net using
dynamic multi-hop routing. An agent can be strongly mobile, where it carries its code,
data and its state of execution (i.e. program counter and CPU registers); or it can be
weakly mobile, carrying code and data only. We start our analysis in the least risky
environment (a single agent on a single machine). We aim to extend this to overcome

its limitations in increasingly risky settings until we have a complete security model
that can represent all security requirements and solutions for the riskiest setting.

We identified in total nine different levels of vulnerabilities as shown in Table 1.
The agent vulnerability level increases as we move from level 0 to level 8.
Consequently the need for protection such as encryption also increases the further we
move away from level 0. In the case of Level 2, data is transported (for message
passing) while, for Level 3, both data and code may be transported (for remote
evaluation), which allows application level attacks. Beyond Level 3, distributed MAS
systems solutions will no longer be viable. It becomes more complex to ensure safe
transportation when states of execution are involved or when intermediate cooperation
is not guaranteed (hostile hosts may be encountered - this is not the case for distributed
systems). The scale of vulnerabilities, as shown in Table 1, delineates the research
issues at each level of complexity and can be used as a research roadmap to fulfil
MAS-specific security requirements of the most complex forms of MAS.

We seek to model features required for non-mediated decentralized security,
without having to mediate interactions between agents by trusted secure agents. The
mediated approach to security e.g. in [3] assumes two classes of agents, internal and
external, and by-passes many security problems by having the internal secure agents
mediate all interactions between external non-secure agents. The mediated approach
limits the potential of a MAS and can secure MASs only up to Level 2 (Table 1),
where internal agents reside in a central server (Level 1) and where external agents
send messages to the central location of internal agents. Our approach will be more
general than the mediated approach.

Table 1. Context Complexity of MAS

Vulnerability
level

Description of Context Complexity Level

0 A single agent system on a single machine.
1 MAS running on a single machine– controlling access to

agents’ resources during cooperation
2 Distributed MAS (same as MAS if communication is secured)
3 Weakly mobile agents with single hops
4 Strongly mobile agents with single hops
5 Weakly mobile agents with fixed multiple hops
6 Weakly mobile agents with dynamic multiple hops
7 Strongly mobile agents with fixed multiple hops
8 Strongly mobile and roaming agents

We note that agent security requirements for communication channels are

equivalent to normal requirements for confidentiality, integrity, authentication and
availability in a typical software application [14]. MAS-specific security problems do
not include security of communication channels. Our security framework strives for
authenticated communication between agents (including mobile agents), where any
receiving agent can ascertain the identity of the sender and can choose to block an
agent as it sees fit. Any agent can also deny/offer access to its owned resources
(including its internal state) at any time it wishes. Resources that need to be protected
can be local (owned by a single agent) or global (owned by many agents), distributed
or reside on a single device.

Our security framework is integrated into our generic MAS metamodel, FAML
which can be used to represent workproducts of any MAS methodology. We extend
FAML in the next section to ensure that any secured workproduct (one which takes
into account security requirements) can also be represented.

3. General MAS Security Vulnerabilities

In this section, we establish the analytic process to identify modelling units that
software engineers can use to describe security requirements that are common to all
multi-agent systems (and to any agent within any multi-agent system). We overview
the general security requirements associated with the features of agents of cooperation,
mobility and autonomy. We note basic modelling units to express these requirements.
Our concerns are authentication and resource access control. More specifically, we are
concerned with modelling features of agent interactions and with additional data
structures to provide secure access and detection as well as recovery in the case of a
security violation. For our purpose we assume messages are transmitted over secured
communication channels, since interception problems are not MAS-specific. Our
analysis is a first step to extending our existing MAS metamodel [6]. The extended
metamodel, FAML, will retain the same structure. It will still have two layers: design-
time and runtime layers and each layer will still have two scopes: agent-related and
system related. However, each of the four layers+scopes will be extended to
accommodate the general security requirements associated with the engendered
properties of agents: cooperation, autonomy and mobility. In the rest of this section, we
identify security modelling units associated with the each of those properties. The
integration of these units into FAML is presented later in Section 4.

