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Abstract  
The paper aims to create a methodology for resource-efficient small and overlapping target detection in 
underwater images. Hybrid object detection neural network based on YOLOv8 with novel light-weighting 
technique, enhanced feature map upsampling method and effective non-maximal suppression strategy are 
proposed to reduce computational complexity and boost localization and classification accuracy of small 
and overlapping underwater targets. The object detection model based on the methodology from this study 
is tested on Underwater Target Detection Algorithm Competition 2020 dataset with severe class imbalance 
and high number of small overlapping targets. Our findings show that the proposed model reaches higher 
accuracy than existing solutions while being efficient enough to be deployed on edge hardware of 
autonomous underwater vehicle.  
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1. Introduction 
Autonomous Underwater Vehicles (AUVs) with object detection functionality are actively used 
across various domains, leveraging their capabilities for diverse underwater tasks. In marine biology, 
AUVs facilitate the research and monitoring of biodiversity, providing critical data on marine species 
and their habitats. Underwater archaeology benefits from AUVs in the search for submerged cultural 
artifacts and shipwrecks, aiding in the preservation of historical heritage. The oil and gas industry 
utilizes AUVs to explore underwater topography, optimizing route planning for pipelines and drilling 
operations. Additionally, AUVs play a crucial role in ecology by monitoring pollution levels, in 
military applications for demining and threat detection, and in emergency services for exploring 
wreckages and conducting search and rescue operations. 

Despite the advancements in deep learning-based object detection, these systems often struggle 
to perform adequately in underwater environments. Object detection in AUV imagery faces unique 
challenges such as the presence of small targets that are difficult to discern, targets overlapping with 
each other, and the tendency for targets to blend into complex backgrounds like rocks and coral 
reefs. Targets may be partially obscured by mud, rocks, or other underwater structures, and they 
may appear in different scales due to varying distances and depths. Additionally, targets can have 
irregular shapes, such as seaweed, or may become distorted in shape, complicating their 
identification. Moreover, the datasets images taken by AUVs are often not diverse enough to ensure 
the deep learning object detection model will generalize well with unseen data. 
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Figure 1: Sample images from Underwater Target Detection Algorithm Competition 2020 dataset, 
demonstrating the presence of tiny, densely-located targets, often subject to cases of occlusion. 

 
Another significant challenge is the computational aspect of object detection in AUV imagery. 

Processing the data on land centers poses issues related to the communication link between the AUV 
and the workstation, limiting the operational range and suffering from connection instabilities. 
Alternatively, running the detection model directly on the AUV demands considerable computational 
resources, which must be balanced with other essential software for navigation and obstacle 
avoidance. The need for fast and low-latency computations is often a crucial requirement, 
particularly in mission-critical scenarios such as military operations. 

Given these challenges, there is a pressing need to develop an intelligent system for AUVs that 
can effectively address visibility issues, detect targets of varying sizes with high accuracy, and 
operate efficiently under the constraints of underwater environments. Such a system would enhance 
the capabilities of AUVs, enabling them to perform their tasks more reliably and expanding their 
utility across various critical applications. 

2. Related work 

In recent years, significant progress has been made in the field of generic object detection and 
classification, driven by advancements in deep learning and hybrid neural networks [1, 2, 3]. These 
developments have resulted in highly accurate and efficient models capable of detecting and 
classifying objects in various environments, including but not limited to medical applications [4], 
aerial target detection [5] and others. Parallel to this, researchers have been focusing on developing 
specialized underwater object detection frameworks. These frameworks are specifically tailored to 
address the unique challenges of underwater scenarios, such as poor visibility, low contrast, and high 
levels of noise, ensuring reliable and effective detection of objects in marine environments. 

2.1. Generic object detection models 

Anchor-based and anchor-free object detection models are two primary methodologies for deep 
learning-based object detection. Faster R-CNN [6], SSD [7] and RetinaNet [8] rely on predefined 



anchor boxes to localize targets in input images. On the other hand, anchor-free algorithms like 
YOLOX [9] and FCOS [10] only calculate the center point of the bounding box and position 
coordinates, making object detection process more straightforward. 

