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Abstract 
Large language models (LLMs) get quickly implemented into question answering and support systems to 
automate customer experience. Models in such environments should solve multiple problems like general 
knowledge questions, questions about specific domain, which require grounding from an external source, 
function calling and many others. Some cases might not even require a full-on text generation. They can 
require different prompts or even models. All of it can be managed by semantic routing step. This paper 
presents a comparison of multiple semantic routing approaches for environments with a cold start problem. 
This work proposes a routing benchmark dataset and extensive experiments set with results interpretation 
and visualization. The results show best practices for building a semantic router layer of chat application 
and provide insights on main advantages and disadvantages of tested methods. 
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1. Introduction 

Modern assistants and agents based on LLMs require complex approaches to cover a growing list of 
use cases and scenarios. This includes function calling, answers grounded by external knowledge 
bases (Retrieval augmented generation or RAG) [1], answers based on model’s pretrained knowledge 
base, etc. Such cases cannot be implemented with just a single prompt as they can require additional 
actions performed not by LLM itself, they can require different generation parameters [2] or even 
contradict each other (when one use case requires a more creative approach and another tells model 
to strictly follow certain rules or provided context). 

Routing can ease it by allowing us to switch between multiple agents for each type of question or 
action. This layer of chat-based systems provides an ability to customize parts of conversation by 
calling RAG pipelines, sending requests to external APIs, giving just LLM response when necessary 
or even to return a default predetermined response. Routing can also serve as a guardrail to prevent 
unwanted usage or jailbreaks [3] of the LLM agent. It gives more control over each use case as we 
can customize not only prompts or additional actions around LLM, but also the model itself to choose 
the best one for each target case. 

Implementation of semantic router can also come with a cold start problem, which would make 
it difficult or even impossible to train a traditional supervised classifier at first. This leads to usage 
of zero-shot or few-shot classifiers like cross encoders or LLM in-context learning classifier [4] as 
they don’t need an extensive fine-tuning to learn the task. 

The work presented in this paper compares multiple zero-shot and few-shot classification 
approaches for semantic routing in terms of a question answering system, like LLM classifier, NLI 
BART [5] by Meta and router based on semantic retrieval. Multilingual benchmark dataset for 
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semantic routing gets proposed and a number of experiments to illustrate different approaches 
advantages and disadvantages are conducted with this dataset. 

2. Dataset 

Task of conversation routing can be formulated as a text classification problem, so we construct a 
dataset to measure the accuracy of routes classification. Dataset is based on wine online store 
chatbot, which should handle following cases: 

• Answer questions about general wine knowledge and the store itself (wine making, history, 
terms, geography, etc.). Most of these questions should be answered from LLM pretrained 
knowledge as it would require a large vector database to cover all possible wine-related 
questions and ground responses; 

• Recommend goods from the store based on user’s preferences and wishes. Such answers 
should be grounded by relevant semantic search results; 

• Small talk messages, like gratitude, greetings or just casual messages, which do not require 
specific knowledge or grounding; 

• Off topic messages, which either do not relate to the topic of wine at all or try to jailbreak 
the LLM agent.  Should be ignored completely. 

We faced a cold start problem during the construction of dataset, as the bot was not yet launched 
and the website did not have a live chat before. We only had 119 examples of possible messages and 
an outline of possible scenarios for the bot. 

General questions on wine topic are easier to fill in as they can be scrapped from the web, which 
we ended up doing. However, catalog recommendations require lots of examples with different level 
of expertise. We also need to verify that router would understand the same request if it was rewritten 
with same sense and different words. The router should handle samples with wrong spelling, 
grammar or punctuation. 

Gathering real-life chat messages would take to much time to get those samples and label them, 
so we used Gemini 1.5 Pro as a synthetic data generator to fill the benchmark with more samples. 
We constructed prompts for 3 different levels of user’s expertise: a wine newbie, a multiple times 
wine customer without deep topic knowledge, and a wine expert, who understands and uses specific 
terms and knows what they need. Around 20% of the generated messages were then corrupted with 
a prompt, which makes LLM rewrite the message with spelling, grammar or punctuation errors. 
Messages may contain emojis, unnecessary spaces or line breaks which should still be handled by 
router. 

Off topic messages were sampled from SQUAD [6] dataset gathered by Stamford University as 
we wanted to check how router is going to handle just random questions on anything in general. 