3.1. Cooperation, autonomy and security of agents

Cooperation between agents in a MAS requires mutual agreement between agents
to share resources and, in some instances, to share access to their internal states [1]. To
simplify our current analysis, we assume that agents’ resources are localized with the
agent and that any resource is owned by only one agent. The broader the mutually
agreed access to resources and internal states is, the richer the functionality of the
system potentially becomes. It is essential for agents to be able to trust other agents in
order to provide a broad set of interactions. To implement an agreement to share access
to resources and internal states between agents, i.e. to cooperate, it is critical for agents
to discern changes in their states or resource arising from a legitimate access, and from
changes arising from malicious intrusion. A way to achieve this is for each message to
be uniquely associated with an agent identity and time stamped. We include
agent_identity as a basic modelling unit to describe an agent uniquely. This identity can
be a function of the system to which an agent belongs, serving as a fingerprint of any
agent created in any MAS. A higher level security concept, signature, can be
implemented using agent_identity. A signature is to be known by trusted parties and
producible by a relevant identity [16]. Our extended metamodel will also describe the
relation between agents and their resources through ownership and usage relationships.

To maintain its autonomy, an agent should be resilient and able to recover from an
interaction that gives access to resources when it shouldn’t. In other words,
maintaining some state description of its past interactions is required. Each agent
should have an interaction_history log to allow recovery. Such a log is only accessible
to the agent itself This concept along with ownership secures the internal state of agent,
which can then cooperate to reinstate its state as well as the state of the MAS if and
when needed. Mediated systems e.g. [17] use a system interaction history, but this
requires centralized access, which we avoid since it places limits on the mobility of
agents. Our decentralized framework can model a mediated solution by having a single
agent designated to mediate and to interact with all other agents. The interactions log of
the ‘mediator-designate’ will then be a log of all interactions within the system, as in
[17].

3.2. Mobility and security of agents

Mobility allows agents to replace remote procedure calls, saving on bandwidth and
allowing computations that otherwise are not possible. In comparison with traditional
distributed systems, mobility allows additional functionality for a MAS but also incurs
additional security requirements. Mobility of agents varies, as noted in Table 1. For
weakly mobile agents, discerning intrusion is easier, since the agent starts execution
from scratch when it reaches its host. The essential problem with mobile agents is
compounded by the fact that the host may require access to agent execution states [18].
Hence, if the host is malicious, intrusion recovery is needed.

Assuming that an agent is transmitted safely along a channel, threats to an agent
(mobile or non-mobile) resources come from interacting with at least the following
sources: (i) individual or group of agents in its environment - for example, one or more
mobile malicious agents designed to steal or corrupt data; (ii) the host: the host that
controls its execution could mistake the identity of the agent or it may simply be a
malicious luring host; (iii) users themselves: unauthorized users might attempt to
corrupt or steal an agent’s data, or attempt to infiltrate the functionality of the MAS.

The extent of the vulnerability of a mobile agent depends on the freedom it has with
respect to its mobility. Mobility can be single hop (from host to another without any
intermediate hosts) versus multiple hop (one or many intermediate hosts) or fixed
(travel path is fixed and statically decided) versus dynamic (path is decided by agent as
it travels, it is said to be roaming) (see Table 1). Mobility requires the location
modelling unit so that an agent is able to reason about its movements. Combined with
its interaction_history (history of hops as well for mobile agents), it can reinstate itself
into a safer location if it is under attack.