Recent advancements of convolutional neural networks have taken these methodologies even 
further, improving object detection and classification accuracy. Deep Convolutional Neural 
Networks (CNNs) are used as a backbone of object detection models, extracting object features 
through multi-layer non-linear transformations. The YOLO (You Only Look Once) series, which 
relies on these principles, has proven its efficiency and generalization capabilities for diverse object 
detection tasks. 

Multiple enhancements have been introduced throughout the evolution of the YOLO series. 
YOLOv1 [11] was the first model in this family which offered an effective solution for overcoming 
limitations of two-stage object detectors by introducing a novel methodology of single shot detection. 
YOLOv2 [12] proposed batch normalization usage and improved overall network performance by 
removing dropout. YOLOv3 [13] was the first model of its family which featured Darknet-53 
backbone with residual connections and feature pyramid network (FPN) for enhanced aggregation 
of features. YOLOv4 [14] improved information flow between model layers by introducing improved 
CSPDarknet53 backbone with cross-partial connections. YOLOv5 [15] was configured to make multi-
scale predictions more efficient model structure and automated hyperparameter search for improved 
model inference and performance. YOLOv7 [16] used ELAN computational block for more effective 
layer aggregation and offered new model scaling techniques. YOLOv8 [17] uses anchor-free detection 
mechanism, and enhances feature extraction efficiency with auto augmentation techniques such as 
cropping and mosaic augmentation. 

The architecture of YOLOv8 can be divided into three main components: the backbone, the neck, 
and the head. The backbone network utilizes convolutional layers, pooling layers, and residual 
connections to extract detailed features from input images. A key component of YOLOv8 backbone 
is the C2f block, which enhances gradient flow and feature reuse, making the network deeper and 
more efficient. The neck, which includes Path Aggregation Network (PANet) and Feature Pyramid 
Network (FPN) structures, aggregates features from different levels of the backbone, combining high-
level semantic information with low-level details to improve multi-scale object detection. This 
involves upsampling layers and concatenation processes that merge contextual and detailed 
information. In the head, YOLOv8 predicts bounding boxes, object classes, and confidence scores 
using predefined anchor boxes, bounding box regression, and class prediction. The detection results 
are refined through Non-Maximum Suppression (NMS), which removes redundant boxes and retains 
the highest confidence scores for each detected object. 

2.2. Underwater object detection frameworks 

Underwater object detection frameworks are the models which are specifically tailored for 
underwater environments and utilize specific methods to gain performance improvements over 
generic object detection models. These frameworks are used for diverse tasks, including, but not 
limited to marine biodiversity monitoring [18], identifying and localizing underwater pollution 
sources and trash [19, 20], human body detection [21]. 

Single stage detectors, such as YOLO family are most widely used in underwater object detection 
frameworks for its detection speed and versatility. Numerous improvements have been made to make 
YOLO faster, computationally cheaper and more accurate for underwater target detection tasks. 
Zhang et al. [23] introduced a lightweight underwater object detection framework based on YOLOv4 
with multi-scale attentional feature fusion. Liu et al. [24] introduced TC-YOLO, combining CLAHE 
preprocessing, a modified YOLOv5s architecture, and attention mechanisms for improved detection 
accuracy. Shen et al. [25] proposed the multi-dimensional, multi-functional, and multi-level attention 
module (mDFLAM) to enhance robustness and generalization in underwater images. Xu et al. [26] 
introduced SA-FPN, optimizing feature extraction with a scale-aware feature pyramid architecture. 
Pan et al. [27] developed a modified method based on multi-scale ResNet for improved detection of 



objects of various sizes. Wang et al. [28] enhanced YOLOv7 with an image enhancement module and 
introduced Focal EIOU for bounding box regression loss. Minghua Zhang et al. [29] suggested 
replacing YOLOv8's original backbone with FasterNet for lower latency, while Guo et al. [30] 
modified YOLOv8's backbone with FasterNet layers and improved feature pyramid network for 
better detection capabilities. Sineglazov and Savchenko in [31] suggested object detection model 
light-weighting methodologies and implemented attention mechanisms into feature fusion process 
to build a fast and accurate object detector for deploying it directly on AUV hardware. 