Also, we used a machine translation [7] to create a subset of questions in German, French, Italian 
and Ukrainian to check how each router implementation handles multilingual queries. 

More details on dataset are provided in the Table 1. 
 

Table 1 
Routing Benchmark Dataset Statistics 

Label Number of 
samples 

Median length in 
words English texts By other 

languages 
general-wine / 
general-questions 931 13 468 116 

catalog 757 32 442 78 
small-talk 304 35 172 33 
Offtop 884 11 500 96 
Total 2,876 16 1,584 323 



Table 2 shows distribution of texts by their origin (original examples, scraped from the web or 
generated by Gemini 1.5 Pro, SQUAD). 

 
Table 2 
Distribution of Texts by Origin 

Label Original 
examples 

Generated by 
LLM 

Scrapped from the 
web SQUAD QA 

general-wine / 
general-questions 30 283 618 0 

catalog 82 675 0 0 
small-talk 7 297 0 0 
Offtop 0 0 0 884 

 
Also, we created a small subset of the benchmark data with just 80 samples (20 random texts per 

each label) to check the stability of LLM routing with multiple settings. 
Current limitation of the benchmark is that all messages here are considered as first ones in the 

chat, so we plan to extend the benchmark further with additional chat context to check the 
performance on long conversations. 

3. Models and Approaches 

Due to a cold start problem and lack of a train dataset only zero and few shot classifiers were chosen 
for conversation routing task. We test 3 different general approaches: Natural Language Inference 
(NLI) router, LLM with in-context learning classifier [8] and a latent embeddings router. Each 
approach was tested with multiple models and modes. 

3.1. Natural Language Inference Router 

Natural Language Inference (NLI) models can be used as zero-shot classifiers [9]. The goal of such 
model is to determine the relationship between a premise (a user message in our case and a 
hypothesis). The model gets pretrained on a large NLI dataset, which allows to conduct a zero-shot 
classification with it on previously unseen domains. The class with highest entailment score will be 
the label of NLI zero-shot classifier for input text. 

We tested Meta’s facebook/bart-large-mnli model, which was trained on MultiNLI dataset [10], 
in 2 modes: 

• just provide labels as a set of hypotheses (general-wine, small-talk, catalog, offtop); 
• provide detailed descriptions of classes as a set of hypotheses (same ones will be used later 

in LLM in-context learning prompt) 

3.2. LLM In-Context Learning Router 

We used LLMs in-context learning ability to create a zero-shot classifier. Such models are pretrained 
on a massive amount of text, which gives them an ability to solve tasks out of training scope with 
just a few examples in the prompt or even a general description. 

In our approach we combine in-context learning, a short chain of thought reasoning and JSON-
restricted generation to make a router out of LLM.  

We use role prompting combined with multiple  evidence calibration (MEC) [11] to improve the 
route classification results. MEC should reduce the positional bias of the LLM in-context learning 
classifier by adding an intermediate explanation step, in which model reasons further choice. It can 
provide both interpretability and higher stability for predictions. Decoding is restricted to JSON 
grammar to help model preserve the schema and avoid format breaking jailbreaks. If JSON dictionary 



does not have a key class with one of 4 possible values it is considered as a broken format (schema 
restriction was not used during experiments). Generation is done with temperature 0 and 300 output 
tokens limit. Classification system prompt can be seen in Figure 1. 

 

 
Figure 1: LLM in-context learning classifier prompt for the conversation routing task 

 
Message to be routed is provided as a user message to avoid instruction injection into system 

prompt and chat history is provided into <chat> tag with offtop messages replaced with a boilerplate 
message “offtop message”. 

We tested the approach with following models: 

• GPT 3.5 Turbo [12]: 69.8% on MMLU [13], 78 tokens per second; 
• GPT 4o: 88.7% on MMLU, 83.8 tokens per second; 
• GPT 4o mini: 82% on MMLU, 166 tokens per second; 
• Gemini 1.0 Pro [14]: 71.8% on MMLU, 87 tokens per second; 
• Gemini 1.5 Pro [15]: 85.9% on MMLU, 58 tokens per second; 
• Gemini 1.5 Flash: 78.9% on MMLU, 165 tokens per second. 