4. Proposed Metamodel

We recognize in this paper that MAS-specific security requirements are either generic,
application-related or MAS-specific. In Section 3, our focus was on the third kind
engendered by the inherent characteristics of agents and MASs. This suggested a
number of new modelling units, which we integrate into FAML concepts in this
section. We first give the complete set of the new security FAML concepts, together
with their corresponding strict definitions. The new security design-time concepts with
their definitions are:

! Agent-specific Security Requirement: Security requirements specific to an
individual agent

! Location Specification: Information about places where an agent can reside
within the system

! Plan Resources Specification: Specification of resources used in the Plan
Specification

! Private Resources Specification: Specification of resources only visible and
available to the individual agent

! Recover Action Specification: Specification of an action undertaken for the
specific purpose of recovery from an intrusion or security breach event. For
example, an agent can use the interaction log to reinstate its state as well as part
of the state of the MAS if an interaction gives access to resources when it
shouldn’t

! Relocate Action Specification: An agent can move to another location based on
information contained in the interaction log and agent-location if an interaction
gives access to resources when it shouldn’t

! Resource Specification: Something that has a name, may have reasonable
representations and which can owned. The ownership of a resource is
connected with the right to set policy on the resource

! Security Action Specification: Action that an agent takes if an interaction gives
access to resources when it shouldn’t

! Security Requirement: A desirable security-related property that constrains
functional requirement(s)

! System Security Requirement: Security requirements that are true for all agents
of the MAS

The new security run-time concepts and their definitions are:
! Location: Information about places where an agent can reside within the

system
! Plan Resources: An organised collection of resources used in the Plan

Specification
! Private Resource: Resources only visible and available to the individual agent

e.g. agent’s history log of hops as well as interactions with other mobile agents
! Public Resource: Resource that is used by one or more agents in the system e.g.

database resource
! Recover Action: An agent can use the interaction log to reinstate its state as

well as the state of the MAS if an interaction gives access to resources when it
shouldn’t

! Relocate Action: An agent can move to another location based on information
contained in the interaction log and agent-location if an interaction gives access
to resources when it shouldn’t

! Resource: Something that has a name, may have reasonable representations
and which can owned. The ownership of a resource is connected with the right
to set policy on the resource. (http://www.w3.org/TR/ws-arch/#resource)

! Security Action: Action that an agent takes if an interaction gives access to
resources when it shouldn’t

It is worth mentioning that we distinguish between run-time security modelling
units and design-time security modelling units (shown above). In terms of security,
this means that we effectively differentiate between security requirements, which are
modelled by the software developer during the design stage, and security actions,
which are performed by the multi-agent system during the run-time to satisfy the
security requirements. Such differentiation allows, on the one hand, the development of
a security-aware platform independent design; and, on the other hand, the realization of
a working security-aware multi-agent system for a specific platform.

We present the extended FAML in four diagrams to integrate the security
modelling units into the same existing areas of concern for FAML (Fig. 1-4): design-
time system related, runtime system-related (environment), design-time agent-internals
and runtime agent-internals area of concern. Note that each agent assumes
responsibility for its security; this is modelled with Recover Action Specification (Fig.
2). An example recovery action may be what the agent does to use the interaction log
to reinstate its state and perhaps assist in reinstating of the MAS if an interaction gives
access to resources when it shouldn’t. This is a refinement of a more general modelling
unit, Security Action Specification. FAML is extended with modelling units to express
mobility behaviour of agents with the units Relocate Action Specification and Location
Specification. Relocating is a restricted action that requires access to secured resources
of the agents (i.e. only the agent can relocate itself).

Fig. 1. System-level classes (Duplication of the Role is only to simplify the layout)

Fig. 2. Agent definition-level classes at design time

Our security framework is underpinned by recognizing and modelling the status of
access to resources during the development. In the extended FAML, the modelling
units Private Resource and Public Resource are added (Fig. 3). Private resources are
agent-specific including logs of hops and interactions with other mobile agents.