2.3. Limitations of existing methodologies 

Despite significant advancements in underwater object detection, several limitations persist in 
methodologies mentioned above: 

• Generic object detection frameworks are optimized for general-purpose tasks and can’t 
handle underwater scenes correctly, yielding too many false negative detections. Underwater 
object are often small, densely packed and are present in a large count, so there are cases of 
severe bounding box overlapping. Moreover, the target objects are often located on a complex 
background (i.e. rocks, mud) or overlapped by larger objects, which makes it more difficult 
to discern. Therefore, a more domain-aware approach should be considered. 

• Specialized underwater object detection frameworks adapt to specific requirements of 
underwater object detection through the series of preprocessing steps and network topology 
modifications. However, these modifications are often computationally expensive and are 
infeasible to deploy on edge platforms like NVIDIA Jetson. These factors directly impact the 
practicality and efficiency of deploying neural networks in mission-critical underwater 
applications. 

Addressing these limitations requires a more holistic approach to model development. The 
requirements to a comprehensive underwater object detection framework should include the ability 
to work with tiny targets with high degree of overlap, the ability to discern object on a complex 
background or being partially obscured by another object. Additionally, the proposed neural network 
should be small enough in size and have lower computational requirements, which would make it 
eligible to be used directly on an integrated hardware of AUV. 

3. Problem statement 

Let (𝑋!, 𝑌!), (𝑋", 𝑌"), … , (𝑋# , 𝑌#) represent the samples from training dataset, 𝑋# ∈ ℝ$×$ denote the 
𝑖 −th the matrix of RGB image with dimensions 𝑛 × 𝑛 × 3 , and let 𝑌#  denote the ground truth 
annotations for the corresponding image, consisting bounding box coordinates and class labels. 

The primary objective is to develop a neural network architecture that is capable of accurately 
predicting the coordinates of bounding boxes and class probabilities for objects within the input 
images. This involves training the network to learn optimal weight coefficients that minimize a 
predefined loss function. 

The objective is to build and train a neural network, which will handle the tasks such as bounding 
box assignment for each object within the given image matrix and prediction of the classes for each 
object found.  In this case, 𝑓&: ℝ$×$ → ℝ'×'×()×*+,)  represents such a neural network, where 
parameters are θ, 𝑆 is the size of a grid, 𝐵 represents the total number of bounding boxes within the 
cell of this grid, and 𝐶 denotes the number of classes in the dataset. The neural network output is the 
tensor with dimentions 𝑆 × 𝑆 × (𝐵 × 5 + 𝐶), which contains information about predicted bounding 
boxes and class probabilities for each grid cell.  

In such case, the loss function for object detection and classification tasks is defined as:  
 



ℒ = 𝜆.//01 ⋅ ℒ.//01 + 𝜆./23 ⋅ ℒ./23 + 𝜆.4566 ⋅ ℒ.4566 
 
where ℒ.//01 , ℒ./23  and ℒ.4566  are the localization, confidence and classification losses 

respectively, 𝜆.//01, 𝜆./23, 𝜆.4566 are the coefficients to weight the importance of each individual loss 
in total loss function. 

Assuming that box loss is handled by CIoU [32] loss function, multi-label classification loss is 
handled by binary cross entropy and distribution focal loss [33] is the third term in total loss function, 
the loss function of described neural network can be rewritten as: 
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In this case, 𝑁pos is number of cells featuring an object, 𝟙=!,#∗ is an indicator function for the cells 

with an object, 𝛽:,< is the position of ground truth bounding box, 𝑏:,< is the predicted bounding box 
for the cell, 𝛽W:,< are the center point of the ground truth bounding box coordinates, 𝑦= is the ground 
truth label for class c for each individual grid cell (x, y) in the input, 𝑞(:,<)+! are the nearest left and 
right predicted boxes IoU which belong to 𝑐:,<∗ , 𝑤:,< and ℎ:,< are width and height of the box, and 𝜌 
is the diagonal length of the smallest enclosing box covering the predicted and ground truth boxes. 
Then, each cell determines the best candidate for predicting the bounding box of given object.  

For network training, the total loss function ℒ is optimized with Stochastic Gradient Descent 
(SGD) with momentum algorithm. SGD with momentum update rule involves these steps: 

 
𝑣B+! = 𝛽𝑣B + (1 − 𝛽)∇&ℒ(𝜃B) 

𝜃B+! = 𝜃B − 𝜂𝑣B+!, 
 
where 𝑣B is the velocity term representing the exponentially weighted moving average of past 

gradients, 𝜃B are the parameters of the network at iteration 𝑡, ∇&ℒ(𝜃B) the loss function gradient 
with respect to the network parameters at iteration 𝑡 , 𝜂  denotes the learning rate, 𝛽  is the 
momentum term. 