GPT 4 [16] and GPT 4 Turbo were rejected due to their high price and slower tokens generation 
(around 12 and 35 tokens per second correspondingly), as routing requires a low latency and price 
due to being used on each input message. 

Also, we tested XML format without a grammar restriction during decoding in order to check if 
the format affects classification accuracy too. 

3.3. Latent Embeddings Router 

Bi-encoders, which are used for retrieval stage of semantic search, can actually be used for few-shot 
routing too. For this we need to create a set of examples for each class [17]. Set should not be large, 
so it can be created synthetically or just manually. In our case we wrote 20 examples for each class 
except offtop, which will be explained later. Samples can be seen in Figure 2. 
 
 



 
Figure 2: Samples for latent embeddings-based routing 

 
Once the message comes from the user, top 5 examples get retrieved from vector storage and 

aggregated by their label (we used sum aggregation for cosine similarities of retrieved samples). The 
label with highest aggregated score will be the chosen route. However, each route has a rejection 
threshold value, so if the aggregated score is lower than the threshold, route will not be chosen even 
if it is the best one available. Such cases should be considered offtop (questions unrelated to chatbot 
primary topic or jailbreak attempts). 

We used a semantic router implementation by Aurelio labs with following encoders: 

• textembedding-gecko@003 by Google (DOCUMENT RETRIEVAL mode) (256 size). 
• textembedding-gecko-multilingual@002 (DOCUMENT RETRIEVAL mode, 256 size). 
• multilingual e5 base (768 size) [18]. 
• text-embedding-3-large by OpenAI (256 size). 

Each setup uses same routes examples, rejection threshold was set as 0.6 and aggregation type is 
sum. 

4. Experiments Setup 

We conduct a set of 3 experiments: 

• calculate classification report [19] on full dataset for each approach and model (2 
measurements for NLI router, 11 measurements for LLM router and 4 measurements for 
embeddings semantic router); 

• calculate classification accuracy of LLM router with different order of routes in system 
prompt on a 80 samples subset of benchmark dataset to check how positional bias affects 
routing accuracy (calculate all 24 combinations of routes order and measure it on 6 LLMs) 
[20]; 

• repeat classification of 80 samples subset 5 times on 6 LLMs with a default system prompt 
shown in chapter III and measure mean, median accuracy and standard deviation in order to 
check how much each models changes its prediction with the same inputs and instructions 
during classification. 

5. Results and Interpretation 

5.1. General Performance of Routers 

Table 3 shows classification results for all tested approaches. NLI router gives worst results with in 
both modes. While it was not expected to get the highest accuracy, it is still surprising to get such a 
low score for this approach, which deems it unsuitable for routing. 
 

 
 
 

 



Table 3 
Performance of tested zero-shot classifiers on conversation routing task 

Approach Model 
Catalog 
F1 

General 
wine F1 

Small 
talk 
F1 

Offtop 
F1 Accuracy 

Median 
time 

NLI 
facebook/bart-large-
mnli just labels 0,002 0,046 0,299 0,604 0,321 0,108 

NLI 
facebook/bart-large-
mnli full description 0,426 0,000 0,000 0,000 0,260 0,141 

embedding
s 

intfloat/multilingual-
e5-base 0,630 0,603 0,625 0,000 0,505 0,013 

embedding
s 

textembedding-
gecko@003 0,834 0,762 0,567 0,699 0,736 0,091 

embedding
s 

text-embedding-3-
large 0,852 0,278 0,209 0,594 0,573 0,225 

embedding
s 

text-multilingual-
embedding-002 0,870 0,775 0,812 0,927 0,856 0,094 

LLM 

gpt-3.5-turbo 
(general-questions 
label) 0,952 0,712 0,883 0,439 0,737 0,582 

LLM 
gpt-3.5-turbo 
(general-wine label) 0,942 0,890 0,873 0,925 0,912 0,623 

LLM gpt-4o-mini 0,927 0,917 0,816 0,931 0,905 0,645 
LLM gpt-4o 0,939 0,899 0,819 0,930 0,909 0,822 

LLM 
Gemini 1.5 Flash 
(XML) 0,912 0,913 0,745 0,952 0,909 0,534 

LLM 
Gemini 1.5 Flash 
(JSON) 0,899 0,911 0,720 0,946 0,901 0,455 

LLM 

Gemini 1.0 Pro (XML, 
general-question 
label) 0,942 0,821 0,707 0,826 0,840 0,809 