IsInitialisedFrom

Environment

+Value

Facet

1

0..*

System

*

1

Generates

+Name
+DataType
+CanBeSensed
+CanBeChanged
+InitialValue

FacetDefinition

Agent

1

1 IsInitialisedFrom

1

0..*

0..*

1..*

IsInitialisedFrom

EnvironmentHistory

+ Timestamp
Event 1

11

0..*
{ ordered}

+ChangeSource
+OldValue
+ewValue

FacetEvent
+SourceAgent
+DestinationAgents
+Parameters

MessageEvent

0..*

1

RefersTo

+ Name
+ ParameterDefinitions

MessageSchema

0..*

1

RefersTo

1

0..*

0..*

1..*

AgentDefinition

+ InitialState

Resource

PublicResource PrivateResource

1

0..*
OrganisationDefinition

Organisation

Fig. 3. Environment-level classes

Agent

+ Specification

Action

Belief

+IsAgentGoal

Desire

1 *

*

Intention

1

* * 1

Involves

MessageAction

+Parameters
Message

Plan

1

*
1

*

1
1

ResultsIn

*

+Sender

1
SentBy

*

+Recipient 1

1..*

SentTo

+Name
+ParameterDefinitions

MessageSchema

*

+ Template

1

IsAnInstanceOf

FacetAction

+Value
Facet

*

+Target

1

Changes

+Name
+Responsibilities

Role

*

Plays

+ Specification
Obligation

1

*

PlanSpecification

1
*

IsGeneratedFrom

+NewValue

FacetAction
Specification

*

1

IsGeneratedFrom
+Parameters

MessageAction
Specification

*

1

IsGeneratedFrom

1..*

1Pursues
EnvironmentStatement

Resource

PublicResource PrivateResource

HasSecurityAction

RelocateAction RecoverAction

SecurityAction
Specification

IsGeneratedFrom

Uses

1..*

1

Uses

1..*

1

0..* 1..*

Uses

Location

Considers

*

Fig. 4. Agent-level classes at run time

At runtime, central to agent security are authentication and recovery when that fails.
Therefore at the agent-runtime scope (shown in Fig. 4), FAML is extended with the

modelling units to represent the various classes of resources and their access (the same
as agent-design time taxonomy of resources). In addition, it is extended to enable
modelling of restricted actions.

5. Conclusions and Future work

FAML to any MAS is similar to UML to any OO system. It is a product metamodel
allowing the representation of any workproduct during the development of a MAS. Our
original FAML did not accommodate the security requirements of the system, and it
did not allow description of security solutions such as the ones discussed in this paper.
The extended FAML presented in this paper will allow software developers to describe
security solutions and produce secured workproducts as the system is developed. In
extending it to represent secured workproducts, we preserve its structure.

In our security framework, managing the MAS-specific security requirements is
decentralized and is relegated to the individual agents forming the system. There are
still a few outstanding questions with respect to modelling units so far identified e.g.
can agents themselves be owned? Further work is required to complete our set of
security modelling units. For example, we still need to identify what (if any) additional
modelling units are required for mobile agents with dynamic routing. It should be
noted that these units alone (even when completed) would not suffice to model all
security features, although out of these basic units, and clever programming, more
complex concepts can be derived such as access level, authority levels, passports,
signatures, worth of resources.

When our MAS existing metamodel [6] is completed with most of its required
security features, we will start verifying it by applying it to the analysis of security
requirements of a community-based peer-to-peer web search engine. We envisage that
fulfilling the highest levels of complexity will be particularly challenging.

Hence, we will overlap verification with the development of the security-enhanced
metamodel described here. Our future work will also link the development of secure
MASs and their related access policies with risk management standards (e.g.
ISO17799, ISO7498/2) as applied at an organizational level. This would guide MAS
developers in making inevitable tradeoff decisions of security versus cost and
functionality. Authentication, intrusion detection and recovery require more
computation and storage of relevant features of the involved interactions and resources
by each agent. Diverting too many resources (e.g. storage, computation) towards
security may indirectly limit the functionality of the system. Investing in reducing
security has a point of diminishing returns, most of the benefits being reaped with the
first chunk of the cost. In future work, we will guide developers in tackling such
complex tradeoff decisions.