 
 



4. Proposed methodology 

To enhance the performance of YOLOv8 for underwater object detection, we introduce several key 
modifications aimed at improving both efficiency and accuracy. 

 
Figure 2: Overall schematics of proposed network, including the proposed C2f-G block for better 
feature representation and CARAFE upsampling operator for better small and overlapping target 
information processing.  



First, we address the high computational complexity of the C2f block due to the excessive number 
of 3x3 convolutions and in order to mitigate its influence on overall network complexity, we propose 
a custom block named C2f-G, which serves as a drop-in replacement for the original C2f block. The 
C2f-G block significantly reduces the number of IO operations by replacing the bottleneck 
components with GhostBottleneck, derived from GhostNet [32]. GhostBottleneck achieves 
computational efficiency by generating more feature maps from fewer intrinsic feature maps through 
cheap linear operations, thus maintaining performance while reducing the parameter count. This 
modification is crucial for enabling the deployment of the model on edge computing devices without 
sacrificing accuracy and making room for other improvements, which introduce additional 
parameters to the object detection system.  

Second, we enhance the feature upsampling process in the neck of YOLOv8 by incorporating the 
Content-Aware ReAssembly of FEatures (CARAFE) operator [33]. Traditional upsampling methods 
such as nearest neighbor and bilinear interpolation are computationally efficient but result in 
semantic information loss, which is detrimental in underwater environments where small and 
occluded objects are prevalent. CARAFE addresses this by using adaptive kernels generated from the 
input features to perform content-aware reassembly. This process preserves fine-grain details, 
ensuring that critical information is retained during upsampling. CARAFE's kernel prediction and 
reassembly modules allow for more accurate and semantically rich feature maps, improving the 
detection of small and occluded targets. 

Finally, to improve the model's performance in detecting overlapping and densely located objects, 
we replace the traditional Non-Maximum Suppression (NMS) and Distance-IoU NMS (DIoU-NMS) 
with Soft-NMS [34]. Traditional NMS uses a hard threshold to suppress overlapping bounding boxes, 
which can lead to the loss of true positive detections. DIoU-NMS, while considering the distance 
between box centers, still employs a hard threshold mechanism. In contrast, Soft-NMS reduces the 
confidence scores of overlapping boxes using a Gaussian penalty function, resulting in a more 
gradual suppression process, improving detection accuracy in scenes with high object density and 
overlap. 

4.1. Network lightweighting with C2f-G block 

The C2f block contributes a lot to overall network complexity in YOLOv8 due to an excessive 
number of 3x3 convolutions. This results in a high parameter count, which poses challenges for 
deploying the model on edge computing devices. To address this, light-weighting the structure of 
the C2f block is essential. We propose a custom block named C2f-G, which serves as a drop-in 
replacement for the C2f block in the original YOLOv8 network. C2f-G significantly reduces the 
number of IO operations by replacing the bottleneck components with GhostBottleneck. 

The GhostBottleneck, derived from GhostNet, is an efficient convolutional neural network design 
that aims to reduce computational complexity while maintaining performance. GhostNet achieves 
this by generating more feature maps from fewer intrinsic feature maps through series of linear 
transformations called “cheap operations”, mimicking the behavior of standard convolutions with 
reduced computational cost.  

In a traditional convolution operation, the output feature map 𝑌 is generated from the input 
feature map 𝑋  using a convolution kernel 𝑊  as 𝑌	 = 	𝑋	 ∗ 	𝑊  where ∗  denotes the convolution 
operation. When dealing with high-dimensional data and large kernel sizes, as seen in the 3x3 
convolutions prevalent in the C2f block, this quickly becomes computationally expensive. The 
GhostNet approach to convolution, however, generates the same number of output feature maps 
with fewer computations. It splits the convolution process into two parts: the primary convolution 
and the ghost module. The primary convolution uses fewer filters to generate intrinsic feature maps 
𝑌C2D as 𝑌C2D = 𝑋 ∗𝑊C2D where 𝑊C2D is a smaller convolutional filter. Then, acquired intrinsic feature 
maps are processed through a series of cheap operations to generate the ghost feature maps 𝑌EF/6D 
as in 𝑌EF/6D = 𝑓(𝑌C2D) where 𝑓 denotes cheap operation. 