LLM 

Gemini 1.0 Pro 
(general-question 
label) 0,924 0,812 0,673 0,783 0,821 1,288 

LLM 
Gemini 1.0 Pro 
(general-wine label) 0,922 0,863 0,685 0,891 0,871 1,294 

LLM Gemini 1.5 Pro 0,893 0,935 0,671 0,949 0,904 1,129 
 
Larger models like GPT 4o and Gemini 1.5 Pro achieve highest accuracy around 0.9.  Their faster 

versions (4o-mini and Flash) achieve comparable scores with quicker and cheaper generation (0.900 
vs 0.905 for larger models). 

4o and 1.5 Pro keep the required dictionary structure well, while previous generation models like 
GPT 3.5, 4o-mini or Gemini 1.0 Pro tend to either hallucinate schema or class names. The most drastic 
case was spotted with Gemini 1.0 Pro, which generated an array of JSON dictionaries with multiple 
classes predictions in 40% of cases. It happened when message was on the verge of both routes (like 
a mix of small talks and catalog inquiries). Gemini 1.5 Flash tends to break the schema by creating a 
long explanation and reaching output tokens limit if the message possibly requires more context 
(like a clarification). 

GPT 3.5 and Gemini 1.0 Pro are more sensible to label names as they get a significant accuracy 
boost from changing the name of general wines questions route from “general-questions” to 
“general-wine” (0.75 to 0.91 for GPT 3.5 Turbo). Also, the change of output format may affect the 
accuracy too as XML formatted predictions gave slightly higher accuracy than JSON. However, they 
are more prone to broken schema or format ignorance (around 2% against 0.2% for JSONs). Such 



sensitivity to prompt details proves the need for additional prompt tuning during in-context learning 
classification. 

Latent embeddings semantic router gave results comparable to LLMs with multilingual gecko 
model. Clear advantage of this approach is ability to interpret the prediction by analyzing retrieved 
examples and their similarity scores. This allows to clean and adjust examples set until it covers 
enough use cases. It would be easier to fix such router by replacing misleading examples or extending 
sets with new samples from production environment. This router should not be susceptible to classic 
LLM jailbreaks, however attacks on semantic router need further investigation. Also, all tested 
variations of semantic router generated prediction faster than LLMs (x3-x6 acceleration) and cheaper 
(cheapest full dataset prediction costed 0.34$ for GPT 4o-mini, while full dataset prediction with 
gecko or OpenAI embeddings costed 0.02$ in average). One of the main cons of this approach is a 
reproducibility of results on the same model with a fixed seed, which is not possible with LLMs due 
to their non-deterministic nature. 

We created a TSNE 2D projection of multilingual gecko embeddings to research how benchmark 
samples distribute. The plot is shown in Figure 3, where greens are offtops, yellows are general wine 
questions, reds are catalogs and blues are small talks (OX – TSNE 1st dimension, OY – TSNE 2nd 
dimension). 

 

 
Figure 3: TSNE 2D projection of benchmark questions embeddings obtained from gecko 
multilingual colored by their target route 

 
Most offtops are clearly separated from main classes, which There are many overlaps of general 

wine questions with other routes due to the wide nature of this class, especially with offtops. It makes 
this route the most vulnerable to possible unwanted usage. Both LLMs and embeddings router tend 
to confuse them as questions can be related to geography, climate, history or culture of certain 
regions. Such questions can be interpreted as both wine-related and off topic messages about 
common world knowledge.  

Some samples have double interpretation, which puts them on the verge of 2 clusters (like “what 
new region should I try?” in context of wine origin region, which can be both general question and 
a catalog recommendation). 

A cloud in the left top corner, which contains all 4 classes, is centered around price topic (for 
example an offtop “How much fine should I pay for price sharing”, small talk “Wow, you have a 
really good pricing here” and a general one “Does price of a wine really matter?”). Such questions 
get misclassified as catalogs by both LLM router and embeddings, which should be explored and 
fixed further to avoid wrong behavior by the chatbot. 

Table 4 demonstrates the performance of tested models for all 5 languages present in dataset. 
LLM routers are quite consistent across all of them (even low resource Ukrainian). However, we can 



clearly see how different embeddings models exceed at certain languages. For example, OpenAI large 
embeddings model gives its best performance for French language and drops the quality for 
Ukrainian. Even a multilingual gecko loses 0.1 accuracy for non-English messages. It suggests that a 
latent embeddings router should ideally contain routes examples in all target languages to smooth 
that accuracy drop. 