References

1. Wooldridge, M.: Multi Agent Systems, Vol. volume 3. Wiley, Chichester (2002)
2. Horlait, E.: Mobile Agents for Telecommunication Applications (Innovative

Technology Series: Information Systems and Networks). Kogan Page, Portland (2004)
3. Rodriguez, J.A.: On The Design and Construction of Agent-Mediated Electronic

Institutions. Artificial Intelligence Research Insitute. UAB - Universitat Autonòma de
Barcelona, Barcelona (2003)

4. Tidhar, G., Heinze, C., Goss, S., Murray, G., Appla, D., Lloyd, I.: Using Intelligent
Agents in Military Simulation or " Using Agents Intelligently". 11th Conference on
Innovative Applications of Artificial Intelligence Papers(IAAI-99), Vol. 1. MIT Press,
Orlando,Florida (1999) 829-837

5. Beydoun, G., Gonzales-Perez, C., Low, G., Henderson-Sellers, B.: Towards Method
Engineering for MAS: A preleminary validation of a generic MAS Metamodel. 17th
Software Engineering and Knowledge Engineering Conference (SEKE2005) (2005)

6. Beydoun, G., Gongalez-Perez, C., Low, G.C., Henderson-Sellers, B.: Synthesis of a
Generic MAS Metamodel. International Conference on Software Engineering
(ICSE05) Workshops (SELMAS2005). ACM Digital Library, St Louis, USA (2005)
27-31

7. Liu, L., Yu, E., Mylopoulos., J.: Analyzing Security Requirements as Relationships
Among Strategic Actors. 2nd Symposium on Requirements Engineering for
Information Security (SREIS’02), Raleigh, North Carolina (2002)

8. Huget, M.-P.: Nemo: An Agent-Oriented Software Engineering Methodology.
OOPSLA Workshop on Agent-Oriented Methodologies, Seattle, USA (2002)

9. Mouratidis, H.: A Security Oriented Approach in the Development of Multiagent
Systems: Applied to the Management of Health and Social Care Needs of Older People
in England. Department of Computer Science, Vol. PhD. University of Sheffield
(2004)

10. Odell, J., Van Dyke Parunak, H., Bauer, B.: Extending UML for agents. In: G.
Wagner, Y.L.a.E.Y. (ed.): Agent-Oriented Information Systems Workshop, 17th
National Conference on Artificial Intelligence, Austin, TX, USA (2000) 3-17

11. Mouratidis, H., Kolp, M., Faulkner, S., Giorgini, P.: A Secure Architectural
Description Language for Agent Systems. 4th International Joint Conference on
Autonomous Agents and MultiAgent Systems. ACM Press, Utrecht- the Netherlands
(2005) 578-585

12. Giorgini, P., Massacci, F., Mylopoulos, J., Zannone, N.: Requirements Engineering
meets Trust Management. Second International Conference on Trust Management
(iTrust 2004) (2004)

13. McGraw, G.: Software Security. Addison-Wesley, Indiana (2006)
14. Borselius, N.: Security in Multi-Agent Systems. In: Mun, Y., Arbania, H.R. (eds.):

International Conference on Security and Management (SAM02). CSREA Press,
Nevada (2002)

15. Beydoun, G., Gonzalez-Perez, C., Henderson-Sellers, B., Low, G.C.: Developing and
Evaluating a Generic Metamodel for MAS Work Products. In: Garcia, A., Choren, R.,
Lucena, C., Giorgini, P., Holvoet, T., Romanovsky, A. (eds.): Software Engineering
for Multi-Agent Systems IV: Research Issues and Practical Applications, Vol. LNCS
3914. Springer-Verlag, Berlin (2006) 126-142

16. Roth, V.: Programming Satan's agents. International Workshop on Secure Mobile
Multi-Agent Systems, Montreal, Canada (2001)

17. Esteva, M., Cruz, D.d.l., Sierra, C.: ISLANDER: an electronic institutions editor.
International Conference on Autonomous Agents & Multiagent Systems (AAMAS02).
ACM, Italy (2002)

18. Yee, B.: Monotonicity and Partial Results Protection for Mobile Agents. 23rd
International Conference on Distributed Computing Systems, Rhode Island (2003)

19. Mouratidis, H., Giorgini, P.: Integrating Security and Software Engineering. Idea
Group Inc, Hershey, PA, USA (2007)