Schematically, Ghost convolution can be drawn as follows: 
 

 
Figure 3: Ghost convolution schematics 

 
The Ghost bottleneck module is then composed of two Ghost convolutions with batch 

normalization and SiLU activation in between. 
 

 
Figure 4: Ghost bottleneck structure 

 
C2f-G module includes two convolutional layers with two Ghost bottlenecks in between. 

Ordinary convolution operation is used, as more representational power is needed to extract features 
in the first layer of a block. 

 

 
Figure 5: C2f-G block elements  

 
C2f-G can achieve the similar representational power as traditional bottlenecks but with 

significantly fewer parameters and reduced computational complexity, enabling efficient 
deployment on edge computing devices with minimal effect on model performance. 

4.2. Enhanced feature upsampling 

In YOLO-based detectors, feature maps are obtained from the backbone network and then form a 
feature pyramid in the neck with upsampling processes in between. The commonly used upsampling 
methods are nearest neighbor and bilinear interpolation. While these methods are computationally 
efficient, as they add little to no additional parameters, they result in significant semantic information 
loss. In the context of underwater images, this loss can lead to the missed detection of small and 
occluded targets, as critical information about these targets gets diluted during the upsampling 
process. Therefore, selecting a proper feature upsampling method is crucial to preserve fine-grain 
information about the targets. 

To address this issue, we selected Content-Aware ReAssembly of FEatures (CARAFE) as an 
effective and performance-friendly feature upsampling operator to replace the standard upsampling 



layers in the YOLOv8 neck. CARAFE offers several advantages over traditional methods by 
leveraging content-aware mechanisms to preserve and enhance semantic information during the 
upsampling process. 

CARAFE works through a two-step process involving a kernel prediction module and a content-
aware reassembly module. Given an input feature map 𝐶 of size 𝐶 × 𝐻 ×𝑊 and an upsample ratio 
𝜎, CARAFE produce an output feature map 𝑋Gsized 𝐶 × (𝜎𝐻) × (𝜎𝑊). For any target location 𝑙G =
(𝑖G, 𝑗G) in the output 𝑋G there is a corresponding source location 𝑙 = (𝑖, 𝑗) in the input 𝑋, where 𝑖 =
⌊𝑖G/𝜎⌋ and 𝑗 = ⌊𝑗G/𝜎⌋. The neighbor of 𝑋H is denoted as 𝑁(𝑋H , 𝑘) , which represents the 𝑘 × 𝑘 sub-
region centered at 𝑙. 

In the first step, the kernel prediction module 𝜓 predicts a reassembly kernel 𝑊H% for each target 
location 𝑙G based on the neighbor of 𝑋H: 

 
𝑊H% = 𝜓(𝑁(𝑋H , 𝑘?2./1?0)). 

In the second step, the content-aware reassembly module 𝜙 reassembles the features using the 
predicted kernels: 

 
𝑋H%
G = 𝜙(𝑁(𝑋H , 𝑘I9),𝑊H%). 

 
The kernel prediction module is composed of three sub-modules: the channel compressor, the 

content encoder, and the kernel normalizer. The channel compressor reduces the channel of the input 
feature map, making the process more computationally efficient. The content encoder generates the 
reassembly kernels based on the input features, while the kernel normalizer applies a softmax 
function to ensure that the reassembly kernels sum to one. 

The content-aware reassembly module performs the reassembly operation using a weighted sum 
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where 𝑟 = ⌊𝑘I9/2⌋. This approach allows each pixel within the local region to contribute to the 

upsampled pixel 𝑙G based on the content, rather than just the spatial distance. 
Improving feature upsampling process in object detection neck with CARAFE operator ensures a 

more accurate and semantically rich upsampling of feature maps, which is particularly beneficial for 
detecting small and occluded objects in underwater images.  