 
Table 4 
Performance of tested zero-shot classifiers on routing task by language 

Approach Model 

ENG 
Accurac
y 

FR 
Accurac
y 

DE 
Accurac
y 

IT 
Accurac
y 

UKR 
Accurac
y 

NLI 
facebook/bart-
large-mnli just labels 0,369 0,272 0,317 0,344 0,115 

NLI 

facebook/bart-
large-mnli full 
description 0,275 0,239 0,245 0,238 0,242 

embedding
s 

intfloat/multilingual
-e5-base 0,568 0,505 0,361 0,424 0,509 

embedding
s 

textembedding-
gecko@003 0,791 0,654 0,671 0,610 0,217 

embedding
s 

text-embedding-3-
large 0,635 0,703 0,514 0,551 0,342 

embedding
s 

text-multilingual-
embedding-002 0,904 0,783 0,762 0,786 0,804 

LLM 

gpt-3.5-turbo 
(general-questions 
label) 0,709 0,758 0,799 0,759 0,767 

LLM 
gpt-3.5-turbo 
(general-wine label) 0,901 0,945 0,931 0,926 0,898 

LLM gpt-4o-mini 0,887 0,948 0,903 0,929 0,929 
LLM gpt-4o 0,905 0,933 0,909 0,910 0,901 

LLM 
Gemini 1.5 Flash 
(XML) 0,895 0,927 0,925 0,923 0,925 

LLM 
Gemini 1.5 Flash 
(JSON) 0,894 0,896 0,922 0,913 0,907 

LLM 

Gemini 1.0 Pro (XML, 
general-question 
label) 0,833 0,847 0,862 0,845 0,829 

LLM 

Gemini 1.0 Pro 
(general-question 
label) 0,809 0,838 0,856 0,845 0,807 

LLM 
Gemini 1.0 Pro 
(general-wine label) 0,858 0,878 0,909 0,885 0,876 

LLM Gemini 1.5 Pro 0,898 0,911 0,912 0,910 0,913 

5.2. LLM Router Accuracy after Labels Order Change 

Obtained results on 24 shuffles of routes measured on 6 LLMs show that smaller models like GPT 
4o-mini, GPT 3.5 Turbo, Gemini 1.0 Pro and 1.5 Flash are more susceptible towards significant 
changes in routing accuracy due to the change of labels order in system prompt. Measures are 
presented in Table 5. 

Worst result was shown by the most recent GPT 4o-mini (0.106 standard deviation). Its accuracy 
bounces from 0.51 to 0.94 with the change of labels order. We reviewed predicted labels of the worst 



routes order (offtop | general-wine | small-talk | catalog) and found out that model tends to violate 
the JSON schema with such order of routes. It either generates a JSON, which cannot be parsed 
(model reaches output token limit and does not close the dictionary). Figure 4 shows the comparison 
of confusion matrices of the worst and the best labels orders for GPT 4o-mini. 

 

 
Figure 4: Confustion matrices of the worst and the best routes orders for GPT 4o-mini routing 
prompt 

 
The order small-talk, catalog, offtop, general-wine on GPT 4o-mini, which gave the best accuracy 

around 0.94, returned all responses with a correct schema. We repeated this test another 5 times and 
average accuracy for this order was still 0.94 without incorrect JSONs. 

The most stable models were GPT 4o and Gemini 1.5 Pro as they have standard deviation 0.02, 
which proves the idea that larger LLMs are less sensitive towards labels order inside in-context 
learning classification prompt. 

Results show that LLM classifier cannot be used for routing task without a voting mechanism 
over multiple shuffles as usage of MEC did not smooth the positional bias of models for routing task. 
Another solution would be to conduct a few predictions at once with random orders of routes and 
ensemble their results by voting. This would make them even more expensive and possibly slow (in 
case of iterative calls) in comparison to latent embeddings router. 

The results need further investigation to find out the origin of such behavior as it can lie in 
pretraining data, positional encoding of tokens or attention masks of LLM. 