4.3. Overlapping targets processing with Soft-NMS 

To improve the performance of our model in detecting overlapping and densely located objects, 
we chose to employ Soft Non-Maximum Suppression (Soft-NMS) instead of traditional NMS or 
Distance-IoU NMS (DIoU-NMS). The motivation behind it lies in the specific challenges posed by 
underwater images, where objects are often small, occluded, and densely packed. Traditional NMS, 
while effective in reducing redundant detections by suppressing overlapping bounding boxes with 
lower scores, often leads to the suppression of true positive detections, especially in scenarios with 
significant object overlap. This occurs because traditional NMS uses a hard threshold to discard 
boxes, which can result in missing true objects that are close to each other. Similarly, DIoU-NMS, 
which incorporates the distance between the centers of bounding boxes to improve suppression 
accuracy, still uses a hard threshold mechanism that can fail in densely populated scenes. 

Soft-NMS addresses these issues by modifying the suppression process. Instead of outright 
discarding overlapping bounding boxes, Soft-NMS decreases their confidence scores based on the 
degree of overlap. This approach reduces the likelihood of missing true positive detections that are 
close to each other. Specifically, the pruning step in Soft-NMS involves applying a Gaussian penalty 



function to the scores of the overlapping boxes, ensuring a more gradual and continuous suppression. 
This is particularly beneficial for underwater images, where the presence of dense and overlapping 
objects is common, and the preservation of potential true positives is crucial for accurate detection. 

The mathematical formulation of Soft-NMS can be described as follows. For each detection box 
𝑏# with a score 𝑠# and an overlap with the maximum score box 𝑀, the updated score 𝑠#G is computed 
using a Gaussian function: 

 

𝑠#G = 𝑠# ⋅ 𝑒
@N/O(P,Q&)

'

R  
 
Here, IoU(𝑀, 𝑏#) represents the Intersection over Union between the maximum score box 𝑀 and 

the detection box 𝑏# , and 𝜎 is parameter that controls the decay rate of the scores. This continuous 
penalty function ensures that boxes with higher overlap with 𝑀 receive a greater penalty, thereby 
reducing their scores more significantly than those with lower overlap. This method allows for a 
more nuanced suppression strategy, effectively balancing between eliminating false positives and 
retaining true positives, which is especially critical in environments with high object density and 
overlap. 

Figure 6 demonstrates the results of using Soft-NMS for underwater object detection. As seen in 
the picture, DIoU-NMS accounts for the distance between the centers of found objects and tends to 
remove predictions which are too close to each other, which in case with underwater object detection 
leads to a higher number of false negatives. 

 

 
Figure 6: Example of DIoU-NMS and Soft-NMS algorithm results. Detections on the left are 
obtained from a model using DIoU non-maximum suppression strategy, detections of the right are 
from a model with Soft non-maximum suppression. White colored boxes denote false negatives 

5. Experiment results 

A challenging underwater detection dataset UTDAC2020, which is short for Underwater Target 
Detection Algorithm Competition 2020, has been selected to test the performance of the proposed 
algorithm. The dataset features 5168 training and 1293 validation images in various resolutions (3840 
x 2160, 1920 x 1080, 720 x 405 and 586 x 480), featuring 4 classes (echinus, holothurian, scallop and 
starfish). Notably, the dataset has significant class imbalance, with echinus class having four times 
more samples than starfish, scallop and holothurian. Also, the targets in UTDAC2020 often appear 
in different scales and are very densely packed, which allows to use this dataset to assess model 
performance with tiny overlapping targets. 

The experimental setup consisted of Intel Core i5-13600K, NVIDIA A4000 GPU with 16GB VRAM. 
The setup runs Ubuntu 20.04.6 LTS with Python version 3.10.13, CUDA version 12.1, PyTorch version 
2.2.1.  

The training process ran for 250 epochs with batch size 32 and image size 640 x 640. Stochastic 
gradient descent (SGD) has been used as an optimization algorithm with momentum 0.937, initial 
learning rate was 0.01 and weight decay coefficient of 0.005. The optimal set of hyperparameters was 



found empirically using Ray Tune library. Default augmentation strategies from Ultralytics YOLOv8 
framework have been applied, and no other augmentations have been used.  

The metrics to assess model performance are listed in the table below. 
 

Table 1 
Metrics used in the experiment 

Metrics Description 
mAp50 Mean average precision (mAp) at intersection over union (IoU) of 0.50 
mAp mAp at IoU of 0.50:0.05:0.95 
Params Total parameter count of the model 
FLOPs Performance metrics denoting number of floating point operations per 

second 
Size Model size in megabytes 

Here, mAp is defined as: 
 

𝑚𝐴𝑃 =
∑  S
#K! 𝐴𝑃#
𝐾

, 

 
where 𝐴𝑃 denotes average precision measured for a current object category, and 𝐾 denotes the 

category. 
In these experiments, mAp and mAp50 represent the accuracy of neural network, parameter 

counts and FLOPs represent its complexity, which is crucial for deploying a model on edge hardware, 
such as integrated compute units of autonomous underwater vehicles. As seen in comparison results, 
the performance of the proposed approach surpasses even larger YOLOv8l model, which uses 6 times 
more parameters, making it applicable in real-world applications on edge hardware of autonomous 
underwater vehicles. 

 
Table 2 
Experiment results on UTDAC2020 dataset 
Method Backbone mAp mAp50 Params (M) FLOPs (G) Size (Mb) 
Faster R-CNN  ResNet50 44.50 80.90 41.14 63.26 ~ 
RetinaNet ResNet50 43.90 80.40 36.17 52.62 ~ 
FCOS ResNet50 43.90 81.10 31.84 50.36 ~ 
YOLOv8n DarkNet-53 49.01 82.65 3.0 8.1 6 
YOLOv8s DarkNet-53 50.53 84.71 11.1 28.4 22 
YOLOv8m DarkNet-53 51.69 84.92 25.8 78.7 51 
YOLOv8l DarkNet-53 51.71 84.97 43.6 164.8 84 
YOLOv8s 
w/FasterNet [28] 

FasterNet-
T0 

52.12 85.49 8.5 25.5 17 

Ours DarkNet-53 52.45 86.18 9 27 18 
 
To further validate the performance of the proposed approach, additional testing has been 

conducted on Underwater Robot Picking Contest 2019 (URPC2019) dataset, which includes 3765 
training samples and 942 validation samples in the same four categories: echinus, holothurian, 
scallop and starfish. The class balance is skewed towards echinus class, with other classes featuring 
three times less samples each. The exact same experiment configuration, hyperparameters and 
metrics were used to compare our model performance with existing YOLOv8 models. The obtained 
results prove generalization capabilities of our approach, demonstrating superior underwater object 
detection capabilities.\ 

 
 
 



Table 3 
Experiment results on URPC2019 dataset 
Method Backbone mAp mAp50 Params (M) FLOPs (G) Size (Mb) 
YOLOv8n DarkNet-53 47.32 80.3 3.0 8.1 6 
YOLOv8s DarkNet-53 48.81 81.42 11.1 28.4 22 
YOLOv8m DarkNet-53 48.74 81.23 25.8 78.7 51 
YOLOv8l DarkNet-53 49.65 82.55 43.6 164.8 84 
Ours DarkNet-53 51.78 85.1 9 27 18 

 

 
Figure 7: From left to right: round truth labels, detections from Ultralytics YOLOv8s model, 
detections made using our model. White boxes denote false negatives, yellow boxes denote false 
positives. 
 

6. Conclusions 

A methodology for resource-efficient detection of small and overlapping targets in underwater 
images is proposed. Hybrid object detector based on YOLOv8 model is used as a base. The proposed 
modifications include network light-weighting by introducing C2f-G block, which replaces the 
original C2f block bottleneck with a more efficient Ghost bottleneck structure. Content-Aware 
ReAssembly of Features usage is proposed to enhance feature upsampling process in the neck of 
object detector to prevent fine information loss in feature maps and enhance small target detection. 
Soft-NMS is employed as non-maximum suppression strategy to handle overlapping and densely 
located objects bounding box information.  

The object detection model based on proposed methodology achieves a mean Average Precision 
(mAP) of 52.45%, and a mAP at 50% IoU (mAP50) of 86.18%. Notably, the model features only 9 million 
parameters, 26 billion floating point operations per second (FLOPS), and a size of 18 MB, not only 
providing better performance than the best existing solutions but also achieving higher accuracy 
while being six times smaller than YOLOv8l, the larger model from YOLO family. 

The proposed applications of the model include deploying it directly on autonomous underwater 
vehicle hardware for real-time object detection tasks. 
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