 
Table 5 
Accuracy of Routing after Routes Order Change 

Model Mean Median Min Max Standard 
Deviation 

gpt-3.5-
turbo 0.819 0.830 0.690 0.900 0.065 

gpt-4o-mini 0.821 0.845 0.510 0.940 0.106 
gpt-4o 0.893 0.895 0.850 0.930 0.021 
Gemini 1.0 
Pro 0.751 0.745 0.660 0.820 0.046 

Gemini 1.5 
Pro 0.813 0.815 0.750 0.850 0.024 

Gemini 1.5 
Flash 0.780 0.770 0.700 0.880 0.051 

 



5.3. LLM Routing Stability with Fixed Prompt and Parameters 

We took the default prompt and repeated the classification 5 times for each LLM as it was described 
in section IV. This way we wanted to check how much would the routing result differ for same 
inputs, generation parameters and prompt as closed-source LLMs do not guarantee reproducibility 
of outputs. The order of routes was left default for this experiment (general-wine | catalog | small-
talk | offtop). Results are shown in Table 6. 

 
Table 6 
Accuracy of Routing after Routes Order Change 

Model Mean Median Min Max Standard 
Deviation 

gpt-3.5-
turbo 0.878 0.880 0.860 0.890 0.011 

gpt-4o-mini 0.850 0.860 0.820 0.860 0.017 
gpt-4o 0.896 0.900 0.890 0.900 0.005 
Gemini 1.0 
Pro 0.820 0.820 0.810 0.840 0.012 

Gemini 1.5 
Pro 0.826 0.840 0.790 0.850 0.025 

Gemini 1.5 
Flash 0.820 0.820 0.820 0.820 0.000 

 
These measurements show that even large model tend to change their classification result with 

same inputs, generation conditions and temperature equal to 0.0. So LLM hallucinations do not allow 
their stable usage for routing task due to their non-deterministic nature. 

However, Gemini 1.5 Flash is the only model that gave the same accuracy all 5 times. We decided 
to doublecheck this result and conducted another set of 5 measurements on the same 80 samples 
subset with the same prompt and parameters in 24 hours. The accuracy and F1 scores for individual 
classes still matched previous measurement, but there was still 1 sample, where model gave different 
classes: “Oh wow, didn't realize you guys had a rewards program!  That's awesome, might have to 
stock up then haha 🍷😄”. This sample is labeled as catalog, so we measured it with Gemini 1.5 Flash 
another 20 times and got 13 catalogs and 7 offtops. We also checked explanation generated by model 
before it generates the class label and it used similar reasoning to choose 2 different classes. Reward 
program can be interpreted as a factor to propose a good and at the same time it does not relate to 
wines, so model uses those 2 explanations to reason both choices. 

Despite having a high accuracy such a lack of reproducibility and means to debug the output 
makes LLM router unsuitable for a stable zero or few show classification even with additional chain 
of thought reasoning. They could be a great baseline and a model for prototyping or initial labeling 
of data for further manual correction. However, their non-deterministic routing and the absence of 
clear interpretability makes them too unstable for production usage. Chain of thought reasoning gets 
changed by hallucinations too, so it cannot provide a clear description of decision-making process 
for route choice. 

6. Conclusion 

In the scope of this paper, we presented a detailed comparison of zero and few shot routing methods 
for chat bot systems (NLI, LLMs, latent embeddings). 

We collected a benchmark dataset with over 2,800 records to test how router distinguishes 
between specific knowledge questions, recommendations, small talks and off topic messages, which 
should be ignored. 



LLM based routers with chain of thought reasoning provided the highest accuracy score on 
benchmark dataset, however further experiments proved their instability for routing task as they 
lack interpretation, reproducibility and are highly sensitive to output format, routes names and even 
order. Usage of intermediate reasoning step does not smooth classification results. 

NLI router gave the worst results with both hypothesis settings. As a result, we show that latent 
embeddings based semantic router can give scores close to LLM classifier and provides high speed, 
interpretation and controllability [21] via examples set and rejection boundaries tuning for each 
route. 

We plan to extend benchmark with a full chat context to test it on long dialog cases (like routing 
after 2, 3 and more messages). This further cleaned and extended version will be released openly. 
Also, we plan to check how multiple routers handle possible LLM jailbreaks and attacks. Main topic 
for further research remains the sensitivity of LLMs to order, labels and output format as it affects 
both classification and quality of responses in general. We plan to check it on open source models 
further too. 
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